Pub Date : 2023-04-05DOI: 10.1109/isqed57927.2023.10129392
{"title":"ISQED 2023 Best Papers","authors":"","doi":"10.1109/isqed57927.2023.10129392","DOIUrl":"https://doi.org/10.1109/isqed57927.2023.10129392","url":null,"abstract":"","PeriodicalId":315053,"journal":{"name":"2023 24th International Symposium on Quality Electronic Design (ISQED)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128173383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-05DOI: 10.1109/ISQED57927.2023.10129356
Andrea Guerrieri, Gabriel Da Silva Marques, F. Regazzoni, A. Upegui
With the performance promises of quantum computers, standard encryption algorithms can be defeated. For this reason, a set of new quantum-resistant algorithms have been proposed and submitted for a standardization contest initiated by NIST. While the submission requirement was ANSI C for the reference implementation, NIST encouraged providing software implementations optimized for different target platforms, such as high-performance CPUs, embedded microcontrollers, and FPGAs. Yet, none of the algorithms submitted any FPGA-optimized code, due to the large and expensive development time required for coding at RTL. High-Level synthesis (HLS) covers the gap by creating automatically hardware code for FPGA out of C/C++. However, the quality of results is suboptimal due to the limitation imposed by the inadequacy of source code for HLS. In this paper, we propose a version of Saber’s code optimized for FPGA targets. We show how we detected and improved the performance of the reference code, achieving competitive results compared to the hand-made RTL-based designs.
{"title":"H-Saber: An FPGA-Optimized Version for Designing Fast and Efficient Post-Quantum Cryptography Hardware Accelerators","authors":"Andrea Guerrieri, Gabriel Da Silva Marques, F. Regazzoni, A. Upegui","doi":"10.1109/ISQED57927.2023.10129356","DOIUrl":"https://doi.org/10.1109/ISQED57927.2023.10129356","url":null,"abstract":"With the performance promises of quantum computers, standard encryption algorithms can be defeated. For this reason, a set of new quantum-resistant algorithms have been proposed and submitted for a standardization contest initiated by NIST. While the submission requirement was ANSI C for the reference implementation, NIST encouraged providing software implementations optimized for different target platforms, such as high-performance CPUs, embedded microcontrollers, and FPGAs. Yet, none of the algorithms submitted any FPGA-optimized code, due to the large and expensive development time required for coding at RTL. High-Level synthesis (HLS) covers the gap by creating automatically hardware code for FPGA out of C/C++. However, the quality of results is suboptimal due to the limitation imposed by the inadequacy of source code for HLS. In this paper, we propose a version of Saber’s code optimized for FPGA targets. We show how we detected and improved the performance of the reference code, achieving competitive results compared to the hand-made RTL-based designs.","PeriodicalId":315053,"journal":{"name":"2023 24th International Symposium on Quality Electronic Design (ISQED)","volume":"68 12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129879871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
With the demand for high performance and density, silicon interposer-based three-dimensional integrated circuit (3DIC) can be one of promising solutions for these requirements. However, simultaneously switching noise (SSN) will cause voltage fluctuation and hence performance degradation and logic failure might occur. Our work proposes an efficient Simulated Annealing (SA) based algorithm to perform decap placement automatically on the interposer. In our solution, target impedance can be achieved within certain frequency range. Results show that number of decaps as well as impedance of PDN are minimized to meet the requirement.
{"title":"On-Interposer Decoupling Capacitors Placement for Interposer-based 3DIC","authors":"Po-Yang Chen, Chang-Yun Liu, Hung-Ming Chen, Po-Tsang Huang","doi":"10.1109/ISQED57927.2023.10129288","DOIUrl":"https://doi.org/10.1109/ISQED57927.2023.10129288","url":null,"abstract":"With the demand for high performance and density, silicon interposer-based three-dimensional integrated circuit (3DIC) can be one of promising solutions for these requirements. However, simultaneously switching noise (SSN) will cause voltage fluctuation and hence performance degradation and logic failure might occur. Our work proposes an efficient Simulated Annealing (SA) based algorithm to perform decap placement automatically on the interposer. In our solution, target impedance can be achieved within certain frequency range. Results show that number of decaps as well as impedance of PDN are minimized to meet the requirement.","PeriodicalId":315053,"journal":{"name":"2023 24th International Symposium on Quality Electronic Design (ISQED)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129965299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-05DOI: 10.1109/ISQED57927.2023.10129312
Esther Roorda, S. Wilton
In dynamic environments, the inputs to machine learning models may exhibit statistical changes over time, through what is called concept drift. Incremental training can allow machine learning models to adapt to changing conditions and maintain high accuracy by continuously updating network parameters. In the context of FPGA-based accelerators however, online incremental learning is challenging due to resource and communication constraints, as well as the absence of labelled training data. These challenges have not been fully evaluated or addressed in existing research. In this paper, we present and evaluate strategies for performing incremental training on streaming data with concept drift on FPGA-based platforms. We first present FPGA-based implementations of existing training algorithms to demonstrate the viability of online training with concept shift and to evaluate design tradeoffs. We then propose a technique for online training without labelled data and demonstrate its potential in the context of FPGA-based hardware acceleration.
{"title":"Online Training from Streaming Data with Concept Drift on FPGAs","authors":"Esther Roorda, S. Wilton","doi":"10.1109/ISQED57927.2023.10129312","DOIUrl":"https://doi.org/10.1109/ISQED57927.2023.10129312","url":null,"abstract":"In dynamic environments, the inputs to machine learning models may exhibit statistical changes over time, through what is called concept drift. Incremental training can allow machine learning models to adapt to changing conditions and maintain high accuracy by continuously updating network parameters. In the context of FPGA-based accelerators however, online incremental learning is challenging due to resource and communication constraints, as well as the absence of labelled training data. These challenges have not been fully evaluated or addressed in existing research. In this paper, we present and evaluate strategies for performing incremental training on streaming data with concept drift on FPGA-based platforms. We first present FPGA-based implementations of existing training algorithms to demonstrate the viability of online training with concept shift and to evaluate design tradeoffs. We then propose a technique for online training without labelled data and demonstrate its potential in the context of FPGA-based hardware acceleration.","PeriodicalId":315053,"journal":{"name":"2023 24th International Symposium on Quality Electronic Design (ISQED)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130706785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-05DOI: 10.1109/ISQED57927.2023.10129396
P. Ghosh, V. N. D. Mai, Aditya Chopra, Baljinder Sood
Modern SoCs are designed by integrating several IPs using various interconnect layers(NoC). Although the exact functionality of the device is of the highest importance, the correct behavior in terms of performance is a crucial factor. To gain a competitive edge in the market, safety-critical devices (such as automotive devices) must meet various performance-related requirements. In this paper, we propose a methodology that includes the automatic addition of expected performance numbers of each performance test in the testbench. The definition of two proposed performance metrics, developing a proposed performance scoreboard to implement a self-check mechanism in UVM testbench, and regression management of several hundred performance verification test cases run on SoC RTL. The proposed methodology has been applied to multiple commercial SoCs at the chip and sub-system levels and has detected several performance design flaws during the initial design phase. It has been improved the productivity of the design team also. In complicated SoCs, it has been proven helpful in the absence of any established standard technique for performance verification at the SoC level.
{"title":"Self-Checking Performance Verification Methodology for Complex SoCs","authors":"P. Ghosh, V. N. D. Mai, Aditya Chopra, Baljinder Sood","doi":"10.1109/ISQED57927.2023.10129396","DOIUrl":"https://doi.org/10.1109/ISQED57927.2023.10129396","url":null,"abstract":"Modern SoCs are designed by integrating several IPs using various interconnect layers(NoC). Although the exact functionality of the device is of the highest importance, the correct behavior in terms of performance is a crucial factor. To gain a competitive edge in the market, safety-critical devices (such as automotive devices) must meet various performance-related requirements. In this paper, we propose a methodology that includes the automatic addition of expected performance numbers of each performance test in the testbench. The definition of two proposed performance metrics, developing a proposed performance scoreboard to implement a self-check mechanism in UVM testbench, and regression management of several hundred performance verification test cases run on SoC RTL. The proposed methodology has been applied to multiple commercial SoCs at the chip and sub-system levels and has detected several performance design flaws during the initial design phase. It has been improved the productivity of the design team also. In complicated SoCs, it has been proven helpful in the absence of any established standard technique for performance verification at the SoC level.","PeriodicalId":315053,"journal":{"name":"2023 24th International Symposium on Quality Electronic Design (ISQED)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133076828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-05DOI: 10.1109/ISQED57927.2023.10129364
Archie Mishra, N. Rao
Functional approximation methods have been used to exploit the inherent error tolerance of several applications. Approximate computing reduces the resources utilized at the cost of acceptable accuracy loss. Designers need to follow a systematic approach to arrive at an optimized design configuration based on certain constraints. In this work, we present DSEAdd: an FPGA-based automated design space exploration (DSE) framework targeting variable bit-width approximate adders. Given a certain area, timing or accuracy (ATA) constraint, the approach helps to identify the best adder configuration. We introduce a metric known as Figure of Merit (FOM) to quantify the area, performance and accuracy of the design. We test the DSE framework by running a set of 74 design configurations. We demonstrate the use of FOM as a metric to choose the best adder configuration. We observe that we can obtain an area-optimized design with a 9.7% reduction in resource usage at the cost of only 0.3% accuracy, but with a lower bit precision (8-bit instead of 32-bits). Further, at low bit precisions, a slight compromise in the area (0.35%) can help improve the accuracy dramatically (17.7%). To achieve the best trade-off between accuracy and resources, we propose a configuration with 2 or 3 sub-adders. Lastly, we note that a performance-optimized design is difficult to achieve at higher bit-precision.
{"title":"DSEAdd: FPGA based Design Space Exploration for Approximate Adders with Variable Bit-precision","authors":"Archie Mishra, N. Rao","doi":"10.1109/ISQED57927.2023.10129364","DOIUrl":"https://doi.org/10.1109/ISQED57927.2023.10129364","url":null,"abstract":"Functional approximation methods have been used to exploit the inherent error tolerance of several applications. Approximate computing reduces the resources utilized at the cost of acceptable accuracy loss. Designers need to follow a systematic approach to arrive at an optimized design configuration based on certain constraints. In this work, we present DSEAdd: an FPGA-based automated design space exploration (DSE) framework targeting variable bit-width approximate adders. Given a certain area, timing or accuracy (ATA) constraint, the approach helps to identify the best adder configuration. We introduce a metric known as Figure of Merit (FOM) to quantify the area, performance and accuracy of the design. We test the DSE framework by running a set of 74 design configurations. We demonstrate the use of FOM as a metric to choose the best adder configuration. We observe that we can obtain an area-optimized design with a 9.7% reduction in resource usage at the cost of only 0.3% accuracy, but with a lower bit precision (8-bit instead of 32-bits). Further, at low bit precisions, a slight compromise in the area (0.35%) can help improve the accuracy dramatically (17.7%). To achieve the best trade-off between accuracy and resources, we propose a configuration with 2 or 3 sub-adders. Lastly, we note that a performance-optimized design is difficult to achieve at higher bit-precision.","PeriodicalId":315053,"journal":{"name":"2023 24th International Symposium on Quality Electronic Design (ISQED)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128778345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-05DOI: 10.1109/ISQED57927.2023.10129340
Mi-Sung Han, Jiwan Kim, Donggeon Kim, Hyunuk Jeong, Gilho Jung, Myeongwon Oh, Hyundong Lee, Yunjeong Go, Hyunwoo Kim, Jongbeom Kim, Taigon Song
graph convolutional network (GCN) is a type of neural network that inference new nodes based on the connectivity of the graphs. GCN requires high-calculation volume for processing, similar to other neural networks requiring significant calculation. In this paper, we propose a new hardware architecture for GCN that tackles the problem of wasted cycles during processing. We propose a new scheduler module that reduces memory access through aggregation and an optimized systolic array with improved delay. We compare our study with the state-of-the-art GCN accelerator and show outperforming results.
{"title":"HFGCN: High-speed and Fully-optimized GCN Accelerator","authors":"Mi-Sung Han, Jiwan Kim, Donggeon Kim, Hyunuk Jeong, Gilho Jung, Myeongwon Oh, Hyundong Lee, Yunjeong Go, Hyunwoo Kim, Jongbeom Kim, Taigon Song","doi":"10.1109/ISQED57927.2023.10129340","DOIUrl":"https://doi.org/10.1109/ISQED57927.2023.10129340","url":null,"abstract":"graph convolutional network (GCN) is a type of neural network that inference new nodes based on the connectivity of the graphs. GCN requires high-calculation volume for processing, similar to other neural networks requiring significant calculation. In this paper, we propose a new hardware architecture for GCN that tackles the problem of wasted cycles during processing. We propose a new scheduler module that reduces memory access through aggregation and an optimized systolic array with improved delay. We compare our study with the state-of-the-art GCN accelerator and show outperforming results.","PeriodicalId":315053,"journal":{"name":"2023 24th International Symposium on Quality Electronic Design (ISQED)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131031733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-05DOI: 10.1109/ISQED57927.2023.10129347
Ruben Dominguez, Wen Zhang, Hongzhi Xu, Pablo Rangel, Chen Pan
Recent advancements in Internet of Things (IoT) technology draws attention to Energy Harvesting (EH) systems as a promising energy-efficient solution to the limited sustainability in IoT edge devices. However, due to the weak and unstable nature of the ambient energy source, EH nodes are vulnerable to frequent power outages. Consequently, such outages will, unfortunately, reset the volatile time module onboard, which results in synchronization problems. To enable intermittent communication under energy harvesting scenarios with limited and unstable power supply, instead of merely minimizing the occurrence of a power outage, this work will also enable a smart and swift "self-healing" MAC protocol for desynchronized EH IoT devices to synchronize its timeline with the rest of the network for communication. To demonstrate the effectiveness, we will take the popular Long-range Wide Area Network (LoRaWAN) communication protocol as the backbone for upgrading, testing, and evaluation. The experiments conducted on LoRa Nodes demonstrate the effectiveness of the proposed techniques.
{"title":"ISSAC: An Self-organizing and Self-healing MAC Design for Intermittent Communication Systems","authors":"Ruben Dominguez, Wen Zhang, Hongzhi Xu, Pablo Rangel, Chen Pan","doi":"10.1109/ISQED57927.2023.10129347","DOIUrl":"https://doi.org/10.1109/ISQED57927.2023.10129347","url":null,"abstract":"Recent advancements in Internet of Things (IoT) technology draws attention to Energy Harvesting (EH) systems as a promising energy-efficient solution to the limited sustainability in IoT edge devices. However, due to the weak and unstable nature of the ambient energy source, EH nodes are vulnerable to frequent power outages. Consequently, such outages will, unfortunately, reset the volatile time module onboard, which results in synchronization problems. To enable intermittent communication under energy harvesting scenarios with limited and unstable power supply, instead of merely minimizing the occurrence of a power outage, this work will also enable a smart and swift \"self-healing\" MAC protocol for desynchronized EH IoT devices to synchronize its timeline with the rest of the network for communication. To demonstrate the effectiveness, we will take the popular Long-range Wide Area Network (LoRaWAN) communication protocol as the backbone for upgrading, testing, and evaluation. The experiments conducted on LoRa Nodes demonstrate the effectiveness of the proposed techniques.","PeriodicalId":315053,"journal":{"name":"2023 24th International Symposium on Quality Electronic Design (ISQED)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132644178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-05DOI: 10.1109/ISQED57927.2023.10129369
N. Aswathy, H. Kapoor
Emerging non-volatile memories overcome the bottlenecks associated with traditional DRAM memories, such as low density and high energy. The high operating voltages required for such non-volatile memories make them vulnerable to Biased Temperature Instability (BTI) aging. The aging of a device can be controlled by the de-stress operation, where the stress voltage applied to the device is removed for a small duration. Performing de-stress in regular intervals helps to partially recover from age degradation. Such an interval-based de-stress can affect the service of regular requests and thus can hamper the system performance.To control the aging of PCM memories while maintaining the system performance, we propose AGRAS: age and memory request-rate aware scheduling method to schedule de-stress as well as regular requests. AGRAS schedules the de-stress operation only when the incoming request rate is not very high, thus controlling performance degradation. Additionally, it makes sure that in events of a prolonged high request rate, the de-stress gets scheduled in order to control device age degradation. The proposal helps to improve the system performance while minimizing the age degradation compared to the setup, which de-stresses at regular intervals.
{"title":"AGRAS: Aging and memory request rate aware scheduler for PCM memories","authors":"N. Aswathy, H. Kapoor","doi":"10.1109/ISQED57927.2023.10129369","DOIUrl":"https://doi.org/10.1109/ISQED57927.2023.10129369","url":null,"abstract":"Emerging non-volatile memories overcome the bottlenecks associated with traditional DRAM memories, such as low density and high energy. The high operating voltages required for such non-volatile memories make them vulnerable to Biased Temperature Instability (BTI) aging. The aging of a device can be controlled by the de-stress operation, where the stress voltage applied to the device is removed for a small duration. Performing de-stress in regular intervals helps to partially recover from age degradation. Such an interval-based de-stress can affect the service of regular requests and thus can hamper the system performance.To control the aging of PCM memories while maintaining the system performance, we propose AGRAS: age and memory request-rate aware scheduling method to schedule de-stress as well as regular requests. AGRAS schedules the de-stress operation only when the incoming request rate is not very high, thus controlling performance degradation. Additionally, it makes sure that in events of a prolonged high request rate, the de-stress gets scheduled in order to control device age degradation. The proposal helps to improve the system performance while minimizing the age degradation compared to the setup, which de-stresses at regular intervals.","PeriodicalId":315053,"journal":{"name":"2023 24th International Symposium on Quality Electronic Design (ISQED)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115680230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-05DOI: 10.1109/ISQED57927.2023.10129362
Joseph Clemmons, Yu-Fang Jin
Reinforcement learning (RL) has attracted significant research efforts to guide an autonomous vehicle (AV) for a collision-free path due to its advantages in investigating interactions among multiple vehicles and dynamic environments. This study deploys a Deep Q-Network (DQN) based RL algorithm with reward shaping to control an ego AV in an environment with multiple vehicles. Specifically, the state space of the RL algorithm depends on the desired destination, the ego vehicle’s location and orientation, and the location of other vehicles in the system. The training time of the proposed RL algorithm is much shorter than most current image-based algorithms. The RL algorithm also provides an extendable framework to include a varying number of vehicles in the environment and can be easily adapted to different maps without changing the setup of the RL algorithm. Three scenarios were simulated in the Cars Learn to Act (CARLA) simulator to examine the effects of the proposed RL algorithm on guiding the ego AV interacting with multiple vehicles on straight and curvy roads. Our results showed that the ego AV could learn to reach its destination within 5000 episodes for all scenarios tested.
强化学习(RL)由于其在研究多车辆和动态环境之间的相互作用方面的优势,已经吸引了大量的研究工作来指导自动驾驶汽车(AV)寻找无碰撞路径。本研究部署了一种基于深度q网络(DQN)的RL算法,该算法带有奖励整形,用于在多车辆环境中控制自我自动驾驶汽车。具体来说,RL算法的状态空间取决于期望的目的地、自我车辆的位置和方向以及系统中其他车辆的位置。所提出的强化学习算法的训练时间比目前大多数基于图像的算法要短得多。RL算法还提供了一个可扩展的框架,以包括环境中不同数量的车辆,并且可以很容易地适应不同的地图,而无需改变RL算法的设置。在Cars Learn to Act (CARLA)模拟器中模拟了三种场景,以检验RL算法在引导自动驾驶汽车在直线和弯曲道路上与多辆车辆交互时的效果。我们的研究结果表明,在所有测试场景中,自我自动驾驶汽车都可以在5000集内学会到达目的地。
{"title":"Reinforcement Learning-Based Guidance of Autonomous Vehicles","authors":"Joseph Clemmons, Yu-Fang Jin","doi":"10.1109/ISQED57927.2023.10129362","DOIUrl":"https://doi.org/10.1109/ISQED57927.2023.10129362","url":null,"abstract":"Reinforcement learning (RL) has attracted significant research efforts to guide an autonomous vehicle (AV) for a collision-free path due to its advantages in investigating interactions among multiple vehicles and dynamic environments. This study deploys a Deep Q-Network (DQN) based RL algorithm with reward shaping to control an ego AV in an environment with multiple vehicles. Specifically, the state space of the RL algorithm depends on the desired destination, the ego vehicle’s location and orientation, and the location of other vehicles in the system. The training time of the proposed RL algorithm is much shorter than most current image-based algorithms. The RL algorithm also provides an extendable framework to include a varying number of vehicles in the environment and can be easily adapted to different maps without changing the setup of the RL algorithm. Three scenarios were simulated in the Cars Learn to Act (CARLA) simulator to examine the effects of the proposed RL algorithm on guiding the ego AV interacting with multiple vehicles on straight and curvy roads. Our results showed that the ego AV could learn to reach its destination within 5000 episodes for all scenarios tested.","PeriodicalId":315053,"journal":{"name":"2023 24th International Symposium on Quality Electronic Design (ISQED)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115684077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}