首页 > 最新文献

Telematika最新文献

英文 中文
Serious Game Design Of Sound Identification For Deaf Children Using The User Centered Design 基于用户中心设计的聋儿声音识别严肃游戏设计
Pub Date : 2022-10-31 DOI: 10.31315/telematika.v19i3.7979
Fadmi Rina, Anis Susila Abadi, Sholeh Huda
The loss of hearing function in deaf children causes deaf children to experience obstacles in listening to the sound of objects or sounds of language as children generally hear. Therefore, it is necessary to optimize the hearing function of deaf children. The Development of Sound and Rhythm Perception Communication (PKPBI) is a special program to practice understanding sound so that the remaining hearing of deaf children can be maximized. So far, the PKPBI learning media at the sound identification stage used by the Karnna Manohara Yogyakarta Special School teacher is the keyboard. However, the keyboard has weaknesses such as the collection of sounds on the keyboard is very limited. Another problem is the Covid 19 pandemic, PKPBI learning is less than optimal due to limited face-to-face meetings. The purpose of this research is to design a serious game as a learning medium for sound identification for deaf children that can be used in the classroom and at home. The method used to design serious sound identification games is User Centered Design (UCD). Based on the research results, the design of this serious game can be developed into a serious game application to practice sound identification in deaf children.
失聪儿童听力功能的丧失导致失聪儿童在听物体的声音或像儿童一般听到的语言声音时遇到障碍。因此,有必要对聋儿的听力功能进行优化。声音和节奏感知交流的发展(PKPBI)是一个特殊的项目,以练习理解声音,使聋儿的剩余听力可以最大化。到目前为止,Karnna Manohara日惹特殊学校老师在声音识别阶段使用的PKPBI学习媒介是键盘。然而,键盘有缺点,比如键盘上的声音收集非常有限。另一个问题是新冠疫情,由于面对面会议有限,PKPBI学习并不理想。本研究的目的是设计一款适合聋儿在教室和家中使用的严肃游戏,作为声音识别的学习媒介。设计严肃声音识别游戏的方法是以用户为中心的设计(UCD)。基于研究结果,本严肃游戏的设计可以发展成为一款练习聋儿声音识别的严肃游戏应用。
{"title":"Serious Game Design Of Sound Identification For Deaf Children Using The User Centered Design","authors":"Fadmi Rina, Anis Susila Abadi, Sholeh Huda","doi":"10.31315/telematika.v19i3.7979","DOIUrl":"https://doi.org/10.31315/telematika.v19i3.7979","url":null,"abstract":"The loss of hearing function in deaf children causes deaf children to experience obstacles in listening to the sound of objects or sounds of language as children generally hear. Therefore, it is necessary to optimize the hearing function of deaf children. The Development of Sound and Rhythm Perception Communication (PKPBI) is a special program to practice understanding sound so that the remaining hearing of deaf children can be maximized. So far, the PKPBI learning media at the sound identification stage used by the Karnna Manohara Yogyakarta Special School teacher is the keyboard. However, the keyboard has weaknesses such as the collection of sounds on the keyboard is very limited. Another problem is the Covid 19 pandemic, PKPBI learning is less than optimal due to limited face-to-face meetings. The purpose of this research is to design a serious game as a learning medium for sound identification for deaf children that can be used in the classroom and at home. The method used to design serious sound identification games is User Centered Design (UCD). Based on the research results, the design of this serious game can be developed into a serious game application to practice sound identification in deaf children.","PeriodicalId":31716,"journal":{"name":"Telematika","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88322481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Feasibility Analysis of Information Technology Investment Using Cost Benefit Analysis Method 用成本效益分析法分析信息技术投资的可行性
Pub Date : 2022-06-30 DOI: 10.31315/telematika.v19i2.7598
Riza Prapascatama Agusdin, Naufal Nur Aidil
Objective: One of the strategies that companies can do to survive amid fierce business competition is to invest in IT. Currently all companies need to invest in IT to improve company performance better but usually the budget costs that must be incurred by companies to make IT investments are very large. Therefore, it is necessary to analyze the feasibility of IT investment. This study aims to determine how much the costs incurred and the benefits obtained after creating a Social Media Analysis information system and also to find out whether the Social Media Analysis information system development project is feasible or not.Methods: This study uses the Cost Benefit Analysis method where the method compares the components of costs and benefits which are then recommended for a policy on investment projects. The Cost Benefit Analysis method is supported by several calculation criteria such as Net Present Value (NPV), Payback Period (PP), Return On Investment (ROI), and Benefit Cost Ratio (BCR).Results: The results showed that the NPV for 5 years was Rp. 300,138,606, PP was 2 years and 11 months, ROI was 9.03%, and BCR was 1.08. From the results of this study, it can be concluded that the Social Media Analysis information system investment project is feasible to continue.
目标:企业在激烈的商业竞争中生存的策略之一是对IT进行投资。目前,所有的公司都需要在IT方面进行投资,以更好地提高公司绩效,但通常公司必须承担的IT投资预算成本非常大。因此,有必要对it投资的可行性进行分析。本研究旨在确定创建Social Media Analysis信息系统后所产生的成本和所获得的收益,并确定Social Media Analysis信息系统开发项目是否可行。方法:本研究使用成本效益分析方法,该方法比较成本和效益的组成部分,然后推荐投资项目的政策。成本效益分析方法由几个计算标准支持,如净现值(NPV)、投资回收期(PP)、投资回报率(ROI)和效益成本比(BCR)。结果:5年NPV为Rp. 300,138,606, PP为2年零11个月,ROI为9.03%,BCR为1.08。从本研究的结果,可以得出结论,社会媒体分析信息系统投资项目是可行的,可以继续。
{"title":"Feasibility Analysis of Information Technology Investment Using Cost Benefit Analysis Method","authors":"Riza Prapascatama Agusdin, Naufal Nur Aidil","doi":"10.31315/telematika.v19i2.7598","DOIUrl":"https://doi.org/10.31315/telematika.v19i2.7598","url":null,"abstract":"Objective: One of the strategies that companies can do to survive amid fierce business competition is to invest in IT. Currently all companies need to invest in IT to improve company performance better but usually the budget costs that must be incurred by companies to make IT investments are very large. Therefore, it is necessary to analyze the feasibility of IT investment. This study aims to determine how much the costs incurred and the benefits obtained after creating a Social Media Analysis information system and also to find out whether the Social Media Analysis information system development project is feasible or not.Methods: This study uses the Cost Benefit Analysis method where the method compares the components of costs and benefits which are then recommended for a policy on investment projects. The Cost Benefit Analysis method is supported by several calculation criteria such as Net Present Value (NPV), Payback Period (PP), Return On Investment (ROI), and Benefit Cost Ratio (BCR).Results: The results showed that the NPV for 5 years was Rp. 300,138,606, PP was 2 years and 11 months, ROI was 9.03%, and BCR was 1.08. From the results of this study, it can be concluded that the Social Media Analysis information system investment project is feasible to continue.","PeriodicalId":31716,"journal":{"name":"Telematika","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82243165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Implementation Of The Double Exponential Smoothing Method In Determining The Planting Time In Strawberry Plantations 双指数平滑法在草莓种植期确定中的应用
Pub Date : 2022-06-30 DOI: 10.31315/telematika.v19i2.7544
Fadly Shabir, Ahmad Irfan Abdullah, B. Asrul, Sitti Alifah Amilhusna Nur
Purpose: This research aims to provide recommendations for planting season based on predictions of rainfall, air temperature, and wind speed based on the website.Design/methodology/approach: This study implemented the Double exponential smoothing to predict rainfall, air temperature, and monthly wind speed one year in the future using past data.Findings/result: This study has succeeded in providing recommendations for planting season. Based on the results of the accuracy calculation between the prediction results and the actual data using the Mean Absolute Percetage Error (MAPE), each has a forecast error value of 30.69% for rainfall, 0.63% air temperature, and 5.89% wind speed. Originality/value/state of the art: Research related to the application of Double exponential smoothing to determine the planting period. Based on the results of the accuracy calculation between the prediction results and the actual data using Mean Absolute Percetage Error (MAPE), this has never been done in previous studies.
目的:本研究的目的是基于网站对降雨量、气温和风速的预测,为种植季节提供建议。设计/方法/方法:本研究采用双指数平滑法,利用过去的数据预测未来一年的降雨量、气温和月风速。发现/结果:本研究成功地为种植季节提供了建议。利用平均绝对百分比误差(Mean Absolute percentage Error, MAPE)对预报结果与实际数据的精度计算结果表明,降水、气温和风速的预报误差分别为30.69%、0.63%和5.89%。原创性/价值/技术水平:应用双指数平滑法确定种植期的相关研究。基于使用平均绝对百分比误差(Mean Absolute percentage Error, MAPE)计算预测结果与实际数据之间的精度结果,这在以往的研究中从未做过。
{"title":"Implementation Of The Double Exponential Smoothing Method In Determining The Planting Time In Strawberry Plantations","authors":"Fadly Shabir, Ahmad Irfan Abdullah, B. Asrul, Sitti Alifah Amilhusna Nur","doi":"10.31315/telematika.v19i2.7544","DOIUrl":"https://doi.org/10.31315/telematika.v19i2.7544","url":null,"abstract":"Purpose: This research aims to provide recommendations for planting season based on predictions of rainfall, air temperature, and wind speed based on the website.Design/methodology/approach: This study implemented the Double exponential smoothing to predict rainfall, air temperature, and monthly wind speed one year in the future using past data.Findings/result: This study has succeeded in providing recommendations for planting season. Based on the results of the accuracy calculation between the prediction results and the actual data using the Mean Absolute Percetage Error (MAPE), each has a forecast error value of 30.69% for rainfall, 0.63% air temperature, and 5.89% wind speed. Originality/value/state of the art: Research related to the application of Double exponential smoothing to determine the planting period. Based on the results of the accuracy calculation between the prediction results and the actual data using Mean Absolute Percetage Error (MAPE), this has never been done in previous studies.","PeriodicalId":31716,"journal":{"name":"Telematika","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83258193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Analysis of Sentiments and Emotions about Sinovac Vaccine Using Naive Bayes 用朴素贝叶斯分析科兴疫苗的情绪和情绪
Pub Date : 2022-06-30 DOI: 10.31315/telematika.v19i2.7601
Bagus Muhammad Akbar, Ahmad Taufiq Akbar, Rochmat Husaini
Tujuan:Banyak negara di dunia telah berusaha mengendalikan dampak pandemi COVID-19 melalui penggunaan vaksin. vaksin sinovac merupakan salah satu vaksin populer yang telah digunakan di beberapa negara termasuk Indonesia. Sejak hadirnya vaksin sinovac, persepsi masyarakat baik di lapangan maupun di media sosial semakin muncul antara setuju dan tidak setuju dengan vaksin tersebut. Persepsi masyarakat dunia di media sosial dapat dianalisis untuk mengetahui kategori sentimen dan tingkat emosional masyarakat terhadap penerimaan vaksin Sinovac.Perancangan/metode/pendekatan:Analisis dapat dilakukan melalui data mining yang menggunakan algoritma Naive Bayes untuk menghitung probabilitas dan statistik sehingga setiap opini dapat diklasifikasikan dalam kategori sentimen positif, negatif, atau netral. Dalam penelitian ini, sumber analisis data adalah persepsi publik yang mengandung kata kunci “sinovac” dari twitter. Pengujian menggunakan sentimen, sentimen, dan library syuzhet menunjukkan bahwa sentimen positif lebih tinggi daripada negatif dan netral. Sentimen negatif paling dipengaruhi oleh tingkat emosional kesedihan dan kemarahan. Sedangkan sentimen positif sangat dipengaruhi oleh kategori senang dan emosi campur aduk. Kategori emosi campuran lebih sesuai dengan sentimen positif.Hasil:Klasifikasi emosi terhadap data tweet dalam penelitian ini menunjukkan bahwa kategori emosi kegembiraan, dan campuran memiliki persentase tertinggi yang mengandung polaritas sentimen positif. Berdasarkan penelitian ini, kata kunci sinovac cenderung memunculkan sentimen positif. Polaritas mempengaruhi emosi, namun tidak sebaliknya. Karena terlihat bahwa nilai akurasi pada klasifikasi polaritas (dengan kedua library) telah meningkat ketika fitur emosi tidak diikutkan. Sedangkan nilai akurasi pada klasifikasi emosi justru meningkat ketika fitur polaritas diikutkan.Keaslian/ state of the art:Metode Naive Bayes (library setiment) dan metode Valence Shifter (library sentimentr) yang digunakan dalam analisis sentimen pada penelitian ini menunjukkan bahwa sentimen positif lebih tinggi daripada netral dan negatif. Hasil persentase sentimen positif oleh metode Valence Shifter lebih rendah daripada metode Naive Bayes. Pada metode Valence Shifter cenderung menghasilkan agregat yang lebih kecil antara hasil persentase sentimen positif dibanding netral dan negatif.
目的:世界上许多国家都试图通过使用疫苗来控制COVID-19大流行的影响。滑石粉疫苗是包括印度尼西亚在内的几个国家使用的一种流行疫苗。自从滑冰场疫苗问世以来,公众对这种疫苗的同意和反对越来越多。世界社会在社交媒体上的看法可以分析,以了解人们对滑雪疫苗的看法和情感程度。设计/方法/方法:分析可以通过使用Naive Bayes算法计算概率和统计数据来进行,这样每个意见都可以被分类为积极的、消极的或中立的情绪。在这项研究中,数据分析的来源是公众感知,其中包含twitter上的“滑移”一词。用sezhet的情绪、情绪和库表明积极的情绪高于消极和中立。消极情绪最受悲伤和愤怒情绪的影响。而积极的情绪则受到愉悦和杂乱情绪的高度影响。混合情绪的分类更符合积极的情绪。结果:该研究对推特数据的情感分类表明,兴奋情绪的类别和混合情绪的比例最高,其中含有积极情绪的极性。根据这项研究,公会的关键词往往会引起积极的情绪。极性影响情绪,但不影响情绪。因为它表明,当情感功能不受影响时,极性分类(同时使用两个图书馆)的准确性就增加了。而当极性特征被考虑时,情感分类的准确性就会增加。艺术的真实性:在本研究的情绪分析中使用的天真的贝斯和换挡的方法表明积极的情绪高于中立和消极的情绪。换档者方法的积极情绪比天真的贝耶斯方法低。在Valence方法中,换位器倾向于在积极情绪而不是中立和消极情绪的百分比中产生更小的一致性。
{"title":"Analysis of Sentiments and Emotions about Sinovac Vaccine Using Naive Bayes","authors":"Bagus Muhammad Akbar, Ahmad Taufiq Akbar, Rochmat Husaini","doi":"10.31315/telematika.v19i2.7601","DOIUrl":"https://doi.org/10.31315/telematika.v19i2.7601","url":null,"abstract":"Tujuan:Banyak negara di dunia telah berusaha mengendalikan dampak pandemi COVID-19 melalui penggunaan vaksin. vaksin sinovac merupakan salah satu vaksin populer yang telah digunakan di beberapa negara termasuk Indonesia. Sejak hadirnya vaksin sinovac, persepsi masyarakat baik di lapangan maupun di media sosial semakin muncul antara setuju dan tidak setuju dengan vaksin tersebut. Persepsi masyarakat dunia di media sosial dapat dianalisis untuk mengetahui kategori sentimen dan tingkat emosional masyarakat terhadap penerimaan vaksin Sinovac.Perancangan/metode/pendekatan:Analisis dapat dilakukan melalui data mining yang menggunakan algoritma Naive Bayes untuk menghitung probabilitas dan statistik sehingga setiap opini dapat diklasifikasikan dalam kategori sentimen positif, negatif, atau netral. Dalam penelitian ini, sumber analisis data adalah persepsi publik yang mengandung kata kunci “sinovac” dari twitter. Pengujian menggunakan sentimen, sentimen, dan library syuzhet menunjukkan bahwa sentimen positif lebih tinggi daripada negatif dan netral. Sentimen negatif paling dipengaruhi oleh tingkat emosional kesedihan dan kemarahan. Sedangkan sentimen positif sangat dipengaruhi oleh kategori senang dan emosi campur aduk. Kategori emosi campuran lebih sesuai dengan sentimen positif.Hasil:Klasifikasi emosi terhadap data tweet dalam penelitian ini menunjukkan bahwa kategori emosi kegembiraan, dan campuran memiliki persentase tertinggi yang mengandung polaritas sentimen positif. Berdasarkan penelitian ini, kata kunci sinovac cenderung memunculkan sentimen positif. Polaritas mempengaruhi emosi, namun tidak sebaliknya. Karena terlihat bahwa nilai akurasi pada klasifikasi polaritas (dengan kedua library) telah meningkat ketika fitur emosi tidak diikutkan. Sedangkan nilai akurasi pada klasifikasi emosi justru meningkat ketika fitur polaritas diikutkan.Keaslian/ state of the art:Metode Naive Bayes (library setiment) dan metode Valence Shifter (library sentimentr) yang digunakan dalam analisis sentimen pada penelitian ini menunjukkan bahwa sentimen positif lebih tinggi daripada netral dan negatif. Hasil persentase sentimen positif oleh metode Valence Shifter lebih rendah daripada metode Naive Bayes. Pada metode Valence Shifter cenderung menghasilkan agregat yang lebih kecil antara hasil persentase sentimen positif dibanding netral dan negatif.","PeriodicalId":31716,"journal":{"name":"Telematika","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85917699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Implementation Of Mobile-Based OOAD Interactive Learning Media 基于移动的OOAD交互式学习媒体的实现
Pub Date : 2022-06-30 DOI: 10.31315/telematika.v19i2.7363
I. N. T. A. Putra, Ketut Sepdyana Kartini, K. Winatha
The lack of interest in student learning is due to the learning media used are less attractive and effective to understand the material. This study aims to implement mobile-based interactive learning media regarding OOAD material. The media feasibility test uses a blackbox testing scenario and the analysis uses the Gutman scale technique. From the test results, it was found that the percentage of blackbox testing was 100% and the functional requirements test by the resource persons obtained a percentage of 100%. Based on the results of these studies, it can be explained that this learning media is very good and has been feasible to be implemented.
学生学习兴趣的缺乏是由于所使用的学习媒介缺乏吸引力和理解材料的有效性。本研究旨在实现基于移动的OOAD材料互动学习媒体。媒介可行性测试使用黑盒测试场景,分析使用古特曼量表技术。从测试结果中,发现黑盒测试的百分比为100%,资源人员进行的功能需求测试的百分比为100%。根据这些研究的结果,可以解释这种学习媒体是非常好的,并且是可行的。
{"title":"Implementation Of Mobile-Based OOAD Interactive Learning Media","authors":"I. N. T. A. Putra, Ketut Sepdyana Kartini, K. Winatha","doi":"10.31315/telematika.v19i2.7363","DOIUrl":"https://doi.org/10.31315/telematika.v19i2.7363","url":null,"abstract":"The lack of interest in student learning is due to the learning media used are less attractive and effective to understand the material. This study aims to implement mobile-based interactive learning media regarding OOAD material. The media feasibility test uses a blackbox testing scenario and the analysis uses the Gutman scale technique. From the test results, it was found that the percentage of blackbox testing was 100% and the functional requirements test by the resource persons obtained a percentage of 100%. Based on the results of these studies, it can be explained that this learning media is very good and has been feasible to be implemented.","PeriodicalId":31716,"journal":{"name":"Telematika","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87380209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detection of Student Drowsiness Using Ensemble Regression Trees in Online Learning During a COVID-19 Pandemic COVID-19大流行期间在线学习中使用集成回归树检测学生困倦
Pub Date : 2022-06-30 DOI: 10.31315/telematika.v19i2.7044
I. P. K. Udayana, Ni Putu Eka Kherismawati, I. Sudipa
Online lectures are mandatory to deal with the implementation of education during the COVID-19 pandemic. This significant change certainly creates a different experience for students. Regarding online learning, several public health experts and ophthalmologists say that residual radiation from electronic screens is causing an epidemic of eye fatigue. Research on smart classrooms actually appeared several years ago, but in reality it has not been implemented according to the planned concept. The current smart classroom research environment only uses outdated methods, which make the computer system incongruent (such as decision trees in video feeds) or only to the level of empirical studies or blueprints, which are not much help for other academic footing or reference materials. to students. This study aims to build an intelligent system that can evaluate students' attention during online classes, use teaching videos as learning feeds and input for predictions and also use advanced algorithms in several computational domains, namely face segmentation, landmarking, PERCLOS observations, Yawning and decision analysis using Ensemble Regression Trees to detect students' sleepiness, which is expected to patch up the shortcomings of the PERCLOS algorithm and the problems found in the single regression tree-based implementation. Based on the results of the tests that have been carried out, the system developed has been able to observe sleepy objects in learning videos with an accuracy of 80% so that later it can be a lesson for teachers why there are students who are sleepy during online classes either because of uninteresting material or other reasons.
为应对新冠肺炎疫情期间的教育实施,在线讲座是强制性的。这一重大变化无疑为学生创造了不同的体验。关于在线学习,一些公共卫生专家和眼科医生说,电子屏幕的残留辐射正在导致眼疲劳的流行。智能教室的研究其实早在几年前就出现了,但在现实中并没有按照规划的概念实施。目前的智能课堂研究环境仅使用过时的方法,使得计算机系统不一致(如视频馈送中的决策树)或仅停留在实证研究或蓝图的层面,对其他学术立足点或参考材料没有太大帮助。给学生。本研究旨在建立一个智能系统,该系统可以在在线课程中评估学生的注意力,使用教学视频作为学习源和预测输入,并在几个计算领域使用先进的算法,即人脸分割,地标,PERCLOS观察,打哈欠和使用集成回归树的决策分析来检测学生的嗜睡。它有望弥补PERCLOS算法的缺点和在基于单一回归树的实现中发现的问题。根据已经进行的测试结果,开发的系统已经能够以80%的准确率观察学习视频中的困倦对象,这样以后就可以为教师提供一个教训,为什么在在线课程中会有学生因为无趣的材料或其他原因而困倦。
{"title":"Detection of Student Drowsiness Using Ensemble Regression Trees in Online Learning During a COVID-19 Pandemic","authors":"I. P. K. Udayana, Ni Putu Eka Kherismawati, I. Sudipa","doi":"10.31315/telematika.v19i2.7044","DOIUrl":"https://doi.org/10.31315/telematika.v19i2.7044","url":null,"abstract":"Online lectures are mandatory to deal with the implementation of education during the COVID-19 pandemic. This significant change certainly creates a different experience for students. Regarding online learning, several public health experts and ophthalmologists say that residual radiation from electronic screens is causing an epidemic of eye fatigue. Research on smart classrooms actually appeared several years ago, but in reality it has not been implemented according to the planned concept. The current smart classroom research environment only uses outdated methods, which make the computer system incongruent (such as decision trees in video feeds) or only to the level of empirical studies or blueprints, which are not much help for other academic footing or reference materials. to students. This study aims to build an intelligent system that can evaluate students' attention during online classes, use teaching videos as learning feeds and input for predictions and also use advanced algorithms in several computational domains, namely face segmentation, landmarking, PERCLOS observations, Yawning and decision analysis using Ensemble Regression Trees to detect students' sleepiness, which is expected to patch up the shortcomings of the PERCLOS algorithm and the problems found in the single regression tree-based implementation. Based on the results of the tests that have been carried out, the system developed has been able to observe sleepy objects in learning videos with an accuracy of 80% so that later it can be a lesson for teachers why there are students who are sleepy during online classes either because of uninteresting material or other reasons.","PeriodicalId":31716,"journal":{"name":"Telematika","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80459470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Analysis of System Development Methodology with Comparison of Payroll Information System Software Model Using Waterfall Development Model, Rapid Application Development (RAD) Model and Agile Model 系统开发方法分析及使用瀑布开发模型、快速应用开发模型和敏捷开发模型的工资信息系统软件模型的比较
Pub Date : 2022-06-30 DOI: 10.31315/telematika.v19i2.6460
Arif Riyandi, Tony Widodo, Shofwatul Uyun
Objective: Automatic identification is carried out with the help of a tool that can take an image of road conditions and automatically distinguish the types of road damage, the location of road damage in the image and calculate the level of road damage according to the type of road damage.Design/method/approach: Identification of damaged roads usually uses manual RCI system which requires high cost. In this study, a comparison framework is proposed to determine the performance of the image pre-processing model on the image classification algorithm.Results: Based on 733 image data classified using the CNN method from 4 models of pre-processing stages, it can be concluded that training from grayscale images produces the best level of accuracy with a training accuracy value of 88% and validation accuracy reaching 99%.Authenticity/state of the art: Testing of 4 pre-processing models against the classification algorithm used as a comparison resulted in the best algorithm/method for managing road images.
目的:自动识别是借助一种工具进行的,该工具可以拍摄路况图像,自动区分道路损伤类型,图像中道路损伤的位置,并根据道路损伤类型计算道路损伤级别。设计/方法/途径:破损道路的识别通常采用人工RCI系统,成本较高。在本研究中,提出了一个比较框架来确定图像预处理模型对图像分类算法的性能。结果:基于预处理阶段4个模型中使用CNN方法分类的733张图像数据,可以得出灰度图像训练的准确率最高,训练准确率达到88%,验证准确率达到99%。真实性/技术水平:将4种预处理模型与分类算法进行比较,得出管理道路图像的最佳算法/方法。
{"title":"Analysis of System Development Methodology with Comparison of Payroll Information System Software Model Using Waterfall Development Model, Rapid Application Development (RAD) Model and Agile Model","authors":"Arif Riyandi, Tony Widodo, Shofwatul Uyun","doi":"10.31315/telematika.v19i2.6460","DOIUrl":"https://doi.org/10.31315/telematika.v19i2.6460","url":null,"abstract":"Objective: Automatic identification is carried out with the help of a tool that can take an image of road conditions and automatically distinguish the types of road damage, the location of road damage in the image and calculate the level of road damage according to the type of road damage.Design/method/approach: Identification of damaged roads usually uses manual RCI system which requires high cost. In this study, a comparison framework is proposed to determine the performance of the image pre-processing model on the image classification algorithm.Results: Based on 733 image data classified using the CNN method from 4 models of pre-processing stages, it can be concluded that training from grayscale images produces the best level of accuracy with a training accuracy value of 88% and validation accuracy reaching 99%.Authenticity/state of the art: Testing of 4 pre-processing models against the classification algorithm used as a comparison resulted in the best algorithm/method for managing road images.","PeriodicalId":31716,"journal":{"name":"Telematika","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90866922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Knowledge Management In Instiki E-Learning To Increase Student Learning Satisfaction 学院网络学习中的知识管理提高学生学习满意度
Pub Date : 2022-06-30 DOI: 10.31315/telematika.v19i2.7000
Aniek Suryanti Kusuma, K. Agustini, I. G. W. Sudatha, I. Warpala
Purpose: The use of the concept of knowledge management can manage the knowledge of the teacher or lecturer and then it can be conveyed to the studentsDesign/methodology/approach: Knowledge Management SystemFindings/result: The application of the Knowledge Management System at the INSTIKI LMS was able to increase student learning satisfaction. The results of the questionnaire assessment show that student learning satisfaction increases after implementing INSTIKI e-learning, the average value of studentOriginality/value/state of the art: Implementation of Knowledge Management System on INSTIKI campus
目的:利用知识管理的概念,可以对教师或讲师的知识进行管理,然后将其传达给学生。设计/方法论/方法:知识管理系统发现/结果:知识管理系统在研究所LMS的应用能够提高学生的学习满意度。问卷评估结果显示,实施学院电子学习后,学生的学习满意度有所提高,学生创意/价值/技术水平的平均值:在学院校园实施知识管理系统
{"title":"Knowledge Management In Instiki E-Learning To Increase Student Learning Satisfaction","authors":"Aniek Suryanti Kusuma, K. Agustini, I. G. W. Sudatha, I. Warpala","doi":"10.31315/telematika.v19i2.7000","DOIUrl":"https://doi.org/10.31315/telematika.v19i2.7000","url":null,"abstract":"Purpose: The use of the concept of knowledge management can manage the knowledge of the teacher or lecturer and then it can be conveyed to the studentsDesign/methodology/approach: Knowledge Management SystemFindings/result: The application of the Knowledge Management System at the INSTIKI LMS was able to increase student learning satisfaction. The results of the questionnaire assessment show that student learning satisfaction increases after implementing INSTIKI e-learning, the average value of studentOriginality/value/state of the art: Implementation of Knowledge Management System on INSTIKI campus","PeriodicalId":31716,"journal":{"name":"Telematika","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75948146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mask Detection System Using Convolutional Neural Network Method on Surveillance Camera 基于卷积神经网络的监控摄像机掩模检测系统
Pub Date : 2022-06-30 DOI: 10.31315/telematika.v19i2.7246
I. M. Asana, Gede Aldhi Pradana, I. Handika, Santi Ika Murpratiwi
The Covid-19 has been an epidemic that has taken the world by storm since the beginning of 2020. This Covid-19 outbreak can spread easily through the air. Because Covid-19 can transmit easily, the government implements new behavior based on an adaption to develop a clean and healthy lifestyle which is often called the new normal. One way to live the new normal is to wear a mask when leaving the house. To help increase public awareness in using masks, numerous technology- based studies have been carried out. This article explain an application using the python programming language that applies digital image processing in terms of detecting the use of masks using Deep Learning with the Convolutional Neural Network (CNN) method to classify data that has been labeled using the supervised learning method. In designing this CNN architectural model, a total of 2110 images of people wearing and without wearing masks will be used, this dataset will be divided into 2 parts, with a rate of 8020, where 80 of the dataset will be used as training data, 20 is used as validation data. In testing the model by taking a total of 100 images with a 5050 ratio between face images using masks and not using masks tested using a confusion matrix, it produces 97% of an accuracy rate, 100% of precision rate, and 94% of recall in recognizing facial images that use masks and don't use masks 
自2020年初以来,新冠肺炎疫情席卷全球。这种Covid-19的爆发很容易通过空气传播。由于新冠肺炎很容易传播,政府以养成清洁健康的生活方式为基础,实施新的行为,这通常被称为新常态。一种适应新常态的方法是出门时戴上口罩。为了帮助提高公众使用口罩的意识,已经进行了许多基于技术的研究。本文解释了一个使用python编程语言的应用程序,该应用程序将数字图像处理应用于使用卷积神经网络(CNN)方法的深度学习来检测掩码的使用,从而对使用监督学习方法标记的数据进行分类。在设计这个CNN架构模型的过程中,总共会使用2110张戴口罩和不戴口罩的人的图像,这个数据集将被分成2部分,比率为8020,其中80个数据集作为训练数据,20个数据集作为验证数据。在使用混淆矩阵测试使用面具和不使用面具的面部图像之间的5050比率的100张图像中,该模型在识别使用面具和不使用面具的面部图像时产生了97%的准确率,100%的准确率和94%的召回率
{"title":"Mask Detection System Using Convolutional Neural Network Method on Surveillance Camera","authors":"I. M. Asana, Gede Aldhi Pradana, I. Handika, Santi Ika Murpratiwi","doi":"10.31315/telematika.v19i2.7246","DOIUrl":"https://doi.org/10.31315/telematika.v19i2.7246","url":null,"abstract":"The Covid-19 has been an epidemic that has taken the world by storm since the beginning of 2020. This Covid-19 outbreak can spread easily through the air. Because Covid-19 can transmit easily, the government implements new behavior based on an adaption to develop a clean and healthy lifestyle which is often called the new normal. One way to live the new normal is to wear a mask when leaving the house. To help increase public awareness in using masks, numerous technology- based studies have been carried out. This article explain an application using the python programming language that applies digital image processing in terms of detecting the use of masks using Deep Learning with the Convolutional Neural Network (CNN) method to classify data that has been labeled using the supervised learning method. In designing this CNN architectural model, a total of 2110 images of people wearing and without wearing masks will be used, this dataset will be divided into 2 parts, with a rate of 8020, where 80 of the dataset will be used as training data, 20 is used as validation data. In testing the model by taking a total of 100 images with a 5050 ratio between face images using masks and not using masks tested using a confusion matrix, it produces 97% of an accuracy rate, 100% of precision rate, and 94% of recall in recognizing facial images that use masks and don't use masks ","PeriodicalId":31716,"journal":{"name":"Telematika","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80738591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Deep-RIC: Plastic Waste Classification using Deep Learning and Resin Identification Codes (RIC) Deep-RIC:使用深度学习和树脂识别码(RIC)的塑料垃圾分类
Pub Date : 2022-06-30 DOI: 10.31315/telematika.v19i2.7419
Latifah Listyalina, Yudianingsih Yudianingsih, Adjie Wibowo Soedjono, Evrita Lusiana Utari, Dhimas Arief Dharmawan
In this study, the authors designed an algorithm based on deep learning that can automatically classify plastic waste according to Resin Identification Codes (RIC). The proposed algorithm is built through several stages as follows. In the first stage, image acquisition of plastic waste is carried out, which is the input of the designed algorithm. The acquired plastic waste image must display the resin code of the plastic waste to be classified. Furthermore, the acquired image is divided into two sets, namely training and testing sets. The training set contains images of plastic waste used in the training phase of the deep learning architecture DenseNet-121 to identify the resin code of each plastic waste image and classify it into the appropriate class. The training phase is run for 100 epochs, and at each epoch, the cross-entropy loss function is calculated, which expresses the performance of the deep learning architectures in classifying plastic waste images. In the next stage, a trained deep learning architecture is used to classify the plastic waste images from the test set. Classification performance in the test set is also expressed as the cross-entropy loss function value. In addition, the accuracy value has also been calculated, which shows the percentage of the number of plastic waste images successfully classified correctly to the total number of plastic waste images in the test set, which the best accuracy is equal to 85%.
在这项研究中,作者设计了一种基于深度学习的算法,可以根据树脂识别代码(Resin Identification Codes, RIC)对塑料垃圾进行自动分类。该算法的构建分为以下几个阶段:第一阶段对塑料垃圾进行图像采集,这是所设计算法的输入。获取的塑料垃圾图像必须显示待分类塑料垃圾的树脂编码。然后,将采集到的图像分为训练集和测试集。训练集包含深度学习架构DenseNet-121训练阶段使用的塑料垃圾图像,用于识别每个塑料垃圾图像的树脂代码并将其分类到相应的类中。训练阶段运行100个epoch,在每个epoch计算交叉熵损失函数,以表达深度学习架构在塑料垃圾图像分类中的性能。在下一阶段,使用经过训练的深度学习架构对测试集中的塑料垃圾图像进行分类。测试集的分类性能也表示为交叉熵损失函数值。此外,还计算了准确率值,显示了成功分类的塑料垃圾图像数量占测试集中塑料垃圾图像总数的百分比,其最佳准确率为85%。
{"title":"Deep-RIC: Plastic Waste Classification using Deep Learning and Resin Identification Codes (RIC)","authors":"Latifah Listyalina, Yudianingsih Yudianingsih, Adjie Wibowo Soedjono, Evrita Lusiana Utari, Dhimas Arief Dharmawan","doi":"10.31315/telematika.v19i2.7419","DOIUrl":"https://doi.org/10.31315/telematika.v19i2.7419","url":null,"abstract":"In this study, the authors designed an algorithm based on deep learning that can automatically classify plastic waste according to Resin Identification Codes (RIC). The proposed algorithm is built through several stages as follows. In the first stage, image acquisition of plastic waste is carried out, which is the input of the designed algorithm. The acquired plastic waste image must display the resin code of the plastic waste to be classified. Furthermore, the acquired image is divided into two sets, namely training and testing sets. The training set contains images of plastic waste used in the training phase of the deep learning architecture DenseNet-121 to identify the resin code of each plastic waste image and classify it into the appropriate class. The training phase is run for 100 epochs, and at each epoch, the cross-entropy loss function is calculated, which expresses the performance of the deep learning architectures in classifying plastic waste images. In the next stage, a trained deep learning architecture is used to classify the plastic waste images from the test set. Classification performance in the test set is also expressed as the cross-entropy loss function value. In addition, the accuracy value has also been calculated, which shows the percentage of the number of plastic waste images successfully classified correctly to the total number of plastic waste images in the test set, which the best accuracy is equal to 85%.","PeriodicalId":31716,"journal":{"name":"Telematika","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74934034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Telematika
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1