Nanomedicine shows remarkable potential to improve the efficacy of diagnosis and treatment of tumors, utilizing nanotechnologies and nanomaterials. Gold nanoclusters (AuNCs) have emerged as a highly promising option due to their exceptional optical and enzyme-mimicking catalytic activities as well as good biocompatibility. The renal clearable clusters can enrich in the tumors upon their enhanced permeability and retention properties, which benefits the tumor-related applications. The fluorescence of AuNCs in the second near-infrared region possesses extraordinary penetration depth and high temporal–spatial resolution, enabling excellent in vivo imaging and real-time monitoring of pathological process. AuNC-based nanoplatforms represent a paradigm of integrated, efficient, intelligent, and safe treatment strategy, extending personalized tumor therapy. Meanwhile, the optical and biocatalytic properties can be modulated by adopting the atom/ligand engineering, which further enhances the efficacy of AuNCs. Herein, the advances of AuNCs in the field of diagnosis and treatment of tumors are summarized and the directions to be improved are proposed to promote the clinical translation of the AuNCs.
{"title":"Gold Nanoclusters for Tumor Diagnosis and Treatment","authors":"Shiqun Chen, Shasha Li, Yili Wang, Zuohong Chen, Hao Wang, Xiao-Dong Zhang","doi":"10.1002/anbr.202300082","DOIUrl":"https://doi.org/10.1002/anbr.202300082","url":null,"abstract":"<p>Nanomedicine shows remarkable potential to improve the efficacy of diagnosis and treatment of tumors, utilizing nanotechnologies and nanomaterials. Gold nanoclusters (AuNCs) have emerged as a highly promising option due to their exceptional optical and enzyme-mimicking catalytic activities as well as good biocompatibility. The renal clearable clusters can enrich in the tumors upon their enhanced permeability and retention properties, which benefits the tumor-related applications. The fluorescence of AuNCs in the second near-infrared region possesses extraordinary penetration depth and high temporal–spatial resolution, enabling excellent in vivo imaging and real-time monitoring of pathological process. AuNC-based nanoplatforms represent a paradigm of integrated, efficient, intelligent, and safe treatment strategy, extending personalized tumor therapy. Meanwhile, the optical and biocatalytic properties can be modulated by adopting the atom/ligand engineering, which further enhances the efficacy of AuNCs. Herein, the advances of AuNCs in the field of diagnosis and treatment of tumors are summarized and the directions to be improved are proposed to promote the clinical translation of the AuNCs.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"3 12","pages":""},"PeriodicalIF":3.4,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202300082","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138634042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lanlan Li, Bingyu Chen, Gang Li, Sheng Chen, Jianxiang Zhang
Despite remarkable advances in understanding the mechanisms underlying inflammation, the currently available anti-inflammatory therapies have many limitations, such as poor efficacies, low selectivity, and severe adverse effects. Bioactive materials with intrinsically anti-inflammatory activities have emerged as promising drug candidates for the treatment of inflammatory disorders. Among them, nanotherapies based on bioactive cyclodextrin (CD) materials have attracted much attention, owing to their multiple advantages, including broad availability, well-controlled structures, easy functionalization, good processibility, high cost-effectiveness, and excellent biocompatibility. This review provides a comprehensive overview of the recent advancements in the development and applications of anti-inflammatory nanoparticles (NPs) based on bioactive CD materials, with special focus on reactive oxygen species-scavenging NPs and NPs capable of regulating inflammatory cell recruitment and activation. In addition, the applications of these anti-inflammatory nanotherapies in the treatment of different acute/chronic inflammatory diseases are highlighted. Furthermore, major challenges in the clinical translation of these new generation anti-inflammatory therapies derived from bioactive CD materials are discussed.
{"title":"Anti-Inflammatory Nanotherapies Based on Bioactive Cyclodextrin Materials","authors":"Lanlan Li, Bingyu Chen, Gang Li, Sheng Chen, Jianxiang Zhang","doi":"10.1002/anbr.202300106","DOIUrl":"https://doi.org/10.1002/anbr.202300106","url":null,"abstract":"<p>Despite remarkable advances in understanding the mechanisms underlying inflammation, the currently available anti-inflammatory therapies have many limitations, such as poor efficacies, low selectivity, and severe adverse effects. Bioactive materials with intrinsically anti-inflammatory activities have emerged as promising drug candidates for the treatment of inflammatory disorders. Among them, nanotherapies based on bioactive cyclodextrin (CD) materials have attracted much attention, owing to their multiple advantages, including broad availability, well-controlled structures, easy functionalization, good processibility, high cost-effectiveness, and excellent biocompatibility. This review provides a comprehensive overview of the recent advancements in the development and applications of anti-inflammatory nanoparticles (NPs) based on bioactive CD materials, with special focus on reactive oxygen species-scavenging NPs and NPs capable of regulating inflammatory cell recruitment and activation. In addition, the applications of these anti-inflammatory nanotherapies in the treatment of different acute/chronic inflammatory diseases are highlighted. Furthermore, major challenges in the clinical translation of these new generation anti-inflammatory therapies derived from bioactive CD materials are discussed.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"3 12","pages":""},"PeriodicalIF":3.4,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202300106","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138634241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Age-related macular degeneration (AMD), the leading cause of vision loss among older individuals, is characterized by damage to photoreceptors and retinal pigment epithelial cells (RPEs). Oxidative stress and chronic inflammation in the retina play notable roles in AMD pathogenesis, rendering them attractive therapeutic targets. Cerium oxide nanoparticles (CeNPs) have shown promise in scavenging reactive oxygen species (ROS) by mimicking antioxidant enzymes, whereas mesoporous materials have emerged as versatile drug carriers. Herein, mesoporous CeNPs (mCeNPs) that integrate the advantages of CeNPs and mesoporous materials are presented. The mCeNPs can be synthesized using 1,1′-carbonyldiimidazole and imidazole in acetone without heating and pressurization. The resulting mCeNPs exhibit mesoporous structures comprising assembled small CeNPs, exerting excellent ROS-scavenging capabilities, biocompatibility, and cytoprotective and anti-inflammatory effects against H2O2-induced damage in RPEs. Using a sodium iodate-induced AMD mouse model, it is demonstrated that intravitreal mCeNP administration can exhibit disease-preventive effects. These findings indicate the therapeutic potential of mCeNPs against AMD.
{"title":"Mesoporous Cerium Oxide Nanoparticles with High Scavenging Properties of Reactive Oxygen Species for Treating Age-Related Macular Degeneration","authors":"Seung Woo Choi, Ye Eun Kim, Jaeyun Kim","doi":"10.1002/anbr.202300062","DOIUrl":"https://doi.org/10.1002/anbr.202300062","url":null,"abstract":"<p>Age-related macular degeneration (AMD), the leading cause of vision loss among older individuals, is characterized by damage to photoreceptors and retinal pigment epithelial cells (RPEs). Oxidative stress and chronic inflammation in the retina play notable roles in AMD pathogenesis, rendering them attractive therapeutic targets. Cerium oxide nanoparticles (CeNPs) have shown promise in scavenging reactive oxygen species (ROS) by mimicking antioxidant enzymes, whereas mesoporous materials have emerged as versatile drug carriers. Herein, mesoporous CeNPs (mCeNPs) that integrate the advantages of CeNPs and mesoporous materials are presented. The mCeNPs can be synthesized using 1,1′-carbonyldiimidazole and imidazole in acetone without heating and pressurization. The resulting mCeNPs exhibit mesoporous structures comprising assembled small CeNPs, exerting excellent ROS-scavenging capabilities, biocompatibility, and cytoprotective and anti-inflammatory effects against H<sub>2</sub>O<sub>2</sub>-induced damage in RPEs. Using a sodium iodate-induced AMD mouse model, it is demonstrated that intravitreal mCeNP administration can exhibit disease-preventive effects. These findings indicate the therapeutic potential of mCeNPs against AMD.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"3 12","pages":""},"PeriodicalIF":3.4,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202300062","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138634240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}