When a fire is detected in a rural environment, it is imperative to know the dynamics of the fire's development. Knowing the fire's trajectory is vital since the firefront will have shifted when first responders reach the ignition site. We developed a fast rural fire propagation calculation algorithm that can predict the fire front trajectory 6 h from the time of detection, taking as input data only the latitude and longitude coordinates of the detected hot spot, and obtaining all the necessary data from open online sources. In response to the pressing demand for effective fire control strategies in rural areas, this paper introduces a computational analytical model to predict the fire speed of rural fire behavior. By integrating topographic, meteorological, and land use data, our system offers on-demand fire behavior forecasts, addressing a critical need in the field. With the key component, a predictor, our system identifies patterns and provides crucial information to decision-makers. This comprehensive approach positions our system as an invaluable tool for rescue teams and decision-makers engaged in the proactive battle against rural fires.