首页 > 最新文献

Jurnal Teknologi Elekterika最新文献

英文 中文
Pengujian Long-Short Term Memory (LSTM) Pada Prediksi Trafik Lalu Lintas Menggunakan Multi Server
Pub Date : 2023-05-30 DOI: 10.31963/elekterika.v20i1.4242
Riesa Krisna Astuti Sakir
This study presents a test of the long short term memory (LSTM) algorithm on traffic prediction with multi edge server and cloud server architectures. IoT sensors located on the roadside such as cameras and location data on each driver are used and stored in the data center. When a driver sends a travel time request to a nearby edge server, traffic predictions will be made on the edge server or cloud server. Server selection is made based on the destination location of the driver's request. If the destination is in the edge server area, traffic predictions are made on the edge server. However, if the destination is in the cloud server area, traffic predictions are made on the cloud server. Then to predict traffic traffic is done with LSTM. following modeling is made with a density of 128 and a density of 256. By learning from previous traffic, LSTM with a greater density gets a proportion of errors, namely RMSE 10.78%, MAE 8.24%, and MAPE 19.87%. 
本研究提出了一种长短期记忆(LSTM)算法在多边缘服务器和云服务器架构下的流量预测测试。位于路边的物联网传感器,如摄像头和每个司机的位置数据,被使用并存储在数据中心。当驾驶员向附近的边缘服务器发送旅行时间请求时,将在边缘服务器或云服务器上进行流量预测。服务器选择是基于驱动程序请求的目的地位置。如果目的地位于边缘服务器区域,则在边缘服务器上进行流量预测。但是,如果目的地位于云服务器区域,则在云服务器上进行流量预测。然后利用LSTM进行流量预测。下面的建模是用密度128和密度256。通过学习之前的流量,密度较大的LSTM得到的误差比例为RMSE 10.78%, MAE 8.24%, MAPE 19.87%。
{"title":"Pengujian Long-Short Term Memory (LSTM) Pada Prediksi Trafik Lalu Lintas Menggunakan Multi Server","authors":"Riesa Krisna Astuti Sakir","doi":"10.31963/elekterika.v20i1.4242","DOIUrl":"https://doi.org/10.31963/elekterika.v20i1.4242","url":null,"abstract":"This study presents a test of the long short term memory (LSTM) algorithm on traffic prediction with multi edge server and cloud server architectures. IoT sensors located on the roadside such as cameras and location data on each driver are used and stored in the data center. When a driver sends a travel time request to a nearby edge server, traffic predictions will be made on the edge server or cloud server. Server selection is made based on the destination location of the driver's request. If the destination is in the edge server area, traffic predictions are made on the edge server. However, if the destination is in the cloud server area, traffic predictions are made on the cloud server. Then to predict traffic traffic is done with LSTM. following modeling is made with a density of 128 and a density of 256. By learning from previous traffic, LSTM with a greater density gets a proportion of errors, namely RMSE 10.78%, MAE 8.24%, and MAPE 19.87%. ","PeriodicalId":316017,"journal":{"name":"Jurnal Teknologi Elekterika","volume":"59 1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130525102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Perancangan Sistem Human Machine Interface (HMI) untuk Monitoring Daya Sinkronisasi Paralel Genset
Pub Date : 2023-05-30 DOI: 10.31963/elekterika.v20i1.3592
Syaiful Rachman
Dalam perancangan ini dikembangkan sistem monitoring Sinkronisasi Paralel Sistem Tenaga Listrik Genset, sebuah sistem yang dapat memantau proses informasi meliputi arus, tegangan, cos phi, frekuensi, kVAr, kW, faktor daya, dan proses pemutusan beban otomatis pada Parallel Synchronization Generator and Monitoring menggunakan antarmuka PLC ke Human Machine Interface (HMI) yang menampilkan nilai pengukuran. Kontroler HMI, PLC, dan generator menggunakan komunikasi protokol Modbus untuk membaca register 450009 sampai 4000021 dari perangkat slave hasil monitoring data dari data logger merekam penggunaan beban listrik dari sistem monitoring hasil unit sinkronisasi telah bekerja dengan dua synchronous generator yang terhubung secara paralel diperoleh ketika koneksi paralel generator sinkron mencapai stabilitas. dalam hal itu, frekuensi dan saluran tegangan adalah 49,9 hingga 50 Hz 400 volt
这个设计中平行开发监测系统同步发电机电力系统,一个信息系统可以监测的过程包括电流、电压,因为phi电源的频率、kVAr kW,因式分解,过程终止对负担实行自动平行Synchronization发电机和监测使用PLC接口到人类机器的接口(HMI)显示测量值。HMI控制器PLC,登记簿和交流发电机使用Modbus协议来读450009至4000021奴隶设备监测结果的数据记录器记录使用监测系统的电荷单位同步结果已连接平行的两个同步发电机工作当平行连接同步发电机获得稳定。在这种情况下,电压频率和通道为49。9到50赫兹400伏
{"title":"Perancangan Sistem Human Machine Interface (HMI) untuk Monitoring Daya Sinkronisasi Paralel Genset","authors":"Syaiful Rachman","doi":"10.31963/elekterika.v20i1.3592","DOIUrl":"https://doi.org/10.31963/elekterika.v20i1.3592","url":null,"abstract":"Dalam perancangan ini dikembangkan sistem monitoring Sinkronisasi Paralel Sistem Tenaga Listrik Genset, sebuah sistem yang dapat memantau proses informasi meliputi arus, tegangan, cos phi, frekuensi, kVAr, kW, faktor daya, dan proses pemutusan beban otomatis pada Parallel Synchronization Generator and Monitoring menggunakan antarmuka PLC ke Human Machine Interface (HMI) yang menampilkan nilai pengukuran. Kontroler HMI, PLC, dan generator menggunakan komunikasi protokol Modbus untuk membaca register 450009 sampai 4000021 dari perangkat slave hasil monitoring data dari data logger merekam penggunaan beban listrik dari sistem monitoring hasil unit sinkronisasi telah bekerja dengan dua synchronous generator yang terhubung secara paralel diperoleh ketika koneksi paralel generator sinkron mencapai stabilitas. dalam hal itu, frekuensi dan saluran tegangan adalah 49,9 hingga 50 Hz 400 volt","PeriodicalId":316017,"journal":{"name":"Jurnal Teknologi Elekterika","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116429011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sistem Kendali Hidrogen Pada HCl Burner Menggunakan Controller Yokogawa
Pub Date : 2023-05-30 DOI: 10.31963/elekterika.v20i1.4181
Yohanes Daud Suherman, Edilla Edilla
The hydrogen control system is a hydrogen control system in the HCl manufacturing process. This control is needed to control the presence of hydrogen over capacity or low capacity in the HCl burner, resulting in product failure. Hydrogen is one of the first steps for making HCl, which needs to be considered for its parameters, consisting of a control valve, flow transmitter, and pressure transmitter. In this study, a controller can be operated to adjust the hydrogen control valve line opening on the HCl burner. Then to find out the set point value of hydrogen entering the HCl burner, 2 transmitters measure flow and pressure. Furthermore, the signal measured by the transmitter will provide feedback so that the flow and pressure values appear on the controller. To ensure that the parameter data has been observed by comparison between the data on the system and the actual data in the field. From the observational data of this control system, the need for hydrogen for the initial stage of HCl production can be carried out within 1 hour with the control valve opening parameter of 34%, so that by opening the control valve it is known that the flow transmitter indication is 34 kg/hour and the transmitter pressure is 9kPa, so from flow and pressure indications can be used for later stages of the HCl manufacturing process.
氢气控制系统是HCl制造过程中的氢气控制系统。这种控制是需要控制氢气的存在超过容量或低容量在HCl燃烧器,导致产品故障。氢气是制造HCl的第一步,需要考虑其参数,包括控制阀、流量变送器和压力变送器。在本研究中,可以操作控制器来调节HCl燃烧器上的氢气控制阀管路开度。然后通过2个变送器测量流量和压力来确定进入HCl燃烧器的氢气的设定值。此外,由变送器测量的信号将提供反馈,使流量和压力值出现在控制器上。通过对比系统上的数据和现场的实际数据,确保观测到参数数据。从该控制系统的观测数据来看,在控制阀开度参数为34%的情况下,HCl生产初期的氢气需要量可以在1小时内完成,通过打开控制阀可知流量变送器指示值为34 kg/h,变送器压力为9kPa,因此流量和压力指示值可以用于后期的HCl生产过程。
{"title":"Sistem Kendali Hidrogen Pada HCl Burner Menggunakan Controller Yokogawa","authors":"Yohanes Daud Suherman, Edilla Edilla","doi":"10.31963/elekterika.v20i1.4181","DOIUrl":"https://doi.org/10.31963/elekterika.v20i1.4181","url":null,"abstract":"The hydrogen control system is a hydrogen control system in the HCl manufacturing process. This control is needed to control the presence of hydrogen over capacity or low capacity in the HCl burner, resulting in product failure. Hydrogen is one of the first steps for making HCl, which needs to be considered for its parameters, consisting of a control valve, flow transmitter, and pressure transmitter. In this study, a controller can be operated to adjust the hydrogen control valve line opening on the HCl burner. Then to find out the set point value of hydrogen entering the HCl burner, 2 transmitters measure flow and pressure. Furthermore, the signal measured by the transmitter will provide feedback so that the flow and pressure values appear on the controller. To ensure that the parameter data has been observed by comparison between the data on the system and the actual data in the field. From the observational data of this control system, the need for hydrogen for the initial stage of HCl production can be carried out within 1 hour with the control valve opening parameter of 34%, so that by opening the control valve it is known that the flow transmitter indication is 34 kg/hour and the transmitter pressure is 9kPa, so from flow and pressure indications can be used for later stages of the HCl manufacturing process.","PeriodicalId":316017,"journal":{"name":"Jurnal Teknologi Elekterika","volume":"80 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123958548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Studi Peningkatan Keandalan Dengan Penambahan Recloser Pada Penyulang Pajalau Pt. Pln (Persero) Ulp Kalebajeng Dengan Metode Section Technique 通过添加对Pt. Pln Pajalau resero (Persero) Ulp Kalebajeng与技术部门部门合作的Recloser进行的可信改进研究
Pub Date : 2022-11-30 DOI: 10.31963/elekterika.v6i2.3688
S. Sofyan, Alamsyah Achmad, Ikhlashul Amal S P
Keandalan penyaluran energi listrik ke konsumen sangat dipengaruhi oleh sistem pendistribusiannya. Untuk itu diperlukan sistem distribusi energi listrik dengan keandalan yang tinggi. Karena manfaat dan fungsi suatu sistem tenaga listrik yang sangat vital dalam kehidupan sehari-hari, maka diperlukan sebuah sistem tenaga listrik yang andal untuk penyediaan dan pendistribusian tenaga listrik pada jaringan distribusi tenaga listrik. Tujuan penelitian ini adalah untuk menghitung tingkat keandalan dan sekaligus melakukan upaya untuk meningkatkan keandalan  sistem distribusi 20 kV pada PT. PLN (Persero) ULP Kalebajeng dengan metode section technique, di mana nilai dari indeks kegagalan dari setiap peralatan utama sistem distribusi diperhitungkan untuk mencari nilai indeks keandalan sistem secara menyeluruh. Studi kasus dilakukan di PT. PLN (persero) ULP Kalebajeng. Pada tugas akhir ini, dilakukan studi peningkatan keandalan sistem distribusi 20 kV pada Penyulang. Tujuan yang ingin dicapai pada tugas akhir ini adalah sebagai evaluasi dalam memperbaiki kinerja peralatan yang ada pada Penyulang Pajalau. Metode yang digunakan antara lain pengumpulan data, pengolahan data, serta penganalisisan keandalan sistem distribusi 20 kV. Nilai indeks keandalan penyulang Pajalau yaitu SAIDI 22.348 jam/tahun dan SAIFI 4.494 kali/tahun. Hasil perhitungan dengan metode Section Technique nantinya akan dibandingkan dengan hasil dari simulasi ETAP setelah mengimplementasikan recloser pada penyulang
电力输送给消费者的可靠性受到其配送系统的高度影响。这需要一个高可靠性的电力配送系统。由于电力系统在日常生活中至关重要,因此需要一种可靠的电力系统来提供电力供应和输送电力。研究的目的是计算可靠性水平和分配系统20的同时努力提高可靠性的PT .电力公司(Persero) ULP Kalebajeng索引的方法技巧,价值在哪里区分配系统计算每个主要设备的失败寻找价值彻底分类索引系统可靠性。案例研究是在PT. PLN (persero) ULP Kalebajeng进行的。在最后的作业中,对重新分配系统的可靠性进行了研究。在此最终任务中,其目标将是评估在帕贾劳重组中现有设备的性能。使用的方法包括数据收集、数据处理和分析20 kV分配系统的可靠性。Pajalau的可靠性值指数是SAIDI 22348小时/年,SAIFI 4494次/年。采用技术节方法进行的计算结果将与ETAP模拟在实现倒镜后的结果进行比较
{"title":"Studi Peningkatan Keandalan Dengan Penambahan Recloser Pada Penyulang Pajalau Pt. Pln (Persero) Ulp Kalebajeng Dengan Metode Section Technique","authors":"S. Sofyan, Alamsyah Achmad, Ikhlashul Amal S P","doi":"10.31963/elekterika.v6i2.3688","DOIUrl":"https://doi.org/10.31963/elekterika.v6i2.3688","url":null,"abstract":"Keandalan penyaluran energi listrik ke konsumen sangat dipengaruhi oleh sistem pendistribusiannya. Untuk itu diperlukan sistem distribusi energi listrik dengan keandalan yang tinggi. Karena manfaat dan fungsi suatu sistem tenaga listrik yang sangat vital dalam kehidupan sehari-hari, maka diperlukan sebuah sistem tenaga listrik yang andal untuk penyediaan dan pendistribusian tenaga listrik pada jaringan distribusi tenaga listrik. Tujuan penelitian ini adalah untuk menghitung tingkat keandalan dan sekaligus melakukan upaya untuk meningkatkan keandalan  sistem distribusi 20 kV pada PT. PLN (Persero) ULP Kalebajeng dengan metode section technique, di mana nilai dari indeks kegagalan dari setiap peralatan utama sistem distribusi diperhitungkan untuk mencari nilai indeks keandalan sistem secara menyeluruh. Studi kasus dilakukan di PT. PLN (persero) ULP Kalebajeng. Pada tugas akhir ini, dilakukan studi peningkatan keandalan sistem distribusi 20 kV pada Penyulang. Tujuan yang ingin dicapai pada tugas akhir ini adalah sebagai evaluasi dalam memperbaiki kinerja peralatan yang ada pada Penyulang Pajalau. Metode yang digunakan antara lain pengumpulan data, pengolahan data, serta penganalisisan keandalan sistem distribusi 20 kV. Nilai indeks keandalan penyulang Pajalau yaitu SAIDI 22.348 jam/tahun dan SAIFI 4.494 kali/tahun. Hasil perhitungan dengan metode Section Technique nantinya akan dibandingkan dengan hasil dari simulasi ETAP setelah mengimplementasikan recloser pada penyulang","PeriodicalId":316017,"journal":{"name":"Jurnal Teknologi Elekterika","volume":"234 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130323914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analisis Sistem Koordinasi Proteksi Over Current Relay (Ocr) Dan Ground Fault Relay (Gfr) Tegangan 20 Kv Bay Trafo Pada Gardu Induk Sanga-Sanga Kalimantan Timur
Pub Date : 2022-11-30 DOI: 10.31963/elekterika.v6i2.3527
Sarma Thaha, A. Indrawan, Yosua Januarius Pongkiding
As a provider of electricity services, PLN is required to provide service and supply of electricity with good quality, continuity, improvement and efficiency. Disturbances in distribution systems are short circuit faults between phases or ground phase faults. To protect properly, proper coordination of relay settings is required. Among the equipment in the protection system used in distribution lines are overcurrent relays (OCR) and ground fault relays (GFR). In this study, an analysis of the OCR and GFR settings will be carried out on a 20 kV cubicle at the Sanga-Sanga Substation, East Kalimantan, with the help of the DigSILENT Power Factory 15.1.7 application with a disturbance simulation at 10% and 90% of the feeder length. Based on the analysis results, it is obtained that the short circuit results of 3 phases, 2 phases, and 1 phase to the ground have a value that is not much different from the calculation, while the OCR setting for the outgoing relay is 0.8 A on the secondary side. TMS is 0.083 seconds while the relay is on the incoming side of 20 kV 1 A and TMS of 0.198 seconds. The GFR setting for the outgoing relay is 0.06 A on the secondary side, and TMS is 0.1 seconds, and the relay on the incoming side is 20 kV 0.015 A and TMS is 0.26 seconds).
作为电力服务的提供者,要求PLN提供优质、持续、改进和高效的服务和电力供应。配电系统中的扰动主要是相间短路故障或地相故障。为了正确保护,需要适当协调继电器设置。在配电线路保护系统中,有过流继电器(OCR)和接地故障继电器(GFR)。在本研究中,将在东加里曼丹Sanga-Sanga变电站的20 kV隔间上进行OCR和GFR设置分析,借助DigSILENT Power Factory 15.1.7应用程序,在馈线长度的10%和90%处进行干扰模拟。根据分析结果,得到3相、2相、1相对地的短路结果值与计算值相差不大,而出线继电器二次侧OCR整定值为0.8 a。继电器在20kv 1a进线侧时,TMS为0.083秒,TMS为0.198秒。出线继电器二次侧GFR设为0.06 A, TMS设为0.1 s,进线继电器20 kV 0.015 A, TMS设为0.26 s)。
{"title":"Analisis Sistem Koordinasi Proteksi Over Current Relay (Ocr) Dan Ground Fault Relay (Gfr) Tegangan 20 Kv Bay Trafo Pada Gardu Induk Sanga-Sanga Kalimantan Timur","authors":"Sarma Thaha, A. Indrawan, Yosua Januarius Pongkiding","doi":"10.31963/elekterika.v6i2.3527","DOIUrl":"https://doi.org/10.31963/elekterika.v6i2.3527","url":null,"abstract":"As a provider of electricity services, PLN is required to provide service and supply of electricity with good quality, continuity, improvement and efficiency. Disturbances in distribution systems are short circuit faults between phases or ground phase faults. To protect properly, proper coordination of relay settings is required. Among the equipment in the protection system used in distribution lines are overcurrent relays (OCR) and ground fault relays (GFR). In this study, an analysis of the OCR and GFR settings will be carried out on a 20 kV cubicle at the Sanga-Sanga Substation, East Kalimantan, with the help of the DigSILENT Power Factory 15.1.7 application with a disturbance simulation at 10% and 90% of the feeder length. Based on the analysis results, it is obtained that the short circuit results of 3 phases, 2 phases, and 1 phase to the ground have a value that is not much different from the calculation, while the OCR setting for the outgoing relay is 0.8 A on the secondary side. TMS is 0.083 seconds while the relay is on the incoming side of 20 kV 1 A and TMS of 0.198 seconds. The GFR setting for the outgoing relay is 0.06 A on the secondary side, and TMS is 0.1 seconds, and the relay on the incoming side is 20 kV 0.015 A and TMS is 0.26 seconds).","PeriodicalId":316017,"journal":{"name":"Jurnal Teknologi Elekterika","volume":"433 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132386229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Analisa Predictive Berbasis Supervised Machine Learning Terhadap Kerusakan Peralatan Pembangkit
Pub Date : 2022-11-30 DOI: 10.31963/elekterika.v6i2.3690
Mochamad Marte Ardhianto, Rudi Sumarwanto
Predictive maintenance is a treatment for the actual operation of the equipment to optimize the company's operations. The output of predictive program maintenance is data, this treatment includes the type of "condition based maintenance" where changes in the condition of the machine or equipment are detected so that proactive actions are taken before the occurrence of machine damage. The K-nearest Neighbor (K-NN) algorithm is a simple supervised machine learning algorithm that is used to solve problems based on classification and regression. K-NN works by finding the query distance and all database examples, selecting a certain number of examples (K) adjacent to the query, then selecting the frequent label (in classification) or the average label (in regression). The purpose of this algorithm is to classify new object conditions based on attributes and samples from the training database. So that a predictive analysis is carried out on the damage to generating equipment using the machine learning application method of the Nearest Neighbor type or the classification of conditions used to predict the age or condition of an equipment by modeling according to the standard Operation & Maintenance of equipment. By doing predictive analysis, maintenance will lead to condition based maintenance so that the KPI (Key Performance Indicator) of operating performance in the form of increasing values, such as Capacity Factor (CF), Equivalent Availbility Factor (EAF) becomes optimal and prevents the generator from tripping suddenly. which is called sudden outage frequency (SdOF), as well as more efficient maintenance costs.
预测性维护是对设备实际运行情况进行的一种处理,以优化公司的运营。预测性程序维护的输出是数据,这种处理包括“基于状态的维护”类型,即检测到机器或设备状态的变化,以便在机器损坏发生之前采取主动行动。k -最近邻(K-NN)算法是一种简单的监督机器学习算法,用于解决基于分类和回归的问题。K- nn的工作原理是找到查询距离和所有数据库示例,选择与查询相邻的一定数量的示例(K),然后选择频繁标签(分类中)或平均标签(回归中)。该算法的目的是根据训练库中的属性和样本对新的对象条件进行分类。使用最近邻类型的机器学习应用方法或根据设备的标准运维建模预测设备的年龄或状态的条件分类方法对发电设备的损坏进行预测分析。通过进行预测分析,维护将导致基于状态的维护,从而使运行性能的KPI(关键性能指标)以递增的值的形式,如容量系数(CF),等效可用系数(EAF)变得最优,并防止发电机突然跳闸。即所谓的突然停机频率(SdOF),以及更有效的维护成本。
{"title":"Analisa Predictive Berbasis Supervised Machine Learning Terhadap Kerusakan Peralatan Pembangkit","authors":"Mochamad Marte Ardhianto, Rudi Sumarwanto","doi":"10.31963/elekterika.v6i2.3690","DOIUrl":"https://doi.org/10.31963/elekterika.v6i2.3690","url":null,"abstract":"Predictive maintenance is a treatment for the actual operation of the equipment to optimize the company's operations. The output of predictive program maintenance is data, this treatment includes the type of \"condition based maintenance\" where changes in the condition of the machine or equipment are detected so that proactive actions are taken before the occurrence of machine damage. The K-nearest Neighbor (K-NN) algorithm is a simple supervised machine learning algorithm that is used to solve problems based on classification and regression. K-NN works by finding the query distance and all database examples, selecting a certain number of examples (K) adjacent to the query, then selecting the frequent label (in classification) or the average label (in regression). The purpose of this algorithm is to classify new object conditions based on attributes and samples from the training database. So that a predictive analysis is carried out on the damage to generating equipment using the machine learning application method of the Nearest Neighbor type or the classification of conditions used to predict the age or condition of an equipment by modeling according to the standard Operation & Maintenance of equipment. By doing predictive analysis, maintenance will lead to condition based maintenance so that the KPI (Key Performance Indicator) of operating performance in the form of increasing values, such as Capacity Factor (CF), Equivalent Availbility Factor (EAF) becomes optimal and prevents the generator from tripping suddenly. which is called sudden outage frequency (SdOF), as well as more efficient maintenance costs.","PeriodicalId":316017,"journal":{"name":"Jurnal Teknologi Elekterika","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123925863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pemodelan Peramalan Beban pada System Sulselrabar Menggunakan Tipe-2 Logika Fuzzy sulselbar系统上的负载模型使用了模糊逻辑2类型的模型
Pub Date : 2022-11-30 DOI: 10.31963/elekterika.v6i2.3751
Muhammad Ruswandi Djalal, Imam Robandi
Penelitian ini mengusulkan pendekatan pemodelan untuk peramalan beban jangka pendek 24 jam berdasarkan logika fuzzy tipe-2. Dalam penelitian ini didapatkan suatu pendekatan dalam merancang model peramalan beban, dimana sebelumnya masih menggunakan logika fuzzy konvensional. Implementasi peramalan beban pada penelitian ini dilakukan pada sistem kelistrikan 150 kV Sulselrabar. Sistem kelistrikan Sulselrabar dalam perkembangannya mengalami perkembangan yang pesat, oleh karena itu diperlukan suatu penelitian yang dapat meningkatkan performansi sistem tersebut, salah satunya adalah studi peramalan beban jangka pendek. Sebagai data input digunakan data beban dari tahun 2010 sampai dengan tahun 2016 pada hari yang sama yaitu tanggal 8 Januari. Untuk melihat keakuratan hasil, dilakukan dua pendekatan, yaitu logika fuzzy tipe-1 yang dimodelkan menggunakan Simulink dan logika fuzzy tipe-2 dengan menggunakan m-file Matlab. Dari hasil analisis diperoleh Mean Percentage Error (MAPE) paling kecil dengan menggunakan metode Fuzzy Logic Type-2, dibandingkan dengan metode Fuzzy Logic Type-1. Dimana, MAPE untuk metode fuzzy logic tipe-1 adalah 2.1%, dan dengan menggunakan metode logika fuzzy tipe-2, MAPE adalah 1.7%.
这项研究提出了一种基于模糊2型逻辑的24小时短期负载模型方法。在这项研究中,它找到了一种设计负载模型的方法,这种模型以前还使用传统的模糊逻辑。该研究的负载实现是150 kV Sulselrabar电力系统。Sulselrabar电气系统发展迅速,因此需要进行一项研究,该研究旨在提高该系统的性能,其中之一是短期负载模型研究。输入数据使用从2010年到2016年的同一天,也就是1月8日。为了确保结果的准确性,有两种方法,一种是模糊的1型逻辑,它使用模拟链接和模糊的2型逻辑使用m文件进行模型。通过使用模糊逻辑Type-2方法,而不是模糊逻辑Type-1方法,获得最小值(MAPE)。其中,MAPE的模糊逻辑1型的方法是2.1%,使用模糊型2的逻辑方法,MAPE是1.7%。
{"title":"Pemodelan Peramalan Beban pada System Sulselrabar Menggunakan Tipe-2 Logika Fuzzy","authors":"Muhammad Ruswandi Djalal, Imam Robandi","doi":"10.31963/elekterika.v6i2.3751","DOIUrl":"https://doi.org/10.31963/elekterika.v6i2.3751","url":null,"abstract":"Penelitian ini mengusulkan pendekatan pemodelan untuk peramalan beban jangka pendek 24 jam berdasarkan logika fuzzy tipe-2. Dalam penelitian ini didapatkan suatu pendekatan dalam merancang model peramalan beban, dimana sebelumnya masih menggunakan logika fuzzy konvensional. Implementasi peramalan beban pada penelitian ini dilakukan pada sistem kelistrikan 150 kV Sulselrabar. Sistem kelistrikan Sulselrabar dalam perkembangannya mengalami perkembangan yang pesat, oleh karena itu diperlukan suatu penelitian yang dapat meningkatkan performansi sistem tersebut, salah satunya adalah studi peramalan beban jangka pendek. Sebagai data input digunakan data beban dari tahun 2010 sampai dengan tahun 2016 pada hari yang sama yaitu tanggal 8 Januari. Untuk melihat keakuratan hasil, dilakukan dua pendekatan, yaitu logika fuzzy tipe-1 yang dimodelkan menggunakan Simulink dan logika fuzzy tipe-2 dengan menggunakan m-file Matlab. Dari hasil analisis diperoleh Mean Percentage Error (MAPE) paling kecil dengan menggunakan metode Fuzzy Logic Type-2, dibandingkan dengan metode Fuzzy Logic Type-1. Dimana, MAPE untuk metode fuzzy logic tipe-1 adalah 2.1%, dan dengan menggunakan metode logika fuzzy tipe-2, MAPE adalah 1.7%.","PeriodicalId":316017,"journal":{"name":"Jurnal Teknologi Elekterika","volume":"39 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127183508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analisis Efisiensi Generator Pada GT21 Blok 2 Pembangkit Listrik Tenaga Gas Dan Uap PT. CEPA Sengkang 这是对PT. CEPA Sengkang发电厂g21号街区的发电机效率分析
Pub Date : 2022-11-30 DOI: 10.31963/elekterika.v6i2.3805
Ashar Ar, H. Hamma, Wisna Saputri Alfira WS, Andarini Asri, A. Ardiyansyah
       PLTGU Sengkang which is operated by PT. CEPA Sengkang with a total capacity of 315 MW. One of the important components in the PLTGU system is a generator. In a generator there are many problems that arise, including generator efficiency problems. The research that will be carried out is to determine the generator efficiency value and then determine how much the generator efficiency value increases. In finding the efficiency value by making daily and monthly loading curves using generator output power, generator input power data, generator nameplate and generator power losses at 25%, 50%, 75%, and 100% loading. In this study, taking a sample that lasted for 1 month (31 days) of generator efficiency data for each loading and comparing the actual with the generator specifications, the difference for loading 25% experienced a decrease in efficiency of 0.35%, for loading 50% experienced an efficiency increase of 0.12%, for loading 75% increased efficiency of 0.25% and for loading 100% increased efficiency of 0.32%. In this study the generator has experienced reverse power so that the efficiency of the generator has decreased. The average efficiency in May 2022 was 96.21%, with an average load of 29.96 MW and an average input power of 31.14 MW. Referring to the manual book Block 2 PLTGU PT. CEPA Sengkang is known that the generator efficiency value is by design divided into 4 loadings. For loading 25% efficiency is 96.6%, for loading 50% efficiency is 98.45%, for loading 75% efficiency is 98.82%, and for loading 100% efficiency is 98.93% and so that the optimum efficiency of the generator occurs at a load of 54.2 MW (loading 100 %) with a value of 99.62%.
PLTGU Sengkang由PT. CEPA Sengkang运营,总容量为315兆瓦。PLTGU系统的重要组成部分之一是发电机。在发电机中会出现许多问题,包括发电机效率问题。将要进行的研究是确定发电机效率值,然后确定发电机效率值增加多少。利用发电机输出功率、发电机输入功率数据、发电机铭牌和25%、50%、75%、100%负荷时的发电机功率损耗,绘制日、月负荷曲线,求效率值。在本研究中,选取了每次加载1个月(31天)的发电机效率数据样本,并将实际与发电机规格进行比较,加载25%时效率下降0.35%,加载50%时效率提高0.12%,加载75%时效率提高0.25%,加载100%时效率提高0.32%。在本研究中,发电机经历了反向功率,使发电机的效率下降。2022年5月平均效率为96.21%,平均负荷为29.96 MW,平均输入功率为31.14 MW。参考手册Block 2 PLTGU PT. CEPA Sengkang了解到,发电机效率值按设计分为4个负荷。加载25%效率为96.6%,加载50%效率为98.45%,加载75%效率为98.82%,加载100%效率为98.93%,因此发电机的最佳效率出现在负载为54.2 MW(加载100%)时,其值为99.62%。
{"title":"Analisis Efisiensi Generator Pada GT21 Blok 2 Pembangkit Listrik Tenaga Gas Dan Uap PT. CEPA Sengkang","authors":"Ashar Ar, H. Hamma, Wisna Saputri Alfira WS, Andarini Asri, A. Ardiyansyah","doi":"10.31963/elekterika.v6i2.3805","DOIUrl":"https://doi.org/10.31963/elekterika.v6i2.3805","url":null,"abstract":"       PLTGU Sengkang which is operated by PT. CEPA Sengkang with a total capacity of 315 MW. One of the important components in the PLTGU system is a generator. In a generator there are many problems that arise, including generator efficiency problems. The research that will be carried out is to determine the generator efficiency value and then determine how much the generator efficiency value increases. In finding the efficiency value by making daily and monthly loading curves using generator output power, generator input power data, generator nameplate and generator power losses at 25%, 50%, 75%, and 100% loading. In this study, taking a sample that lasted for 1 month (31 days) of generator efficiency data for each loading and comparing the actual with the generator specifications, the difference for loading 25% experienced a decrease in efficiency of 0.35%, for loading 50% experienced an efficiency increase of 0.12%, for loading 75% increased efficiency of 0.25% and for loading 100% increased efficiency of 0.32%. In this study the generator has experienced reverse power so that the efficiency of the generator has decreased. The average efficiency in May 2022 was 96.21%, with an average load of 29.96 MW and an average input power of 31.14 MW. Referring to the manual book Block 2 PLTGU PT. CEPA Sengkang is known that the generator efficiency value is by design divided into 4 loadings. For loading 25% efficiency is 96.6%, for loading 50% efficiency is 98.45%, for loading 75% efficiency is 98.82%, and for loading 100% efficiency is 98.93% and so that the optimum efficiency of the generator occurs at a load of 54.2 MW (loading 100 %) with a value of 99.62%.","PeriodicalId":316017,"journal":{"name":"Jurnal Teknologi Elekterika","volume":"70 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115730164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analasis Penerapan Teknologi Traffic Steering SD-WAN Menggunakan Perangkat FortiGate
Pub Date : 2022-11-30 DOI: 10.31963/elekterika.v6i2.3478
Andi Dinda Nurul Fauziah, Hafsah Nirwana, Arni Litha, Ichsan Mahjud
In the current digital transformation era, network providers have long relied on WAN technology to support the business communications of their multi-local companies; however, in terms of infrastructure, cost, and even effectiveness, WAN technology is no longer sufficient to meet the needs and demands of telecommunications customers. In addition, given the magnitude of the company's need for internet network connections, technology is also needed to manage the use of traffic from rental links in the company so that it can optimize bandwidth usage from the link itself. Therefore one of the technological innovations to improve information processes is cloud-based digital innovation such as SD-WAN Traffic Steering technology. In this paper, the SD-WAN network design will be carried out on FortiGate series 50e devices by implementing traffic steering technology which can adjust a link's traffic flow according to the client's wishes. The results of the data obtained indicate that the utilization of ISP links owned by companies (Lintasarta and MNC) has been able to be used optimally, as evidenced by the use of bandwidth on each link successfully used according to the desired settings, where the settings provided have also been adjusted according to parameters of the type of each ISP service so that functionally the existing service link can be used optimally by the compan
在当前的数字化转型时代,网络提供商长期依赖WAN技术来支持其多本地公司的业务通信;然而,从基础设施、成本甚至有效性方面来看,广域网技术已经不足以满足电信客户的需求和要求。此外,考虑到公司对互联网网络连接的巨大需求,还需要技术来管理公司租赁链接的流量使用,以便它可以优化链接本身的带宽使用。因此,改进信息处理的技术创新之一是基于云的数字创新,如SD-WAN流量导向技术。本文将在FortiGate系列50e设备上进行SD-WAN网络设计,采用流量导向技术,根据客户的意愿调整链路的流量。所获得的数据结果表明,公司(Lintasarta和MNC)拥有的ISP链路的利用已经能够得到最佳利用,这可以通过根据所需设置成功使用每个链路上的带宽来证明,其中提供的设置也根据每个ISP服务类型的参数进行了调整,以便在功能上现有的服务链路可以被公司最佳地使用
{"title":"Analasis Penerapan Teknologi Traffic Steering SD-WAN Menggunakan Perangkat FortiGate","authors":"Andi Dinda Nurul Fauziah, Hafsah Nirwana, Arni Litha, Ichsan Mahjud","doi":"10.31963/elekterika.v6i2.3478","DOIUrl":"https://doi.org/10.31963/elekterika.v6i2.3478","url":null,"abstract":"In the current digital transformation era, network providers have long relied on WAN technology to support the business communications of their multi-local companies; however, in terms of infrastructure, cost, and even effectiveness, WAN technology is no longer sufficient to meet the needs and demands of telecommunications customers. In addition, given the magnitude of the company's need for internet network connections, technology is also needed to manage the use of traffic from rental links in the company so that it can optimize bandwidth usage from the link itself. Therefore one of the technological innovations to improve information processes is cloud-based digital innovation such as SD-WAN Traffic Steering technology. In this paper, the SD-WAN network design will be carried out on FortiGate series 50e devices by implementing traffic steering technology which can adjust a link's traffic flow according to the client's wishes. The results of the data obtained indicate that the utilization of ISP links owned by companies (Lintasarta and MNC) has been able to be used optimally, as evidenced by the use of bandwidth on each link successfully used according to the desired settings, where the settings provided have also been adjusted according to parameters of the type of each ISP service so that functionally the existing service link can be used optimally by the compan","PeriodicalId":316017,"journal":{"name":"Jurnal Teknologi Elekterika","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122067427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rancang Bangun Alat Pentedeksi Detak Jantung Dan Suhu Tubuh Dengan Memonitoring Tampilan Grafik 通过监控图表来设计心率和体温监测设备
Pub Date : 2022-11-30 DOI: 10.31963/elekterika.v6i2.3807
Suwarmiyati Suwarmiyati, Abil Wardana H. Masserang
The heart is an organ that never stops moving, even when humans sleep. The heart rate must constantly be monitored to determine whether our heart rate is average or not. The heart and humans are also not spared from checking body temperature. Because body temperature can indicate the presence or absence of disease in a person's body, in this study, the detector detects heart and body temperature with a monitoring graphic display that makes it easier for users/patients to detect heart detection (BPM) which is equipped with a graphic display and also body temperature which is also on the display screen. The research method used is an experimental method where the tool is made with a standard size of the original tool. Moreover, from the data collection results, it can be interpreted that the tool is feasible to use and follows medical device calibration standards with correction results for heart rate, namely 2.0%, 0.6%, and 1.0%.
心脏是一个从不停止跳动的器官,即使是在人类睡觉的时候。必须经常监测心率,以确定我们的心率是否处于平均水平。心脏和人体也不能幸免于检查体温。由于体温可以指示一个人体内是否存在疾病,因此在本研究中,检测器通过监测图形显示来检测心脏和体温,使用户/患者更容易检测到配备图形显示的心脏检测(BPM)和显示屏幕上的体温。使用的研究方法是一种实验方法,其中工具是用原始工具的标准尺寸制成的。从数据采集结果可以看出,该工具使用可行,符合医疗器械校准标准,心率校正结果分别为2.0%、0.6%和1.0%。
{"title":"Rancang Bangun Alat Pentedeksi Detak Jantung Dan Suhu Tubuh Dengan Memonitoring Tampilan Grafik","authors":"Suwarmiyati Suwarmiyati, Abil Wardana H. Masserang","doi":"10.31963/elekterika.v6i2.3807","DOIUrl":"https://doi.org/10.31963/elekterika.v6i2.3807","url":null,"abstract":"The heart is an organ that never stops moving, even when humans sleep. The heart rate must constantly be monitored to determine whether our heart rate is average or not. The heart and humans are also not spared from checking body temperature. Because body temperature can indicate the presence or absence of disease in a person's body, in this study, the detector detects heart and body temperature with a monitoring graphic display that makes it easier for users/patients to detect heart detection (BPM) which is equipped with a graphic display and also body temperature which is also on the display screen. The research method used is an experimental method where the tool is made with a standard size of the original tool. Moreover, from the data collection results, it can be interpreted that the tool is feasible to use and follows medical device calibration standards with correction results for heart rate, namely 2.0%, 0.6%, and 1.0%.","PeriodicalId":316017,"journal":{"name":"Jurnal Teknologi Elekterika","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125403961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Jurnal Teknologi Elekterika
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1