Nanomedicine-induced cancer cell death has become a prominent area of research in the life sciences field in recent years. The concept of cuproptosis was first proposed in 2022. Copper homeostasis in organisms is tightly regulated by protein transporters and molecular chaperones. Disruptions in copper homeostasis can adversely affect mitochondrial respiration and disrupt other physiological processes, leading to cytotoxicity. Therefore, researchers have designed and refined copper-based nanomaterials to induce cuproptosis and assess their effects on cancer treatment. While several reviews on cuproptosis exist, they primarily delve into its molecular mechanisms. This review begins with elucidating the metabolism and homeostasis of copper in the body. Subsequently, the latest advancements in copper nanomaterial-induced cuproptosis for cancer treatment and antimicrobial purposes is summarized. Finally, a comprehensive summary and outlook on the subject is provided. The goal with this review is to assist researchers in gaining a deeper understanding of the interaction between nanomaterials and cuproptosis, thereby offering new perspectives for designing novel nanomaterials to induce cuproptosis.
{"title":"Recent Advances in the Biomedical Applications of Copper Nanomaterial-Mediated Cuproptosis","authors":"Sijia Wu, Qian Wang, Yuhao Li, Baolin Liu, Yuqing Miao","doi":"10.1002/anbr.202400018","DOIUrl":"10.1002/anbr.202400018","url":null,"abstract":"<p>Nanomedicine-induced cancer cell death has become a prominent area of research in the life sciences field in recent years. The concept of cuproptosis was first proposed in 2022. Copper homeostasis in organisms is tightly regulated by protein transporters and molecular chaperones. Disruptions in copper homeostasis can adversely affect mitochondrial respiration and disrupt other physiological processes, leading to cytotoxicity. Therefore, researchers have designed and refined copper-based nanomaterials to induce cuproptosis and assess their effects on cancer treatment. While several reviews on cuproptosis exist, they primarily delve into its molecular mechanisms. This review begins with elucidating the metabolism and homeostasis of copper in the body. Subsequently, the latest advancements in copper nanomaterial-induced cuproptosis for cancer treatment and antimicrobial purposes is summarized. Finally, a comprehensive summary and outlook on the subject is provided. The goal with this review is to assist researchers in gaining a deeper understanding of the interaction between nanomaterials and cuproptosis, thereby offering new perspectives for designing novel nanomaterials to induce cuproptosis.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 8","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400018","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140660827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fabio Henkel, Leonie Deßloch, Ufuk Gürer, Benjamin Winkeljann, Matthias Marczynski, Olivia M. Merkel, Oliver Lieleg
In recent years, highly specialized nanoscopic drug carriers have been developed, which can, e.g., traverse biological barriers, protect drugs against harsh physiological conditions, and release such drugs in a controlled manner. However, for the delivery of particles via the respiratory pathway, aerodynamic diameters in the range of several micrometers are required to achieve good lung deposition and biodistribution. To combine the favorable properties of inhalable, micron-sized particles with the advantages of nanosized drug carriers, herein, dry-powder, hybrid microparticles (h-μPs), which disintegrate upon contact with moist surfaces (as present in the lung) to release the embedded nanoparticles into the mucosa, are introduced. Furthermore, a microfluidic setup, which mimics the air–gel interface of the mucosal airway epithelium, is presented. With this setup, the interaction of airborne h-μPs with the mucosal interface on a microscopic level is investigated. In detail, the influence of the h-μP charge on their deposition efficiency is tested and it is found that this process is governed by a combination of electrostatic interactions between the mucosal surface and the h-μPs as well as hygroscopic effects. Thus, this approach can help to optimize inhalable drug carriers to increase the efficiency of pulmonary drug administration via the respiratory pathway.
{"title":"Behavior of Self-Disintegrating Microparticles at the Air/Mucus Interface","authors":"Fabio Henkel, Leonie Deßloch, Ufuk Gürer, Benjamin Winkeljann, Matthias Marczynski, Olivia M. Merkel, Oliver Lieleg","doi":"10.1002/anbr.202300153","DOIUrl":"https://doi.org/10.1002/anbr.202300153","url":null,"abstract":"<p>In recent years, highly specialized nanoscopic drug carriers have been developed, which can, e.g., traverse biological barriers, protect drugs against harsh physiological conditions, and release such drugs in a controlled manner. However, for the delivery of particles <i>via</i> the respiratory pathway, aerodynamic diameters in the range of several micrometers are required to achieve good lung deposition and biodistribution. To combine the favorable properties of inhalable, micron-sized particles with the advantages of nanosized drug carriers, herein, dry-powder, hybrid microparticles (h-μPs), which disintegrate upon contact with moist surfaces (as present in the lung) to release the embedded nanoparticles into the mucosa, are introduced. Furthermore, a microfluidic setup, which mimics the air–gel interface of the mucosal airway epithelium, is presented. With this setup, the interaction of airborne h-μPs with the mucosal interface on a microscopic level is investigated. In detail, the influence of the h-μP charge on their deposition efficiency is tested and it is found that this process is governed by a combination of electrostatic interactions between the mucosal surface and the h-μPs as well as hygroscopic effects. Thus, this approach can help to optimize inhalable drug carriers to increase the efficiency of pulmonary drug administration <i>via</i> the respiratory pathway.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 7","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202300153","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141565883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}