Pub Date : 2024-11-04DOI: 10.1016/j.envres.2024.120294
Yang Hu, Yifu Song, Jian Cai, Jianying Chao, Yi Gong, Xingyu Jiang, Keqiang Shao, Xiangming Tang, Guang Gao
Although the biogeographical pattern and mechanisms underlying microbial assembly have been well-explored in lentic ecosystems, the relevant scenarios in lotic ecosystems remain poorly understood. By sequencing the bacterial communities in bacterioplankton and biofilm, our study detected their distance-decay relationship (DDR), and the balance between deterministic and stochastic processes, along the Kaidu river in an arid and semi-arid region of northwest China. Our results revealed that bacterioplankton and biofilm had significantly contrasting community structures. The bacterioplankton communities showed a gradually decreasing trend in alpha-diversity from the headwater to the river mouth, contrasting with the alpha-diversity of biofilm communities which was constant along the river length. Both bacterioplankton and biofilm showed significant DDRs along the 500-km river corridor with the slope of the bacterioplankton DDR being steeper than that of the biofilm DDR, which implies a stronger biogeography of bacterioplankton than biofilm. Relative to biofilm communities, the species interactions formed a denser and more complex network in the bacterioplankton communities than in the biofilm communities. Our results also revealed that there was a transition of community assembly from deterministic to stochastic processes upstream to downstream, although both the bacterioplankton and biofilm communities were mainly regulated by deterministic processes within the entire river. All these empirical results expand our knowledge of microbial ecology in an arid and semi-arid lotic ecosystem.
{"title":"Stronger biogeographical pattern of bacterioplankton communities than biofilm communities along a riverine ecosystem: a local scale study of the Kaidu river in the arid and semi-arid northwest of China.","authors":"Yang Hu, Yifu Song, Jian Cai, Jianying Chao, Yi Gong, Xingyu Jiang, Keqiang Shao, Xiangming Tang, Guang Gao","doi":"10.1016/j.envres.2024.120294","DOIUrl":"https://doi.org/10.1016/j.envres.2024.120294","url":null,"abstract":"<p><p>Although the biogeographical pattern and mechanisms underlying microbial assembly have been well-explored in lentic ecosystems, the relevant scenarios in lotic ecosystems remain poorly understood. By sequencing the bacterial communities in bacterioplankton and biofilm, our study detected their distance-decay relationship (DDR), and the balance between deterministic and stochastic processes, along the Kaidu river in an arid and semi-arid region of northwest China. Our results revealed that bacterioplankton and biofilm had significantly contrasting community structures. The bacterioplankton communities showed a gradually decreasing trend in alpha-diversity from the headwater to the river mouth, contrasting with the alpha-diversity of biofilm communities which was constant along the river length. Both bacterioplankton and biofilm showed significant DDRs along the 500-km river corridor with the slope of the bacterioplankton DDR being steeper than that of the biofilm DDR, which implies a stronger biogeography of bacterioplankton than biofilm. Relative to biofilm communities, the species interactions formed a denser and more complex network in the bacterioplankton communities than in the biofilm communities. Our results also revealed that there was a transition of community assembly from deterministic to stochastic processes upstream to downstream, although both the bacterioplankton and biofilm communities were mainly regulated by deterministic processes within the entire river. All these empirical results expand our knowledge of microbial ecology in an arid and semi-arid lotic ecosystem.</p>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":" ","pages":"120294"},"PeriodicalIF":7.7,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142589300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bisphenol S (BPS), one of the most common alternatives for bisphenol A (BPA), has been implied to increase the risk of breast cancer. Triple-negative breast cancer (TNBC) is a highly aggressive type of breast cancer with a poor prognosis. However, the association between BPS and TNBC remains unclear. Cancer stem cells (CSCs) have a crucial role in breast cancer initiation, metastasis, and recurrence. Here, we proposed that BPS, equivalent to the human internal exposure and the environmental concentrations, enhanced CSC-like properties by upregulating sphere formation, self-renewal, the percentage of CD44+/CD24- cells, and the expression of CSC markers. Moreover, BPS promoted the migration, invasion, and epithelial-mesenchymal transition (EMT) in TNBC cells. Mechanistically, BPS activated the Sonic Hedgehog (SHH) signaling pathway in TNBC cells. Molecular docking analysis further showed that BPS upregulated SHH signaling pathway via directly binding Gli1 protein. Furthermore, inhibitor of SHH pathway or Gli1 siRNA attenuated the promoting effects of BPS on stemness, invasion, and migration of TNBC cells. In summary, our data firstly provide evidence that environmentally relevant BPS concentration treatment significantly enhanced TNBC malignant phenotype by activating the Sonic Hedgehog/Gli1 signaling pathway, raising high concerns about the potential population biology hazards of BPS.
{"title":"Bisphenol S exposure promotes stemness of triple-negative breast cancer cells via regulating Gli1-mediated Sonic hedgehog pathway","authors":"Kefan Yi , Weiyi Chen , Xu Zhou , Chunfeng Xie , Caiyun Zhong , Jianyun Zhu","doi":"10.1016/j.envres.2024.120293","DOIUrl":"10.1016/j.envres.2024.120293","url":null,"abstract":"<div><div>Bisphenol S (BPS), one of the most common alternatives for bisphenol A (BPA), has been implied to increase the risk of breast cancer. Triple-negative breast cancer (TNBC) is a highly aggressive type of breast cancer with a poor prognosis. However, the association between BPS and TNBC remains unclear. Cancer stem cells (CSCs) have a crucial role in breast cancer initiation, metastasis, and recurrence. Here, we proposed that BPS, equivalent to the human internal exposure and the environmental concentrations, enhanced CSC-like properties by upregulating sphere formation, self-renewal, the percentage of CD44<sup>+</sup>/CD24<sup>-</sup> cells, and the expression of CSC markers. Moreover, BPS promoted the migration, invasion, and epithelial-mesenchymal transition (EMT) in TNBC cells. Mechanistically, BPS activated the Sonic Hedgehog (SHH) signaling pathway in TNBC cells. Molecular docking analysis further showed that BPS upregulated SHH signaling pathway via directly binding Gli1 protein. Furthermore, inhibitor of SHH pathway or Gli1 siRNA attenuated the promoting effects of BPS on stemness, invasion, and migration of TNBC cells. In summary, our data firstly provide evidence that environmentally relevant BPS concentration treatment significantly enhanced TNBC malignant phenotype by activating the Sonic Hedgehog/Gli1 signaling pathway, raising high concerns about the potential population biology hazards of BPS.</div></div>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":"264 ","pages":"Article 120293"},"PeriodicalIF":7.7,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142589273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04DOI: 10.1016/j.envres.2024.120291
Chenjun Yang , Qi Li , Xiang Chen , Minjuan Li , Xiangyu He , Gaoxiang Li , Yichun Shao , Jingwei Wu
Lanthanum carbonate (LC) represents a novel material for the immobilization of internal phosphorus (P) in sediments. Activated carbon (AC) is a traditional adsorbent that has been employed in the remediation of sediments on a wide scale. The objective of this study is to examine the mechanisms and effects of the combined use of LC and AC capping materials on the immobilization of P and dissolved organic matter (DOM) in sediments, through a 90-day incubation experiment. The results of isotherm experiments showed that the adsorption mechanism of P on LC and AC was mainly chemisorption. The XPS analyses showed the adsorption mechanism of P on LC was mainly ligand exchange and inner-sphere complexation; while the adsorption mechanism of P on AC was mainly ligand exchange and electrostatic adsorption. The results demonstrated that the concentrations of soluble reactive phosphorus (SRP) and DOM in the 0 to −100 mm sediment layer were reduced by 69.79% and 33.93%, respectively, in comparison to the control group with the LC + AC group. Moreover, the HCl-P and Res-P (stable P) in the 0–5 cm sediment layer were increased by 50.07% and 21.04%, respectively, in the LC + AC group. This indicates that the combined application of LC and AC has the potential to reduce the risk of P release. Furthermore, the formation of Fe(III)/Mn(IV) oxyhydroxides by LC + AC treatment resulted in an increased adsorption of SRP and DOM. Moreover, the effect of LC + AC capping on microbial community was smaller than that of LC/AC capping alone. The findings of this study indicated that the combined use of LC and AC represents a novel approach to the effective treatment of internal P and DOM in eutrophic lake sediments.
碳酸镧(LC)是一种固定沉积物中内磷(P)的新型材料。活性炭(AC)是一种传统的吸附剂,已被广泛用于沉积物的修复。本研究的目的是通过为期 90 天的培养实验,考察 LC 和 AC 盖层材料联合使用对沉积物中磷和溶解有机物 (DOM) 固定化的机理和影响。等温线实验结果表明,LC 和 AC 对 P 的吸附机理主要是化学吸附。XPS 分析表明,P 在 LC 上的吸附机理主要是配体交换和内球络合;而 P 在 AC 上的吸附机理主要是配体交换和静电吸附。结果表明,与对照组相比,LC+AC 组 0 至 -100 mm 沉积层中可溶性活性磷(SRP)和 DOM 的浓度分别降低了 69.18% 和 33.93%。此外,在 LC+AC 组中,0∼5 厘米沉积层中的 HCl-P 和 Res-P(稳定 P)分别增加了 50.07% 和 21.04%。这表明结合施用 LC 和 AC 有可能降低 P 释放的风险。此外,LC+AC 处理形成的铁(III)/锰(IV)氧氢氧化物增加了对 SRP 和 DOM 的吸附。此外,LC + AC 覆膜对微生物群落的影响小于单独使用 LC/AC 覆膜的影响。该研究结果表明,结合使用 LC 和 AC 是有效处理富营养化湖泊沉积物中内部 P 和 DOM 的一种新方法。
{"title":"Effects of the combined use of lanthanum carbonate and activated carbon capping materials on phosphorus and dissolved organic matter in lake sediments","authors":"Chenjun Yang , Qi Li , Xiang Chen , Minjuan Li , Xiangyu He , Gaoxiang Li , Yichun Shao , Jingwei Wu","doi":"10.1016/j.envres.2024.120291","DOIUrl":"10.1016/j.envres.2024.120291","url":null,"abstract":"<div><div>Lanthanum carbonate (LC) represents a novel material for the immobilization of internal phosphorus (P) in sediments. Activated carbon (AC) is a traditional adsorbent that has been employed in the remediation of sediments on a wide scale. The objective of this study is to examine the mechanisms and effects of the combined use of LC and AC capping materials on the immobilization of P and dissolved organic matter (DOM) in sediments, through a 90-day incubation experiment. The results of isotherm experiments showed that the adsorption mechanism of P on LC and AC was mainly chemisorption. The XPS analyses showed the adsorption mechanism of P on LC was mainly ligand exchange and inner-sphere complexation; while the adsorption mechanism of P on AC was mainly ligand exchange and electrostatic adsorption. The results demonstrated that the concentrations of soluble reactive phosphorus (SRP) and DOM in the 0 to −100 mm sediment layer were reduced by 69.79% and 33.93%, respectively, in comparison to the control group with the LC + AC group. Moreover, the HCl-P and Res-P (stable P) in the 0–5 cm sediment layer were increased by 50.07% and 21.04%, respectively, in the LC + AC group. This indicates that the combined application of LC and AC has the potential to reduce the risk of P release. Furthermore, the formation of Fe(III)/Mn(IV) oxyhydroxides by LC + AC treatment resulted in an increased adsorption of SRP and DOM. Moreover, the effect of LC + AC capping on microbial community was smaller than that of LC/AC capping alone. The findings of this study indicated that the combined use of LC and AC represents a novel approach to the effective treatment of internal P and DOM in eutrophic lake sediments.</div></div>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":"264 ","pages":"Article 120291"},"PeriodicalIF":7.7,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142589282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-02DOI: 10.1016/j.envres.2024.120285
Jia Zeng , Xiangyang Li , Junnan Jian , Liheng Xing , Yu Li , Xing Wang , Qi Zhang , Chengjie Ren , Gaihe Yang , Xinhui Han
Litter plays a crucial role in soil ecosystems. However, the differences in decomposition between leaf-litter and root-litter and their relative contributions to soil carbon pools and stability are not yet clear. Therefore, we conducted a 450-day in situ decomposition experiment in a semi-arid grassland to investigate the effects of soil biophysical and chemical properties on litter decomposition and to elucidate the dynamics of soil carbon pools during the decomposition process. The results showed that the decomposition rate (K) of leaf-litter was significantly higher than that of root-litter, and litter quality was the most important factor affecting the K of leaf-litter (58%) and root-litter (63%). Leaf-litter decomposition was more effective in promoting the increase in soil leucine aminopeptidase and β-1,4-glucosidase activities, as well as the accumulation of microbial biomass carbon (MBC), particulate organic carbon (POC), and dissolved organic carbon (DOC), compared to root-litter. However, the difference in the impact of leaf-litter and root-litter on soil organic carbon (SOC) was not significant. The decomposition of leaf-litter contributed more significantly to enhancing the soil carbon pool management index (CPMI) compared to root-litter, with increases of 39% and 25%, respectively. In contrast, leaf-litter decomposition significantly reduced the mineral-associated organic carbon (MAOC) and the MAOC/POC ratio, while root-litter decomposition significantly increased the MAOC and MAOC/POC. Random forest, partial correlation, and path analysis indicated that the effects of leaf-litter and root-litter decomposition on CPMI were mainly regulated by decomposition time and soil carbon components, while the effects on MAOC/POC were mainly controlled by litter quality. The results demonstrate that both leaf-litter and root-litter can enhance soil carbon storage and CPMI, but root-litter may be more beneficial for soil carbon pool stability. These results further contribute to the understanding of the continuous system of litter-soil carbon pools.
{"title":"Differences in the regulation of soil carbon pool quality and stability by leaf-litter and root-litter decomposition","authors":"Jia Zeng , Xiangyang Li , Junnan Jian , Liheng Xing , Yu Li , Xing Wang , Qi Zhang , Chengjie Ren , Gaihe Yang , Xinhui Han","doi":"10.1016/j.envres.2024.120285","DOIUrl":"10.1016/j.envres.2024.120285","url":null,"abstract":"<div><div>Litter plays a crucial role in soil ecosystems. However, the differences in decomposition between leaf-litter and root-litter and their relative contributions to soil carbon pools and stability are not yet clear. Therefore, we conducted a 450-day in situ decomposition experiment in a semi-arid grassland to investigate the effects of soil biophysical and chemical properties on litter decomposition and to elucidate the dynamics of soil carbon pools during the decomposition process. The results showed that the decomposition rate (<em>K</em>) of leaf-litter was significantly higher than that of root-litter, and litter quality was the most important factor affecting the <em>K</em> of leaf-litter (58%) and root-litter (63%). Leaf-litter decomposition was more effective in promoting the increase in soil leucine aminopeptidase and β-1,4-glucosidase activities, as well as the accumulation of microbial biomass carbon (MBC), particulate organic carbon (POC), and dissolved organic carbon (DOC), compared to root-litter. However, the difference in the impact of leaf-litter and root-litter on soil organic carbon (SOC) was not significant. The decomposition of leaf-litter contributed more significantly to enhancing the soil carbon pool management index (CPMI) compared to root-litter, with increases of 39% and 25%, respectively. In contrast, leaf-litter decomposition significantly reduced the mineral-associated organic carbon (MAOC) and the MAOC/POC ratio, while root-litter decomposition significantly increased the MAOC and MAOC/POC. Random forest, partial correlation, and path analysis indicated that the effects of leaf-litter and root-litter decomposition on CPMI were mainly regulated by decomposition time and soil carbon components, while the effects on MAOC/POC were mainly controlled by litter quality. The results demonstrate that both leaf-litter and root-litter can enhance soil carbon storage and CPMI, but root-litter may be more beneficial for soil carbon pool stability. These results further contribute to the understanding of the continuous system of litter-soil carbon pools.</div></div>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":"263 ","pages":"Article 120285"},"PeriodicalIF":7.7,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-02DOI: 10.1016/j.envres.2024.120281
Pengjiao Tian, Shentao Yang, Mingxin Yang, Duo Xie, Haizhong Yu, Xiqing Wang
Iron-based nanomaterials as effective additives can enhance the quality and safety of compost. However, their influence on organic carbon fractions changes and greenhouse gas emissions during composting remains unclear. This study demonstrated that iron-based nanomaterials facilitate the conversion of light organic carbon fraction into heavy organic carbon fraction, with the iron-based nanomaterials group showing a significantly higher heavy organic carbon fraction content (41.88%) compared to the control group (35.71%). This shift led to an increase in humic substance content (77.5 g/kg) and a reduction in greenhouse gas emissions, with CO2, CH4, and N2O emissions decreasing by 20.5%, 39.7%, and 55.4%, respectively. Additionally, CO2-equivalent emissions were reduced by 42.9%. Microbial analysis revealed that iron-based nanomaterials increased the abundance of Bacillus and reduced the abundance of methane-producing archaea such as Methanothermobacter and Methanomassiliicoccus. These results indicated that the role of iron-based nanomaterials in regulating reactive oxygen species production and specific microbial communities involved in humification process. This study provides a practical strategy for improving waste utilization efficiency and mitigating climate change.
{"title":"Effect of iron-based nanomaterials on organic carbon dynamics and greenhouse gas emissions during composting process","authors":"Pengjiao Tian, Shentao Yang, Mingxin Yang, Duo Xie, Haizhong Yu, Xiqing Wang","doi":"10.1016/j.envres.2024.120281","DOIUrl":"10.1016/j.envres.2024.120281","url":null,"abstract":"<div><div>Iron-based nanomaterials as effective additives can enhance the quality and safety of compost. However, their influence on organic carbon fractions changes and greenhouse gas emissions during composting remains unclear. This study demonstrated that iron-based nanomaterials facilitate the conversion of light organic carbon fraction into heavy organic carbon fraction, with the iron-based nanomaterials group showing a significantly higher heavy organic carbon fraction content (41.88%) compared to the control group (35.71%). This shift led to an increase in humic substance content (77.5 g/kg) and a reduction in greenhouse gas emissions, with CO<sub>2</sub>, CH<sub>4</sub>, and N<sub>2</sub>O emissions decreasing by 20.5%, 39.7%, and 55.4%, respectively. Additionally, CO<sub>2</sub>-equivalent emissions were reduced by 42.9%. Microbial analysis revealed that iron-based nanomaterials increased the abundance of <em>Bacillus</em> and reduced the abundance of methane-producing archaea such as <em>Methanothermobacter</em> and <em>Methanomassiliicoccus</em>. These results indicated that the role of iron-based nanomaterials in regulating reactive oxygen species production and specific microbial communities involved in humification process. This study provides a practical strategy for improving waste utilization efficiency and mitigating climate change.</div></div>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":"263 ","pages":"Article 120281"},"PeriodicalIF":7.7,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Increasing frequency, intensity and duration of marine heatwaves (MHWs) are supposed to affect coastal biological production in different regions to different extents. To understand how MHWs impact coastal primary productivity and community succession of phytoplankton and assess the changes in resilience of phytoplankton communities, we conducted a mesoscale enclosure experiment simulating a MHW in the coastal water of southern China. After 8 days of the MHW (+3 °C) treatment, community biomass was significantly lower than the control's, and primary productivity per volume of water was reduced by about 56%. Nevertheless, the phytoplankton community retrieved its biomass and primary productivity after the temperature was subsequently reset to that of the control. Although the MHW treatment decreased the abundance of diatom and increased the percentages of Synechococcus and Prasinophytes, the main phytoplankton functional types showed positive resilience that allowed the recovery of the phytoplankton community after the MHW. Our results indicate that key phytoplankton functional types in the southern coastal waters of China exhibited significant resilience, recovery, and temporal stability under the influence of the marine MHW by 3 °C rise. However, reduced primary productivity during the MHW period, along with decreased biomass density, might significantly influence secondary producers. In addition, the altered phytoplankton community structure may affect coastal food web processes at least during the MHW period.
{"title":"Reduced primary productivity and notable resilience of phytoplankton community in the coastal water of southern China under a marine heatwave","authors":"Yukun Zhang , Guang Gao , Huijie Xue , Kunshan Gao","doi":"10.1016/j.envres.2024.120286","DOIUrl":"10.1016/j.envres.2024.120286","url":null,"abstract":"<div><div>Increasing frequency, intensity and duration of marine heatwaves (MHWs) are supposed to affect coastal biological production in different regions to different extents. To understand how MHWs impact coastal primary productivity and community succession of phytoplankton and assess the changes in resilience of phytoplankton communities, we conducted a mesoscale enclosure experiment simulating a MHW in the coastal water of southern China. After 8 days of the MHW (+3 °C) treatment, community biomass was significantly lower than the control's, and primary productivity per volume of water was reduced by about 56%. Nevertheless, the phytoplankton community retrieved its biomass and primary productivity after the temperature was subsequently reset to that of the control. Although the MHW treatment decreased the abundance of diatom and increased the percentages of <em>Synechococcus</em> and Prasinophytes, the main phytoplankton functional types showed positive resilience that allowed the recovery of the phytoplankton community after the MHW. Our results indicate that key phytoplankton functional types in the southern coastal waters of China exhibited significant resilience, recovery, and temporal stability under the influence of the marine MHW by 3 °C rise. However, reduced primary productivity during the MHW period, along with decreased biomass density, might significantly influence secondary producers. In addition, the altered phytoplankton community structure may affect coastal food web processes at least during the MHW period.</div></div>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":"264 ","pages":"Article 120286"},"PeriodicalIF":7.7,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-02DOI: 10.1016/j.envres.2024.120287
Letizia Iuffrida , Rachele Spezzano , Giulia Trapella , Nicolo Cinti , Luca Parma , Antonina De Marco , Giorgia Palladino , Alessio Bonaldo , Marco Candela , Silvia Franzellitti
The striped venus clam (Chamelea gallina) is a relevant economic resource in the Adriatic Sea. This study explored the physiological status of C. gallina at four sites selected along a gradient from high to low incidence of recorded historical mortality events and low to high productivity in the Northwestern Adriatic Sea. Investigations were performed during the marine heatwave in 2022 (from July to November). The optimal temperature range for C. gallina was exceeded in July and September, exacerbating stress conditions and a poor nutritional status, particularly at the low productivity sites. Transcriptional profiles assessed in digestive glands showed that clams from the low productivity sites up-regulated transcripts related to feeding/digestive functions as a possible compensatory mechanism to withstand adverse environmental conditions. Clams from the high productivity sites, that in a previous study showed enrichment of health-promoting microbiome components, displayed a healthier metabolic makeup (IDH up-regulation) and induction of protective antioxidant and immune responses. These features are hallmarks of putative enhanced resilience of the species towards environmental stress. Despite the well-known high sensitivity of C. gallina to environmental variations and its narrow window of acclimatory potential, results highlight that local conditions may influence physiological plasticity of this clam species and shape either positively or negatively its response capabilities to environmental changes. The identification of health-promoting endogenous mechanisms both from the animal (this study) and from its associated microbiome may provide the foundation for developing novel tools and strategies to improve clam health and production in low productivity areas or under adverse environmental conditions.
{"title":"Physiological plasticity and life history traits affect Chamelea gallina acclimatory responses during a marine heatwave","authors":"Letizia Iuffrida , Rachele Spezzano , Giulia Trapella , Nicolo Cinti , Luca Parma , Antonina De Marco , Giorgia Palladino , Alessio Bonaldo , Marco Candela , Silvia Franzellitti","doi":"10.1016/j.envres.2024.120287","DOIUrl":"10.1016/j.envres.2024.120287","url":null,"abstract":"<div><div>The striped venus clam (<em>Chamelea gallina</em>) is a relevant economic resource in the Adriatic Sea. This study explored the physiological status of <em>C. gallina</em> at four sites selected along a gradient from high to low incidence of recorded historical mortality events and low to high productivity in the Northwestern Adriatic Sea. Investigations were performed during the marine heatwave in 2022 (from July to November). The optimal temperature range for <em>C. gallina</em> was exceeded in July and September, exacerbating stress conditions and a poor nutritional status, particularly at the low productivity sites. Transcriptional profiles assessed in digestive glands showed that clams from the low productivity sites up-regulated transcripts related to feeding/digestive functions as a possible compensatory mechanism to withstand adverse environmental conditions. Clams from the high productivity sites, that in a previous study showed enrichment of health-promoting microbiome components, displayed a healthier metabolic makeup (<em>IDH</em> up-regulation) and induction of protective antioxidant and immune responses. These features are hallmarks of putative enhanced resilience of the species towards environmental stress. Despite the well-known high sensitivity of <em>C. gallina</em> to environmental variations and its narrow window of acclimatory potential, results highlight that local conditions may influence physiological plasticity of this clam species and shape either positively or negatively its response capabilities to environmental changes. The identification of health-promoting endogenous mechanisms both from the animal (this study) and from its associated microbiome may provide the foundation for developing novel tools and strategies to improve clam health and production in low productivity areas or under adverse environmental conditions.</div></div>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":"263 ","pages":"Article 120287"},"PeriodicalIF":7.7,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nitrate pollution in surface water poses a significant threat to drinking water safety. The integration of electrocatalytic reduction reaction of nitrate (NO3RR) to ammonia with ammonia collection processes offers a sustainable approach to nitrogen recovery from nitrate-polluted surface water. However, the low catalytic activity of existing catalysts has resulted in excessive energy consumption for NO3RR. Herein, we developed a facile approach of electrochemical reduction to generate oxygen vacancy (Ov) on zinc oxide nanoparticles (ZnO1-x NPs) to enhance catalytic activity. The ZnO1-x NPs achieved a high NH3-N selectivity of 92.4% and NH3-N production rate of 1007.9 h−1 m−2 at −0.65 V vs. RHE in 22.5 mg L−1 , surpassing both pristine ZnO and the majority of catalysts reported in the literature. DFT calculations with in-situ Raman spectroscopy and ESR analysis revealed that the presence of Ov significantly increased the affinity for the (nitrate) and key intermediate of (nitrite). The strong adsorption of on Ov decreased the energy barrier of potential determining step ( →∗NO3) from 0.49 to 0.1 eV, boosting the reaction rate. Furthermore, the strong adsorption of on Ov prevented its escape from the active sites, thereby minimizing by-product formation and enhancing ammonia selectivity. Moreover, the NO3RR, when coupled with a membrane separation process, achieved a 100% nitrogen recycling efficiency with low energy consumption of 0.55 kWh at a flow rate below 112 mL min−1 for the treatment of nitrate-polluted lake water. These results demonstrate that ZnO1-x NPs are a reliable catalytic material for NO₃RR, enabling the development of a sustainable technology for nitrogen recovery from nitrate-polluted surface water.
{"title":"Electrocatalytic conversion of nitrate to ammonia on the oxygen vacancy engineering of zinc oxide for nitrogen recovery from nitrate-polluted surface water","authors":"Wenyang Fu, Yanjun Yin, Shuxian He, Xiangyi Tang, Yinan Liu, Fei Shen, Yan Zou, Guangming Jiang","doi":"10.1016/j.envres.2024.120279","DOIUrl":"10.1016/j.envres.2024.120279","url":null,"abstract":"<div><div>Nitrate pollution in surface water poses a significant threat to drinking water safety. The integration of electrocatalytic reduction reaction of nitrate (NO<sub>3</sub>RR) to ammonia with ammonia collection processes offers a sustainable approach to nitrogen recovery from nitrate-polluted surface water. However, the low catalytic activity of existing catalysts has resulted in excessive energy consumption for NO<sub>3</sub>RR. Herein, we developed a facile approach of electrochemical reduction to generate oxygen vacancy (Ov) on zinc oxide nanoparticles (ZnO<sub>1-x</sub> NPs) to enhance catalytic activity. The ZnO<sub>1-x</sub> NPs achieved a high NH<sub>3</sub>-N selectivity of 92.4% and NH<sub>3</sub>-N production rate of 1007.9 <span><math><mrow><msub><mtext>mg</mtext><mrow><msub><mtext>NH</mtext><mn>3</mn></msub><mo>‐</mo><mi>N</mi></mrow></msub></mrow></math></span> h<sup>−1</sup> m<sup>−2</sup> at −0.65 V <em>vs.</em> RHE in 22.5 mg L<sup>−1</sup> <span><math><mrow><msubsup><mtext>NO</mtext><mn>3</mn><mo>‐</mo></msubsup><mo>‐</mo><mi>N</mi></mrow></math></span>, surpassing both pristine ZnO and the majority of catalysts reported in the literature. DFT calculations with <em>in-situ</em> Raman spectroscopy and ESR analysis revealed that the presence of Ov significantly increased the affinity for the <span><math><mrow><msubsup><mtext>NO</mtext><mn>3</mn><mo>‐</mo></msubsup></mrow></math></span> (nitrate) and key intermediate of <span><math><mrow><msubsup><mtext>NO</mtext><mn>2</mn><mo>‐</mo></msubsup></mrow></math></span> (nitrite). The strong adsorption of <span><math><mrow><msubsup><mtext>NO</mtext><mn>3</mn><mo>‐</mo></msubsup></mrow></math></span> on Ov decreased the energy barrier of potential determining step (<span><math><mrow><msubsup><mtext>NO</mtext><mn>3</mn><mo>‐</mo></msubsup></mrow></math></span> →∗NO<sub>3</sub>) from 0.49 to 0.1 eV, boosting the reaction rate. Furthermore, the strong adsorption of <span><math><mrow><msubsup><mtext>NO</mtext><mn>2</mn><mo>‐</mo></msubsup></mrow></math></span> on Ov prevented its escape from the active sites, thereby minimizing <span><math><mrow><msubsup><mtext>NO</mtext><mn>2</mn><mo>‐</mo></msubsup></mrow></math></span> by-product formation and enhancing ammonia selectivity. Moreover, the NO<sub>3</sub>RR, when coupled with a membrane separation process, achieved a 100% nitrogen recycling efficiency with low energy consumption of 0.55 kWh <span><math><msubsup><mi>mol</mi><mi>N</mi><mrow><mo>−</mo><mn>1</mn></mrow></msubsup></math></span> at a flow rate below 112 mL min<sup>−1</sup> for the treatment of nitrate-polluted lake water. These results demonstrate that ZnO<sub>1-x</sub> NPs are a reliable catalytic material for NO₃RR, enabling the development of a sustainable technology for nitrogen recovery from nitrate-polluted surface water.</div></div>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":"264 ","pages":"Article 120279"},"PeriodicalIF":7.7,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We investigated the association between the immediate physical environment of individuals and individual fluctuations of momentary affective well-being in everyday life with a focus on medium sized metropolitan areas in Europe representing a typical living environment of a large proportion of the world’s population. The sample comprised 365 individuals (54.8 % female) with participants ranging from 14.08 to 88.27 years of age (M = 43.9, SD = 20.9). In an geographic ecological momentary assessment (GEMA), participants were prompted six times a day on at least 9 days over the course of 3 weeks, covering a total of six weekdays and three weekend days on mobile phones to report their momentary affective well-being. Urban land use categories (forest, water, urban green) were assessed with GPS-localization as environmental variables. Additionally, sunshine, rainfall, whether participants were inside or outside as well as whether they were alone or had company were included into the analyses.
We used dynamic structural equation modelling to model the inter- and intraindividual differences as well as fluctuations and assess potential covariates while acknowledging the autoregressive nature of affect.
The results showed that on individual level, fluctuations of momentary affective well-being were associated with sunshine, having company and travelling. No significant association emerged for urban green, forest, and water neither within individuals nor between. Methodological as well as conceptual implications are discussed and an interpretation of the present findings are provided.
{"title":"Meadows or asphalt road – Does momentary affective well-being vary with immediate physical environment? Results from a geographic ecological momentary assessment study in three metropolitan areas in Germany","authors":"Anna Mascherek , Gloria Luong , Cornelia Wrzus , Michaela Riediger , Simone Kühn","doi":"10.1016/j.envres.2024.120283","DOIUrl":"10.1016/j.envres.2024.120283","url":null,"abstract":"<div><div>We investigated the association between the immediate physical environment of individuals and individual fluctuations of momentary affective well-being in everyday life with a focus on medium sized metropolitan areas in Europe representing a typical living environment of a large proportion of the world’s population. The sample comprised 365 individuals (54.8 % female) with participants ranging from 14.08 to 88.27 years of age (<em>M</em> = 43.9, <em>SD</em> = 20.9). In an geographic ecological momentary assessment (GEMA), participants were prompted six times a day on at least 9 days over the course of 3 weeks, covering a total of six weekdays and three weekend days on mobile phones to report their momentary affective well-being. Urban land use categories (forest, water, urban green) were assessed with GPS-localization as environmental variables. Additionally, sunshine, rainfall, whether participants were inside or outside as well as whether they were alone or had company were included into the analyses.</div><div>We used dynamic structural equation modelling to model the inter- and intraindividual differences as well as fluctuations and assess potential covariates while acknowledging the autoregressive nature of affect.</div><div>The results showed that on individual level, fluctuations of momentary affective well-being were associated with sunshine, having company and travelling. No significant association emerged for urban green, forest, and water neither within individuals nor between. Methodological as well as conceptual implications are discussed and an interpretation of the present findings are provided.</div></div>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":"264 ","pages":"Article 120283"},"PeriodicalIF":7.7,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The adsorption and removal of heavy metal ions Cr(VI) is of great significance for human health and ecological environment. Here, an ultrafast and high efficient adsorbent for Cr(VI) was developed based on cetyltrimethylammonium bromide (CTAB)-modified zein nanoparticles (C-ZNPs). In comparison to pristine zein nanoparticles (ZNPs) (11.199 m2 g−1), the surfactant-modified C-ZNPs exhibited larger specific surface area (17.002 m2 g−1). Moreover, C-ZNPs had superior dispersion and more positive charge distribution, which contributed to the improvement for adsorption performance. The results showed that the saturated adsorption of Cr(VI) was reached up to 192.27 mg/g using the C-ZNPs nanosorbent at T = 298 K, pH = 4, t = 10s, and C0 = 125 mg/L. The removal rate was significantly faster than that reported natural polymer-based adsorbents. The experimental values were followed Freundich isothermal model and pseudo-second-order kinetic model, indicating that the adsorption occurred primarily through a multimolecular layer adsorption process, with a strong emphasis on chemisorption. Mechanistic investigations further revealed that the adsorption of Cr(VI) onto C-ZNPs was mediated by various interactions, including electrostatic attraction, complexation, and ion exchange. These findings provide insights into the efficient removal of Cr(VI) by C-ZNPs and suggest potential applications in water treatment and environmental remediation.
{"title":"Surfactant-modified zein nanoparticles adsorbents for ultrafast and efficient removal of Cr(VI)","authors":"Qing Shen , Xiaomeng Xu , Xiaojing Liang , Cong Tang , Xiaoping Bai , Shijun Shao , Qing Liang , Shuqing Dong","doi":"10.1016/j.envres.2024.120284","DOIUrl":"10.1016/j.envres.2024.120284","url":null,"abstract":"<div><div>The adsorption and removal of heavy metal ions Cr(VI) is of great significance for human health and ecological environment. Here, an ultrafast and high efficient adsorbent for Cr(VI) was developed based on cetyltrimethylammonium bromide (CTAB)-modified zein nanoparticles (C-ZNPs). In comparison to pristine zein nanoparticles (ZNPs) (11.199 m<sup>2</sup> g<sup>−1</sup>), the surfactant-modified C-ZNPs exhibited larger specific surface area (17.002 m<sup>2</sup> g<sup>−1</sup>). Moreover, C-ZNPs had superior dispersion and more positive charge distribution, which contributed to the improvement for adsorption performance. The results showed that the saturated adsorption of Cr(VI) was reached up to 192.27 mg/g using the C-ZNPs nanosorbent at T = 298 K, pH = 4, t = 10s, and C<sub>0</sub> = 125 mg/L. The removal rate was significantly faster than that reported natural polymer-based adsorbents. The experimental values were followed Freundich isothermal model and pseudo-second-order kinetic model, indicating that the adsorption occurred primarily through a multimolecular layer adsorption process, with a strong emphasis on chemisorption. Mechanistic investigations further revealed that the adsorption of Cr(VI) onto C-ZNPs was mediated by various interactions, including electrostatic attraction, complexation, and ion exchange. These findings provide insights into the efficient removal of Cr(VI) by C-ZNPs and suggest potential applications in water treatment and environmental remediation.</div></div>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":"264 ","pages":"Article 120284"},"PeriodicalIF":7.7,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}