首页 > 最新文献

Telematika最新文献

英文 中文
Geographic Information System Design for Bridge Management in Brebes Regency 布雷布市桥梁管理地理信息系统设计
Pub Date : 2021-10-31 DOI: 10.31315/telematika.v18i3.5463
Abdulloh Badruzzaman, Yana Hendriana
Purpose: geographic information system (GIS) design to monitoring and management of bridges that have geographic references, as well as a tool for planning activity programs (maintenance, rehabilitation, strengthening or replacement) of bridges.Design/methodology/approach: waterfallFindings/result: web-based geographic information system (GIS) for bridge management in Brebes RegencyOriginality/value/state of the art: this research does not only focus on site search as the main strength of GIS but maximizes bridge inspection activities as an important part of the bridge management system as a tool for planning bridge construction and maintenance activities
目的:地理信息系统(GIS)设计用于监测和管理具有地理参考的桥梁,以及规划桥梁活动方案(维护,修复,加强或更换)的工具。设计/方法/方法:瀑布发现/结果:基于网络的地理信息系统(GIS)在Brebes regencyi桥梁管理独创性/价值/现状:本研究不仅关注作为GIS主要优势的场地搜索,而且最大限度地将桥梁检查活动作为桥梁管理系统的重要组成部分,作为规划桥梁建设和维护活动的工具
{"title":"Geographic Information System Design for Bridge Management in Brebes Regency","authors":"Abdulloh Badruzzaman, Yana Hendriana","doi":"10.31315/telematika.v18i3.5463","DOIUrl":"https://doi.org/10.31315/telematika.v18i3.5463","url":null,"abstract":"Purpose: geographic information system (GIS) design to monitoring and management of bridges that have geographic references, as well as a tool for planning activity programs (maintenance, rehabilitation, strengthening or replacement) of bridges.Design/methodology/approach: waterfallFindings/result: web-based geographic information system (GIS) for bridge management in Brebes RegencyOriginality/value/state of the art: this research does not only focus on site search as the main strength of GIS but maximizes bridge inspection activities as an important part of the bridge management system as a tool for planning bridge construction and maintenance activities","PeriodicalId":31716,"journal":{"name":"Telematika","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82022463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
K-Means Algorithm and Binary Search on FiBuSI FiBuSI上的K-Means算法和二分搜索
Pub Date : 2021-10-31 DOI: 10.31315/telematika.v18i3.6300
Ahmad Khuzaifi, Ratih Titi Komala Sari
Purpose: Create an application called FiBuSI (Find Business and Stock Investment) using the k-means algorithm and binary search for data search features. This application is intended for entrepreneurs and investors where they can interact with each other to build a joint business.Method: Using the RAD (Rapid Application Development) Method which focuses on system testing based on user experience related to Blackbox Testing using the Katalon Studio tools for testing functions on the FiBuSI application.Result: Based on the results of testing the FiBuSI application which focuses on the success of application functions and algorithm implementation, that each application function is successfully executed (PASSED) based on testing using the Katalon Studio tools. Meanwhile, testing the k-means algorithm (data filter) and binary search (search for letter data) was also successfully carried out by testing it directly by the user on the FiBuSI application and also using the results from the Katalon Studio tools.State of the art: Based on several studies that have been done previously related to the use of the k-means algorithm and binary search that this algorithm is carried out on 2 different features but in 1 application for business data search. In concept, the FiBuSI application focuses on bringing together entrepreneurs and investors in one platform.
目的:创建一个名为FiBuSI(查找商业和股票投资)的应用程序,使用k-means算法和二进制搜索数据搜索特征。这个应用程序是为企业家和投资者准备的,他们可以在这里相互交流,共同建立一个企业。方法:使用RAD(快速应用程序开发)方法,侧重于基于用户体验的系统测试,使用Katalon Studio工具对FiBuSI应用程序进行功能测试。结果:基于FiBuSI应用程序的测试结果,重点关注应用程序功能和算法实现的成功,基于使用Katalon Studio工具的测试,每个应用程序功能都成功执行(通过)。同时,通过用户直接在FiBuSI应用程序上测试k-means算法(数据过滤器)和二进制搜索(搜索字母数据),以及使用Katalon Studio工具的结果,也成功地进行了测试。技术现状:基于先前对k-means算法和二分搜索的使用所做的几项研究,该算法在两个不同的特征上执行,但在一个应用程序中用于商业数据搜索。从概念上讲,FiBuSI应用程序的重点是将企业家和投资者聚集在一个平台上。
{"title":"K-Means Algorithm and Binary Search on FiBuSI","authors":"Ahmad Khuzaifi, Ratih Titi Komala Sari","doi":"10.31315/telematika.v18i3.6300","DOIUrl":"https://doi.org/10.31315/telematika.v18i3.6300","url":null,"abstract":"Purpose: Create an application called FiBuSI (Find Business and Stock Investment) using the k-means algorithm and binary search for data search features. This application is intended for entrepreneurs and investors where they can interact with each other to build a joint business.Method: Using the RAD (Rapid Application Development) Method which focuses on system testing based on user experience related to Blackbox Testing using the Katalon Studio tools for testing functions on the FiBuSI application.Result: Based on the results of testing the FiBuSI application which focuses on the success of application functions and algorithm implementation, that each application function is successfully executed (PASSED) based on testing using the Katalon Studio tools. Meanwhile, testing the k-means algorithm (data filter) and binary search (search for letter data) was also successfully carried out by testing it directly by the user on the FiBuSI application and also using the results from the Katalon Studio tools.State of the art: Based on several studies that have been done previously related to the use of the k-means algorithm and binary search that this algorithm is carried out on 2 different features but in 1 application for business data search. In concept, the FiBuSI application focuses on bringing together entrepreneurs and investors in one platform.","PeriodicalId":31716,"journal":{"name":"Telematika","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87312730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Multimedia Mobile Application of National Heroes History Learning for Children's Character Education 民族英雄历史学习在儿童品格教育中的多媒体移动应用
Pub Date : 2021-10-31 DOI: 10.31315/telematika.v18i3.5542
Anis Susila Abadi, Pipit Febriana Dewi
Purpose: develope a multimedia application about the history of national heroes from Indonesia.Design/methodology/approach: the method used is the UCD (User Centered Design) method.Findings/result: this multimedia mobile application of national heroes history learning for children's character education has succeeded in meeting user needs.Originality/value/state of the art: a multimedia application about the history of national heroes from Indonesia.
目的:开发一个关于印尼民族英雄历史的多媒体应用程序。设计/方法论/方法:使用的方法是UCD(以用户为中心的设计)方法。发现/结果:该民族英雄历史学习儿童品格教育多媒体移动应用成功满足了用户需求。原创性/价值/艺术水平:关于印度尼西亚民族英雄历史的多媒体应用程序。
{"title":"Multimedia Mobile Application of National Heroes History Learning for Children's Character Education","authors":"Anis Susila Abadi, Pipit Febriana Dewi","doi":"10.31315/telematika.v18i3.5542","DOIUrl":"https://doi.org/10.31315/telematika.v18i3.5542","url":null,"abstract":"Purpose: develope a multimedia application about the history of national heroes from Indonesia.Design/methodology/approach: the method used is the UCD (User Centered Design) method.Findings/result: this multimedia mobile application of national heroes history learning for children's character education has succeeded in meeting user needs.Originality/value/state of the art: a multimedia application about the history of national heroes from Indonesia.","PeriodicalId":31716,"journal":{"name":"Telematika","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75271895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Learning and Playing in Early Childhood with Augmented Reality Technology 用增强现实技术在幼儿时期学习和玩耍
Pub Date : 2021-10-31 DOI: 10.31315/telematika.v18i3.5569
Doni El Rezen Purba, Parasian D. P. Silitonga
Purpose: Helping the learning process in early childhood through playing and learning activities with Augmented Reality technology.Design/methodology/approach: Using Augmented Reality technology with the Iterative Rapid Paper Prototype system development methodFindings/result: Based on tests conducted on 5 types of android devices, 10 samples of early childhood participants (4-5 years) and 5 groups of objects consisting of 10 types resulted in an increase in learning ability of 33.35% which was sourced from the measurement of the correct answers that were successfully obtained. between learning methods through pictures and learning using Augmented Reality technologyOriginality/value/state of the art: In previous research, the learning model was carried out on elementary school children (aged 6 years and over) and without the implementation of Augmented Reality technology
目的:通过增强现实技术的游戏和学习活动,帮助幼儿的学习过程。设计/方法/方法:使用增强现实技术与迭代快速纸原型系统开发方法发现/结果:基于5种类型的android设备,10个幼儿参与者样本(4-5岁)和5组10种类型的对象进行测试,通过测量成功获得的正确答案,学习能力提高了33.35%。原创性/价值/现状:在之前的研究中,学习模型是在小学生(6岁及以上)身上进行的,并且没有实施增强现实技术
{"title":"Learning and Playing in Early Childhood with Augmented Reality Technology","authors":"Doni El Rezen Purba, Parasian D. P. Silitonga","doi":"10.31315/telematika.v18i3.5569","DOIUrl":"https://doi.org/10.31315/telematika.v18i3.5569","url":null,"abstract":"Purpose: Helping the learning process in early childhood through playing and learning activities with Augmented Reality technology.Design/methodology/approach: Using Augmented Reality technology with the Iterative Rapid Paper Prototype system development methodFindings/result: Based on tests conducted on 5 types of android devices, 10 samples of early childhood participants (4-5 years) and 5 groups of objects consisting of 10 types resulted in an increase in learning ability of 33.35% which was sourced from the measurement of the correct answers that were successfully obtained. between learning methods through pictures and learning using Augmented Reality technologyOriginality/value/state of the art: In previous research, the learning model was carried out on elementary school children (aged 6 years and over) and without the implementation of Augmented Reality technology","PeriodicalId":31716,"journal":{"name":"Telematika","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90539044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Recurrent Neural Network With Gate Recurrent Unit For Stock Price Prediction 带门递归单元的递归神经网络用于股票价格预测
Pub Date : 2021-10-31 DOI: 10.31315/telematika.v18i3.6650
Afif Ilham Caniago, Wilis Kaswidjanti, Juwairiah Juwairiah
Stock price prediction is a solution to reduce the risk of loss from investing in stocks go public. Although stock prices can be analyzed by stock experts, this analysis is analytical bias. Recurrent Neural Network (RNN) is a machine learning algorithm that can predict a time series data, non-linear data and non-stationary. However, RNNs have a vanishing gradient problem when dealing with long memory dependencies. The Gate Recurrent Unit (GRU) has the ability to handle long memory dependency data. In this study, researchers will evaluate the parameters of the RNN-GRU architecture that affect predictions with MAE, RMSE, DA, and MAPE as benchmarks. The architectural parameters tested are the number of units/neurons, hidden layers (Shallow and Stacked) and input data (Chartist and TA). The best number of units/neurons is not the same in all predicted cases. The best architecture of RNN-GRU is Stacked. The best input data is TA. Stock price predictions with RNN-GRU have different performance depending on how far the model predicts and the company's liquidity. The error value in this study (MAE, RMSE, MAPE) constantly increases as the label range increases. In this study, there are six data on stock prices with different companies. Liquid companies have a lower error value than non-liquid companies.
股票价格预测是一种降低上市股票投资损失风险的方法。虽然股票专家可以分析股票价格,但这种分析是分析偏差。递归神经网络(RNN)是一种可以预测时间序列数据、非线性数据和非平稳数据的机器学习算法。然而,rnn在处理长内存依赖时存在梯度消失问题。栅极循环单元(GRU)具有处理长内存依赖数据的能力。在本研究中,研究人员将以MAE、RMSE、DA和MAPE为基准,评估影响预测的RNN-GRU架构参数。测试的架构参数是单元/神经元的数量,隐藏层(Shallow和Stacked)和输入数据(Chartist和TA)。在所有预测的情况下,最佳单位/神经元数量并不相同。RNN-GRU的最佳结构是堆叠结构。最好的输入数据是TA。基于RNN-GRU的股价预测会根据模型预测的距离和公司的流动性而有不同的表现。本研究中的误差值(MAE、RMSE、MAPE)随着标签范围的增大而不断增大。在本研究中,有六个不同公司的股票价格数据。流动性公司的误差值低于非流动性公司。
{"title":"Recurrent Neural Network With Gate Recurrent Unit For Stock Price Prediction","authors":"Afif Ilham Caniago, Wilis Kaswidjanti, Juwairiah Juwairiah","doi":"10.31315/telematika.v18i3.6650","DOIUrl":"https://doi.org/10.31315/telematika.v18i3.6650","url":null,"abstract":"Stock price prediction is a solution to reduce the risk of loss from investing in stocks go public. Although stock prices can be analyzed by stock experts, this analysis is analytical bias. Recurrent Neural Network (RNN) is a machine learning algorithm that can predict a time series data, non-linear data and non-stationary. However, RNNs have a vanishing gradient problem when dealing with long memory dependencies. The Gate Recurrent Unit (GRU) has the ability to handle long memory dependency data. In this study, researchers will evaluate the parameters of the RNN-GRU architecture that affect predictions with MAE, RMSE, DA, and MAPE as benchmarks. The architectural parameters tested are the number of units/neurons, hidden layers (Shallow and Stacked) and input data (Chartist and TA). The best number of units/neurons is not the same in all predicted cases. The best architecture of RNN-GRU is Stacked. The best input data is TA. Stock price predictions with RNN-GRU have different performance depending on how far the model predicts and the company's liquidity. The error value in this study (MAE, RMSE, MAPE) constantly increases as the label range increases. In this study, there are six data on stock prices with different companies. Liquid companies have a lower error value than non-liquid companies.","PeriodicalId":31716,"journal":{"name":"Telematika","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76602719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Implementation of Deep Learning for Classification Type of Orange Using The Method Convolutional Neural Network 用卷积神经网络方法实现橙子分类的深度学习
Pub Date : 2021-10-31 DOI: 10.31315/telematika.v18i3.5541
Irvan Denata, Tedy Rismawan, Ikhwan Ruslianto
Orange is a type of fruit that is easily found in Sambas Regency. The types that are widely sold are Siam oranges, madu susu and susu. Each type of orange has a different quality and a different price. The price difference often results in fraud committed by traders against buyers to the detriment of the buyer. This is because differentiating types of oranges based on the appearance of the fruit does not have a standard. Therefore, in this study, a citrus fruit classification system was created based on images by implementing deep learning. The method of deep learning used in this research is Convolutional Neural Network (CNN) with AlexNet architecture. The types of oranges that will be observed are madu oranges, madu susu, and siam. The data used are 2250 images of oranges with each class totaling 750 images with a size of 227x227 pixels. The training data is 1575 images and the test data is 675 images. The training is carried out with a total of 10 epochs and each epoch will produce a model. System testing is carried out based on the model generated in the training process. Each model will be observed results in the form of accuracy which is calculated using a confusion matrix. The most optimal model was generated from training in epoch the 9th which resulted in an accuracy of 94.81%.
橘子是一种在桑巴摄政很容易找到的水果。最畅销的是暹罗橙、玛杜苏苏和苏苏。每种橙子的质量和价格都不一样。价差往往导致交易商对买方实施欺诈,损害买方利益。这是因为根据橙子的外观来区分橙子的种类并没有一个标准。因此,在本研究中,通过实现深度学习,建立了基于图像的柑橘类水果分类系统。本研究中使用的深度学习方法是基于AlexNet架构的卷积神经网络(CNN)。将观察到的橙子类型是madu橙子,madu susu和暹罗。使用的数据是2250张橙子图像,每类总共750张图像,大小为227x227像素。训练数据为1575张,测试数据为675张。训练共进行10个epoch,每个epoch生成一个模型。基于训练过程中生成的模型进行系统测试。每个模型将以使用混淆矩阵计算的精度形式观察结果。在第9 epoch的训练中生成了最优的模型,准确率为94.81%。
{"title":"Implementation of Deep Learning for Classification Type of Orange Using The Method Convolutional Neural Network","authors":"Irvan Denata, Tedy Rismawan, Ikhwan Ruslianto","doi":"10.31315/telematika.v18i3.5541","DOIUrl":"https://doi.org/10.31315/telematika.v18i3.5541","url":null,"abstract":"Orange is a type of fruit that is easily found in Sambas Regency. The types that are widely sold are Siam oranges, madu susu and susu. Each type of orange has a different quality and a different price. The price difference often results in fraud committed by traders against buyers to the detriment of the buyer. This is because differentiating types of oranges based on the appearance of the fruit does not have a standard. Therefore, in this study, a citrus fruit classification system was created based on images by implementing deep learning. The method of deep learning used in this research is Convolutional Neural Network (CNN) with AlexNet architecture. The types of oranges that will be observed are madu oranges, madu susu, and siam. The data used are 2250 images of oranges with each class totaling 750 images with a size of 227x227 pixels. The training data is 1575 images and the test data is 675 images. The training is carried out with a total of 10 epochs and each epoch will produce a model. System testing is carried out based on the model generated in the training process. Each model will be observed results in the form of accuracy which is calculated using a confusion matrix. The most optimal model was generated from training in epoch the 9th which resulted in an accuracy of 94.81%.","PeriodicalId":31716,"journal":{"name":"Telematika","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87292550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sistem Informasi Manajemen Notulen (E-RISALAH) Konversi Voice to Text Notulen管理信息系统(e - pad)文本转换语音
Pub Date : 2021-10-31 DOI: 10.31315/telematika.v18i3.5483
D. Darwanto, Nurirwan Saputra, Ari Kusuma Wardana
Tujuan:Penelitian ini dilakukan untuk membantu notulis merisalahkan hasil rapat atau pertemuan dari suara menjadi tulisan. Sehingga kerja notulis lebih ringan dan menjaga kesehatan pendengaran. Perancangan/metode/pendekatan:Penelitian ini melalui beberapa tahap, yaitu perencaaan (planning), analisis (analysis), perancangan (design), dan implementasi (implementation). Hasil:Sistem Informasi Manajemen Notulen (E-RISALAH) Konversi Voice to Text berbasis website. Keaslian/state of the art:Risalah rapat adalah kegiatan mencatat atau menyalin seluruh hasil dari pertemuan. Dalam pelaksaan masih dikerjakan secara manual, dengan mendengarkan rekaman dan menyalin atau diketik secara manual, selain kurang efektif penggunaan headset dalam waktu yang lama dapat menggangu kesehatan pendengaran. Seiring perkembangan ilmu dan teknologi, maka dibuatlah sebuah sistem yang akan membantu merisalahkan hasil rapat dari suara menjadi tulisan. Dengan teknologi speech recognition dimana ini adalah sebuah kemampuan yang dimiliki oleh mesin atau aplikasi untuk mengindentifikasi kata dan frasa yang terdapat dalam bahasa lisan. Sehingga kerja notulis lebih ringan dan menjaga kesehatan pendengaran.
目的:本研究旨在帮助记事本将会议或会议的结果从语音记录改为书面。所以记事本的工作更轻,保持听力健康。设计/方法/方法:本研究经过多个阶段,即:规划、分析、设计和执行。结果:Notulen管理信息系统(e - pad)将语音转换成基于web的文本。会议记录是对会议结果的记录或复制。还在手工工作中,通过听录音和手工复制或打字,除了长期使用耳机可能会损害听力健康。随着科学技术的发展,人们建立了一个系统,这将有助于将声音的会议记录错为写作。使用语言识别技术,这是一种机器或应用程序所拥有的识别口语单词和短语的能力。所以记事本的工作更轻,保持听力健康。
{"title":"Sistem Informasi Manajemen Notulen (E-RISALAH) Konversi Voice to Text","authors":"D. Darwanto, Nurirwan Saputra, Ari Kusuma Wardana","doi":"10.31315/telematika.v18i3.5483","DOIUrl":"https://doi.org/10.31315/telematika.v18i3.5483","url":null,"abstract":"Tujuan:Penelitian ini dilakukan untuk membantu notulis merisalahkan hasil rapat atau pertemuan dari suara menjadi tulisan. Sehingga kerja notulis lebih ringan dan menjaga kesehatan pendengaran. Perancangan/metode/pendekatan:Penelitian ini melalui beberapa tahap, yaitu perencaaan (planning), analisis (analysis), perancangan (design), dan implementasi (implementation). Hasil:Sistem Informasi Manajemen Notulen (E-RISALAH) Konversi Voice to Text berbasis website. Keaslian/state of the art:Risalah rapat adalah kegiatan mencatat atau menyalin seluruh hasil dari pertemuan. Dalam pelaksaan masih dikerjakan secara manual, dengan mendengarkan rekaman dan menyalin atau diketik secara manual, selain kurang efektif penggunaan headset dalam waktu yang lama dapat menggangu kesehatan pendengaran. Seiring perkembangan ilmu dan teknologi, maka dibuatlah sebuah sistem yang akan membantu merisalahkan hasil rapat dari suara menjadi tulisan. Dengan teknologi speech recognition dimana ini adalah sebuah kemampuan yang dimiliki oleh mesin atau aplikasi untuk mengindentifikasi kata dan frasa yang terdapat dalam bahasa lisan. Sehingga kerja notulis lebih ringan dan menjaga kesehatan pendengaran.","PeriodicalId":31716,"journal":{"name":"Telematika","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84090142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of a Group Decision Support System with the Multi-Stage Multi-Attribute Group Decision Making (MS-MAGDM) Method on the Intelligent Warehouse Management System 基于多阶段多属性群决策(MS-MAGDM)方法的智能仓库管理系统群决策支持系统开发
Pub Date : 2021-10-04 DOI: 10.31315/TELEMATIKA.V18I2.5507.G3835
S. Nugroho
Purpose: to find a solution with MS-DAGDM for the problem of different criteria used by decision maker at each stage.Design/methodology/approach: This research was conducted using literature review with a study of the theory of decision-making methods, group decisions, suplier selection processes, and factors that influence decisions in the context of warehousing and MS-MAGDM to solve the problems.Findings/result: This research find that GDSS prototypes which have four methods in making decisions. First, Analytical Hierarchy Process for weighting the division head level. Second, TOPSIS for divison head level decisions. Third, Hybrid Weight Averaging (HWA) manager level. Fourth, Time Weight Averaging (TWA) for manager level decisions.Originality/value/state of the art:The decision-making model of the GDSS system in this study combines four methods at each level of management. The section head level uses AHP for the level weighting and TOPSIS for decision making. Level managers use Hybrid Weight Averaging (HWA) weighting and Time Weight Averaging (TWA) for decisions. The combination of these methods is carried out using a Poisson distribution, for HWA and TWA operators to combine individual decisions into group decisions. Tujuan: Fokus penelitian ini adalah mencari solusi dengan MS-MAGDM untuk permasalahan perbedaan kriteria yang dipergunakan pembuat keputusan dalam setiap stage.Perancangan/metode/pendekatan: Metode yang digunakan yaitu kajian kepustakaan dengan kajian terhadap teori metode pembuatan keputusan, keputusan kelompok, proses pemilihan supplier, dan faktor yang berpengaruh pada keputusan dalam konteks pergudangan serta MS-MAGDM untuk menyelesaikan permasalahan tersebut.Hasil: Hasil penelitian ini berupa purwarupa GDSS yang memiliki 4 metode dalam pembuatan keputusan yaitu Analytical Hierarchi Process (AHP) untuk pembobotan level kepala bagian, TOPSIS untuk keputusan level kepala bagian, Hybrid Weight Averaging (HWA) pembobotan pada level manager dan Time Weight Averaging (TWA) untuk keputusan level managerKeaslian/ state of the art:Model pengambilan keputusan sistem GDSS penelitian ini menggabungkan 4 metode pada setiap tingkatan manajemen. Level kepala bagian menggunakan AHP untuk pembobotan level dan TOPSIS untuk pembuatan keputusan. Level manager menggunakan Hybrid Weight Averaging (HWA) pembobotan dan Time Weight Averaging (TWA) untuk keputusan. Penggabungan metode dilakukan menggunakan distribusi Poisson, untuk operator HWA dan TWA guna memadukan keputusan individu mejadi keputusan kelompok.
目的:利用MS-DAGDM解决决策者在各个阶段使用的标准不同的问题。设计/方法/方法:本研究采用文献综述的方法,研究仓储和MS-MAGDM背景下的决策方法理论、群体决策、供应商选择过程以及影响决策的因素,以解决问题。发现/结果:本研究发现GDSS原型有四种决策方法。首先,采用层次分析法对部门主管级别进行加权。第二,TOPSIS用于部门主管级别的决策。第三,混合加权平均(HWA)经理级别。第四,时间加权平均(TWA)用于管理者级别的决策。原创性/价值/技术水平:本研究中GDSS系统的决策模型在每个管理层面结合了四种方法。科长级别使用AHP进行级别加权,TOPSIS进行决策。级别管理人员使用混合加权平均(HWA)和时间加权平均(TWA)进行决策。这些方法的组合使用泊松分布进行,使HWA和TWA操作员将个人决策组合成群体决策。图juan: focus penelitian ini adalah menari solusi dengan MS-MAGDM untuk permasalahan perbedaan和kria yang dipergunakan penbuat keputusan dalam设置阶段。Perancangan/metode/pendekatan: metode yang digunakan yitu kajian kepustakan dengan kajian terhadap teori metode pembuatan keputusan, keputusan kelompok, promeilihan供应商,danftor yang berpengaruh pada keputusan dalam konteks pergudangan serta MS-MAGDM untuk menyelesaikan permasalahan tersebut。Hasil: Hasil penelitian ini berupa purwarupa GDSS yang memiliki 4方法dalam pembuatan keputusan yitu分析层次过程(AHP) untuk phopbotan level kepalatan, TOPSIS untuk keputusan level kepalatan,混合加权平均(HWA) phopbotan level管理器时间加权平均(TWA) untuk keputusan level管理器keaslian /最新技术:模型pengambilan keputusan系统GDSS penelitian ini menggabungkan 4方法papatian seppatan管理器。等级kepala bagian menggunakan AHP untuk phembobotan等级dan TOPSIS untuk pembuatan keputusan。混合加权平均(HWA)法和时间加权平均(TWA)法。彭加朋干法狄拉克干法蒙古纳干法经销泊松,乌达克干法经华丹干法麦古纳干法可普陀山个别法可普陀山可普陀山。
{"title":"Development of a Group Decision Support System with the Multi-Stage Multi-Attribute Group Decision Making (MS-MAGDM) Method on the Intelligent Warehouse Management System","authors":"S. Nugroho","doi":"10.31315/TELEMATIKA.V18I2.5507.G3835","DOIUrl":"https://doi.org/10.31315/TELEMATIKA.V18I2.5507.G3835","url":null,"abstract":"Purpose: to find a solution with MS-DAGDM for the problem of different criteria used by decision maker at each stage.Design/methodology/approach: This research was conducted using literature review with a study of the theory of decision-making methods, group decisions, suplier selection processes, and factors that influence decisions in the context of warehousing and MS-MAGDM to solve the problems.Findings/result: This research find that GDSS prototypes which have four methods in making decisions. First, Analytical Hierarchy Process for weighting the division head level. Second, TOPSIS for divison head level decisions. Third, Hybrid Weight Averaging (HWA) manager level. Fourth, Time Weight Averaging (TWA) for manager level decisions.Originality/value/state of the art:The decision-making model of the GDSS system in this study combines four methods at each level of management. The section head level uses AHP for the level weighting and TOPSIS for decision making. Level managers use Hybrid Weight Averaging (HWA) weighting and Time Weight Averaging (TWA) for decisions. The combination of these methods is carried out using a Poisson distribution, for HWA and TWA operators to combine individual decisions into group decisions. Tujuan: Fokus penelitian ini adalah mencari solusi dengan MS-MAGDM untuk permasalahan perbedaan kriteria yang dipergunakan pembuat keputusan dalam setiap stage.Perancangan/metode/pendekatan: Metode yang digunakan yaitu kajian kepustakaan dengan kajian terhadap teori metode pembuatan keputusan, keputusan kelompok, proses pemilihan supplier, dan faktor yang berpengaruh pada keputusan dalam konteks pergudangan serta MS-MAGDM untuk menyelesaikan permasalahan tersebut.Hasil: Hasil penelitian ini berupa purwarupa GDSS yang memiliki 4 metode dalam pembuatan keputusan yaitu Analytical Hierarchi Process (AHP) untuk pembobotan level kepala bagian, TOPSIS untuk keputusan level kepala bagian, Hybrid Weight Averaging (HWA) pembobotan pada level manager dan Time Weight Averaging (TWA) untuk keputusan level managerKeaslian/ state of the art:Model pengambilan keputusan sistem GDSS penelitian ini menggabungkan 4 metode pada setiap tingkatan manajemen. Level kepala bagian menggunakan AHP untuk pembobotan level dan TOPSIS untuk pembuatan keputusan. Level manager menggunakan Hybrid Weight Averaging (HWA) pembobotan dan Time Weight Averaging (TWA) untuk keputusan. Penggabungan metode dilakukan menggunakan distribusi Poisson, untuk operator HWA dan TWA guna memadukan keputusan individu mejadi keputusan kelompok.","PeriodicalId":31716,"journal":{"name":"Telematika","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82545831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Development Of Executive Information Systems Of Cirebon City Government (Case Study: Department Of Communication, Informatics And Statistics) 碳素市政府行政信息系统的开发(以传播、信息与统计系为例)
Pub Date : 2021-10-04 DOI: 10.31315/TELEMATIKA.V18I2.4844
Muhammad Nur Hendra Alvianto, Herry Sofyan, Juwairiah Juwairiah
Purpose: Developing an executive information system to meet the information needs of the Mayor, Deputy Mayor, Regional Secretary and the heads of SKPD within the Cirebon City Government.Design / method / approach: Using the drill down method for solving information on executive information systems and the GRAPPLE system development methodResult: The development of an executive information system in Cirebon city government has assisted the executive, consisting of mayors, deputy mayors and regional secretaries and middle executives consisting of skpd within the Cirebon city government. Cirebon city government executive information system consists of five sectors in the city of Cirebon, namely economy, health, population, education and government. The results of the validation testing are 100% and the average user acceptance testing results are 85.29%.Authenticity / state of the art: Based on previous research, this study has the same characteristics but in the development of executive information systems it has differences in objects and methods of software development.
目的:开发一个行政信息系统,以满足锡雷邦市政府内市长、副市长、区域秘书和SKPD负责人的信息需求。设计/方法/途径:采用下钻法求解行政信息系统信息和GRAPPLE系统开发方法。结果:开发了一套Cirebon市政府行政信息系统,为Cirebon市政府内部由市长、副市长、大区秘书组成的行政人员和由skpd组成的中层行政人员提供了辅助。喀波波市政府行政信息系统由喀波波市经济、卫生、人口、教育和政府五个部门组成。验证测试结果为100%,用户平均验收测试结果为85.29%。真实性/技术水平:在前人研究的基础上,本研究具有相同的特点,但在执行信息系统的开发中,软件开发的对象和方法有所不同。
{"title":"Development Of Executive Information Systems Of Cirebon City Government (Case Study: Department Of Communication, Informatics And Statistics)","authors":"Muhammad Nur Hendra Alvianto, Herry Sofyan, Juwairiah Juwairiah","doi":"10.31315/TELEMATIKA.V18I2.4844","DOIUrl":"https://doi.org/10.31315/TELEMATIKA.V18I2.4844","url":null,"abstract":"Purpose: Developing an executive information system to meet the information needs of the Mayor, Deputy Mayor, Regional Secretary and the heads of SKPD within the Cirebon City Government.Design / method / approach: Using the drill down method for solving information on executive information systems and the GRAPPLE system development methodResult: The development of an executive information system in Cirebon city government has assisted the executive, consisting of mayors, deputy mayors and regional secretaries and middle executives consisting of skpd within the Cirebon city government. Cirebon city government executive information system consists of five sectors in the city of Cirebon, namely economy, health, population, education and government. The results of the validation testing are 100% and the average user acceptance testing results are 85.29%.Authenticity / state of the art: Based on previous research, this study has the same characteristics but in the development of executive information systems it has differences in objects and methods of software development.","PeriodicalId":31716,"journal":{"name":"Telematika","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85358634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Backpropagation with BFGS Optimizer for Covid-19 Prediction Cases in Surabaya 基于BFGS优化器的泗水市Covid-19预测病例反向传播
Pub Date : 2021-10-04 DOI: 10.31315/TELEMATIKA.V18I2.5454
Z. Fitriah, Mohamad Handri Tuloli, S. Anam, Noor Hidayat, Indah Yanti, D. Mahanani
Covid-19 is a new type of corona virus called SARS-CoV-2. One of the cities that has contributed the most to infected Covid-19 cases in Indonesia is Surabaya, East Java. Predicting the Covid-19 is the important thing to do. One of the prediction methods is Artificial Neural Network (ANN). The backpropagation algorithm is one of the ANN methods that has been successfully used in various fields. However, the performance of backpropagation is depended on the architecture and optimization method. The standard backpropagation algorithm is optimized by gradient descent method. The Broyden - Fletcher - Goldfarb - Shanno (BFGS) algorithm works faster then gradient descent. This paper was predicting the Covid-19 cases in Surabaya using backpropagation with BFGS. Several scenarios of backpropagation parameters were also tested to produce optimal performance. The proposed method gives better results with a faster convergence then the standard backpropagation algorithm for predicting the Covid-19 cases in Surabaya.
Covid-19是一种名为SARS-CoV-2的新型冠状病毒。东爪哇的泗水是印度尼西亚感染Covid-19病例最多的城市之一。预测Covid-19是一件重要的事情。其中一种预测方法是人工神经网络(ANN)。反向传播算法是人工神经网络方法之一,已成功应用于各个领域。然而,反向传播的性能取决于结构和优化方法。采用梯度下降法对标准反向传播算法进行了优化。Broyden - Fletcher - Goldfarb - Shanno (BFGS)算法比梯度下降算法更快。本文利用BFGS反向传播技术对泗水市新冠肺炎病例进行预测。还测试了几种反向传播参数的场景,以产生最佳性能。该方法与标准反向传播算法相比,具有更快的收敛速度和更好的预测效果。
{"title":"Backpropagation with BFGS Optimizer for Covid-19 Prediction Cases in Surabaya","authors":"Z. Fitriah, Mohamad Handri Tuloli, S. Anam, Noor Hidayat, Indah Yanti, D. Mahanani","doi":"10.31315/TELEMATIKA.V18I2.5454","DOIUrl":"https://doi.org/10.31315/TELEMATIKA.V18I2.5454","url":null,"abstract":"Covid-19 is a new type of corona virus called SARS-CoV-2. One of the cities that has contributed the most to infected Covid-19 cases in Indonesia is Surabaya, East Java. Predicting the Covid-19 is the important thing to do. One of the prediction methods is Artificial Neural Network (ANN). The backpropagation algorithm is one of the ANN methods that has been successfully used in various fields. However, the performance of backpropagation is depended on the architecture and optimization method. The standard backpropagation algorithm is optimized by gradient descent method. The Broyden - Fletcher - Goldfarb - Shanno (BFGS) algorithm works faster then gradient descent. This paper was predicting the Covid-19 cases in Surabaya using backpropagation with BFGS. Several scenarios of backpropagation parameters were also tested to produce optimal performance. The proposed method gives better results with a faster convergence then the standard backpropagation algorithm for predicting the Covid-19 cases in Surabaya.","PeriodicalId":31716,"journal":{"name":"Telematika","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89063111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Telematika
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1