Pub Date : 2024-09-25DOI: 10.1016/j.fct.2024.115023
A.M. Api , A. Bartlett , D. Belsito , D. Botelho , M. Bruze , A. Bryant-Freidrich , G.A. Burton Jr. , M.A. Cancellieri , H. Chon , M.L. Dagli , W. Dekant , C. Deodhar , K. Farrell , A.D. Fryer , L. Jones , K. Joshi , A. Lapczynski , M. Lavelle , I. Lee , H. Moustakas , Y. Tokura
{"title":"RIFM fragrance ingredient safety assessment, 2-methyl-5-phenylpentanol, CAS Registry Number 25634-93-9","authors":"A.M. Api , A. Bartlett , D. Belsito , D. Botelho , M. Bruze , A. Bryant-Freidrich , G.A. Burton Jr. , M.A. Cancellieri , H. Chon , M.L. Dagli , W. Dekant , C. Deodhar , K. Farrell , A.D. Fryer , L. Jones , K. Joshi , A. Lapczynski , M. Lavelle , I. Lee , H. Moustakas , Y. Tokura","doi":"10.1016/j.fct.2024.115023","DOIUrl":"10.1016/j.fct.2024.115023","url":null,"abstract":"","PeriodicalId":317,"journal":{"name":"Food and Chemical Toxicology","volume":"192 ","pages":"Article 115023"},"PeriodicalIF":3.9,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142326795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-24DOI: 10.1016/j.fct.2024.115022
Yanyi Zhao , Nuoya Yin , Renjun Yang , Francesco Faiola
In our daily life, we are exposed to various environmental pollutants in multiple ways. At present, we mainly rely on animal models and two-dimensional cell culture models to evaluate the toxicity of environmental pollutants. Nevertheless, results in animal models do not always apply to humans because of differences between species, while two-dimensional cell culture models cannot replicate the in vivo microenvironments, making it difficult to predict the true toxic response of environmental pollutants in humans. The development of various high-end technologies in recent years has provided new opportunities for environmental toxicology research. The application of these high-end technologies in environmental toxicology can complement the limitations of traditional environmental toxicology screening and more accurately predict the toxicity of environmental pollutants. In this review, we first introduce the advantages and disadvantages of traditional environmental toxicology methods, then review the principles and development of four high-end technologies, such as gene editing, organ-on-a-chip, chimeric animals, and in silico models, summarize their application in toxicity testing, and finally emphasize their importance/potential in environmental toxicology.
{"title":"Recent advances in environmental toxicology: Exploring gene editing, organ-on-a-chip, chimeric animals, and in silico models","authors":"Yanyi Zhao , Nuoya Yin , Renjun Yang , Francesco Faiola","doi":"10.1016/j.fct.2024.115022","DOIUrl":"10.1016/j.fct.2024.115022","url":null,"abstract":"<div><div>In our daily life, we are exposed to various environmental pollutants in multiple ways. At present, we mainly rely on animal models and two-dimensional cell culture models to evaluate the toxicity of environmental pollutants. Nevertheless, results in animal models do not always apply to humans because of differences between species, while two-dimensional cell culture models cannot replicate the <em>in vivo</em> microenvironments, making it difficult to predict the true toxic response of environmental pollutants in humans. The development of various high-end technologies in recent years has provided new opportunities for environmental toxicology research. The application of these high-end technologies in environmental toxicology can complement the limitations of traditional environmental toxicology screening and more accurately predict the toxicity of environmental pollutants. In this review, we first introduce the advantages and disadvantages of traditional environmental toxicology methods, then review the principles and development of four high-end technologies, such as gene editing, organ-on-a-chip, chimeric animals, and <em>in silico</em> models, summarize their application in toxicity testing, and finally emphasize their importance/potential in environmental toxicology.</div></div>","PeriodicalId":317,"journal":{"name":"Food and Chemical Toxicology","volume":"193 ","pages":"Article 115022"},"PeriodicalIF":3.9,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142327830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-23DOI: 10.1016/j.fct.2024.115020
Lan Zhang , Qian Li , Shansen Ding , Zhiliang Wei , Yuyang Ma
Silver nanoparticles (AgNP) and polystyrene (PS) plastics have been broadly utilized in various field, e.g., food storage, packaging materials, and medical therapies. However, investigation on the potential biotoxicity induced by the co-exposure to AgNP and PS plastics remains understudied. Thus, we performed this study to examine the toxicological profile of the co-exposure to AgNP and PS in mice. Biochemical and microbial characterizations were performed in mice receiving 90-day oral gavage feeding to examine the hepatotoxicity, neurotoxicity, inflammatory responses, gut microbial alterations. It has been found that the presence of plastic particles aggravates the toxicity of silver nanoparticle materials. Regardless of the plastic type and size, energy and choline metabolisms will be altered by the co-exposures. Moreover, microplastics may induce cell damage by modulating fatty acid peroxidation in unison with stimulating inflammatory responses. Due to the smaller size of nanoplastics, they may pass through blood-brain barrier to induce neuronal damage and increase vascular risks. Changes in the microbial functional abundances are sensitive to the microplastics doses. These results support the necessity of reducing the co-exposure between AgNP and multiscale plastics, and advocate further developments of biodegradable package materials to improve food safety.
{"title":"Biotoxicity of silver nanoparticles complicated by the co-existence of micro-/nano-plastics","authors":"Lan Zhang , Qian Li , Shansen Ding , Zhiliang Wei , Yuyang Ma","doi":"10.1016/j.fct.2024.115020","DOIUrl":"10.1016/j.fct.2024.115020","url":null,"abstract":"<div><div>Silver nanoparticles (AgNP) and polystyrene (PS) plastics have been broadly utilized in various field, e.g., food storage, packaging materials, and medical therapies. However, investigation on the potential biotoxicity induced by the co-exposure to AgNP and PS plastics remains understudied. Thus, we performed this study to examine the toxicological profile of the co-exposure to AgNP and PS in mice. Biochemical and microbial characterizations were performed in mice receiving 90-day oral gavage feeding to examine the hepatotoxicity, neurotoxicity, inflammatory responses, gut microbial alterations. It has been found that the presence of plastic particles aggravates the toxicity of silver nanoparticle materials. Regardless of the plastic type and size, energy and choline metabolisms will be altered by the co-exposures. Moreover, microplastics may induce cell damage by modulating fatty acid peroxidation in unison with stimulating inflammatory responses. Due to the smaller size of nanoplastics, they may pass through blood-brain barrier to induce neuronal damage and increase vascular risks. Changes in the microbial functional abundances are sensitive to the microplastics doses. These results support the necessity of reducing the co-exposure between AgNP and multiscale plastics, and advocate further developments of biodegradable package materials to improve food safety.</div></div>","PeriodicalId":317,"journal":{"name":"Food and Chemical Toxicology","volume":"193 ","pages":"Article 115020"},"PeriodicalIF":3.9,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-23DOI: 10.1016/j.fct.2024.115021
Eman I. Hassanen , Hayam A. Mansour , Marwa Y. Issa , Marwa A. Ibrahim , Wafaa A. Mohamed , Mahmoud A. Mahmoud
Ingestion of prominent levels of histamine (HIS) leads to dangerous effects on biological systems. The most frequent and active catechin in green tea is epigallocatechin gallate which has strong antioxidant properties. Our research intended to investigate the possible neuroprotective effect of epigallocatechin gallate-rich fraction (EGCGR) against HIS-inducing neurotoxicity. Six groups of male rats (n = 5) were used as follows: (1) Distilled water, (2&3) EGCGR (100–200 mg/kg BWT/day, respectively), (4) HIS (1750 mg/kg BWT/week, (5&6) HIS + EGCGR. Administration of HIS for 14 days induced severe neurobehavioral changes including depression, incoordination, and loss of spatial memory. Extensive neuronal degeneration with diffuse gliosis was the prominent histopathological lesion observed and confirmed by strong immunostaining of casp-3, Cox-2, and GFAP. Additionally, the HIS group showed a significantly higher MDA level with lower CAT and GSH activity than the control group. Moreover, HIS promoted apoptosis, which is indicated by increasing JNK, and Bax and decreasing Bcl-2 gene expressions. Otherwise, the oral intake of EGCGR with HIS improved all neurotoxicological parameters induced by HIS. We concluded that HIS could cause neurotoxicity via an upset of the equilibrium between oxidants and antioxidants which trigger apoptosis through modulation of JNK signaling pathway. Furthermore, EGCGR has either direct or indirect antihistaminic effects.
摄入大量组胺(HIS)会对生物系统产生危险影响。绿茶中最常见的活性儿茶素是表没食子儿茶素没食子酸酯,它具有很强的抗氧化性。我们的研究旨在探讨富含表没食子儿茶素没食子酸酯(EGCGR)对 HIS 引起的神经毒性可能具有的神经保护作用。我们使用了六组雄性大鼠(n = 5),具体如下:(1)蒸馏水;(2&3)EGCGR(分别为100-200毫克/千克体重/天);(4)HIS(1750毫克/千克体重/周);(5&6)HIS + EGCGR。连续 14 天服用 HIS 会诱发严重的神经行为变化,包括抑郁、不协调和空间记忆丧失。广泛的神经元变性和弥漫性胶质增生是观察到的主要组织病理学病变,并通过 casp-3、Cox-2 和 GFAP 的强免疫染色得到证实。此外,与对照组相比,HIS 组的 MDA 水平明显升高,CAT 和 GSH 活性降低。此外,HIS 还能促进细胞凋亡,表现为 JNK 和 Bax 基因表达增加,Bcl-2 基因表达减少。此外,口服 EGCGR 与 HIS 可改善 HIS 诱导的所有神经毒理学参数。我们得出的结论是,HIS可通过破坏氧化剂和抗氧化剂之间的平衡来引起神经中毒,而抗氧化剂可通过调节JNK信号通路来触发细胞凋亡。此外,EGCGR还具有直接或间接的抗组胺作用。
{"title":"Epigallocatechin gallate-rich fraction alleviates histamine-induced neurotoxicity in rats via inactivating caspase-3/JNK signaling pathways","authors":"Eman I. Hassanen , Hayam A. Mansour , Marwa Y. Issa , Marwa A. Ibrahim , Wafaa A. Mohamed , Mahmoud A. Mahmoud","doi":"10.1016/j.fct.2024.115021","DOIUrl":"10.1016/j.fct.2024.115021","url":null,"abstract":"<div><div>Ingestion of prominent levels of histamine (HIS) leads to dangerous effects on biological systems. The most frequent and active catechin in green tea is epigallocatechin gallate which has strong antioxidant properties. Our research intended to investigate the possible neuroprotective effect of epigallocatechin gallate-rich fraction (EGCGR) against HIS-inducing neurotoxicity. Six groups of male rats (n = 5) were used as follows: (1) Distilled water, (2&3) EGCGR (100–200 mg/kg BWT/day, respectively), (4) HIS (1750 mg/kg BWT/week, (5&6) HIS + EGCGR. Administration of HIS for 14 days induced severe neurobehavioral changes including depression, incoordination, and loss of spatial memory. Extensive neuronal degeneration with diffuse gliosis was the prominent histopathological lesion observed and confirmed by strong immunostaining of casp-3, Cox-2, and GFAP. Additionally, the HIS group showed a significantly higher MDA level with lower CAT and GSH activity than the control group. Moreover, HIS promoted apoptosis, which is indicated by increasing JNK, and Bax and decreasing Bcl-2 gene expressions. Otherwise, the oral intake of EGCGR with HIS improved all neurotoxicological parameters induced by HIS. We concluded that HIS could cause neurotoxicity via an upset of the equilibrium between oxidants and antioxidants which trigger apoptosis through modulation of JNK signaling pathway. Furthermore, EGCGR has either direct or indirect antihistaminic effects.</div></div>","PeriodicalId":317,"journal":{"name":"Food and Chemical Toxicology","volume":"193 ","pages":"Article 115021"},"PeriodicalIF":3.9,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-21DOI: 10.1016/j.fct.2024.115018
Ignacio Velázquez-Jiménez , Nuria Elizabeth Rocha-Guzmán , Martha Rocío Moreno-Jiménez , Blanca Denis Vázquez-Cabral , Alejo Macías-Salas , José Salas-Pacheco , Karen Marlenne Herrera-Rocha , Rubén Francisco González-Laredo , José Alberto Gallegos-Infante
The investigation of coffee leaves as a source of bioactive principles represents a relatively unexplored area of research. The study assesses the potential adverse effects of an aqueous acetone extract derived from Coffea arabica var. Oro Azteca leaves. The phenolic composition of the extract was identified and quantified by UPLC-MS/MS, and its acute and repeated-dose effects were evaluated in six-week-old CD-1 mice (n = 11 for acute evaluation and n = 20 female and n = 20 male for repeated-dose evaluation). The extract demonstrated no significant toxicity, maintaining consistent body weight and exhibiting a hepatoprotective effect by reducing ALT levels at a dose of 500 mg/kg. Some hyperactivity was observed at the highest doses, but overall, the extract enhanced the immune response and showed no histological alterations, except for mild inflammation in certain organs. The extract, which contains abundant quinic acid, chlorogenic acid, epicatechin, procyanidin B2, and mangiferin, has been deemed safe for consumption.
{"title":"Oral toxicity of the acetone extract of Coffea arabica var. Oro Azteca leaves in CD-1 mice","authors":"Ignacio Velázquez-Jiménez , Nuria Elizabeth Rocha-Guzmán , Martha Rocío Moreno-Jiménez , Blanca Denis Vázquez-Cabral , Alejo Macías-Salas , José Salas-Pacheco , Karen Marlenne Herrera-Rocha , Rubén Francisco González-Laredo , José Alberto Gallegos-Infante","doi":"10.1016/j.fct.2024.115018","DOIUrl":"10.1016/j.fct.2024.115018","url":null,"abstract":"<div><div>The investigation of coffee leaves as a source of bioactive principles represents a relatively unexplored area of research. The study assesses the potential adverse effects of an aqueous acetone extract derived from <em>Coffea arabica</em> var. Oro Azteca leaves. The phenolic composition of the extract was identified and quantified by UPLC-MS/MS, and its acute and repeated-dose effects were evaluated in six-week-old CD-1 mice (<em>n = 11</em> for acute evaluation and <em>n = 20</em> female and <em>n = 20</em> male for repeated-dose evaluation). The extract demonstrated no significant toxicity, maintaining consistent body weight and exhibiting a hepatoprotective effect by reducing ALT levels at a dose of 500 mg/kg. Some hyperactivity was observed at the highest doses, but overall, the extract enhanced the immune response and showed no histological alterations, except for mild inflammation in certain organs. The extract, which contains abundant quinic acid, chlorogenic acid, epicatechin, procyanidin B2, and mangiferin, has been deemed safe for consumption.</div></div>","PeriodicalId":317,"journal":{"name":"Food and Chemical Toxicology","volume":"193 ","pages":"Article 115018"},"PeriodicalIF":3.9,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142277830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-20DOI: 10.1016/j.fct.2024.115019
Elena Cubero-Leon , Charlotte B. Madsen , Katharina A. Scherf , Michelle L. Colgrave , Jørgen V. Nørgaard , Minna Anthoni , Katerina Rizou , Michael J. Walker , Ludvig M. Sollid
Recent reports have highlighted that beer labelled “gluten-free”, crafted with enzymatic treatments to remove gluten, may contain polypeptides that could be immunotoxic to individuals with coeliac disease. As strict adherence to a gluten-free diet is the only way to manage this condition, accurate labelling is crucial to those with coeliac disease. This paper aims to discuss the presence, levels and immunogenicity of gluten peptides found in gluten-reduced barley beers. While advances have been made in the detection and quantification of gluten peptides in beer, there are still challenges to the interpretation of gluten measurements as well as to assess whether peptides are immunotoxic in vivo. To make progress, future efforts should involve a combination of in vivo toxicity assessment of the degraded proteins, development of standardised gluten-free production strategies to minimise variability in gluten fragment presence, guidance on how to control the outcome as well as to develop appropriate reference materials and calibrators.
{"title":"Barley based gluten free beer – A blessing or an uncontrollable risk?","authors":"Elena Cubero-Leon , Charlotte B. Madsen , Katharina A. Scherf , Michelle L. Colgrave , Jørgen V. Nørgaard , Minna Anthoni , Katerina Rizou , Michael J. Walker , Ludvig M. Sollid","doi":"10.1016/j.fct.2024.115019","DOIUrl":"10.1016/j.fct.2024.115019","url":null,"abstract":"<div><div>Recent reports have highlighted that beer labelled “gluten-free”, crafted with enzymatic treatments to remove gluten, may contain polypeptides that could be immunotoxic to individuals with coeliac disease. As strict adherence to a gluten-free diet is the only way to manage this condition, accurate labelling is crucial to those with coeliac disease. This paper aims to discuss the presence, levels and immunogenicity of gluten peptides found in gluten-reduced barley beers. While advances have been made in the detection and quantification of gluten peptides in beer, there are still challenges to the interpretation of gluten measurements as well as to assess whether peptides are immunotoxic in vivo. To make progress, future efforts should involve a combination of in vivo toxicity assessment of the degraded proteins, development of standardised gluten-free production strategies to minimise variability in gluten fragment presence, guidance on how to control the outcome as well as to develop appropriate reference materials and calibrators.</div></div>","PeriodicalId":317,"journal":{"name":"Food and Chemical Toxicology","volume":"193 ","pages":"Article 115019"},"PeriodicalIF":3.9,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142277828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-19DOI: 10.1016/j.fct.2024.115013
A.M. Api , A. Bartlett , D. Belsito , D. Botelho , M. Bruze , A. Bryant-Freidrich , G.A. Burton Jr. , M.A. Cancellieri , H. Chon , M.L. Dagli , W. Dekant , C. Deodhar , K. Farrell , A.D. Fryer , L. Jones , K. Joshi , A. Lapczynski , M. Lavelle , I. Lee , H. Moustakas , Y. Tokura
{"title":"Update to RIFM fragrance ingredient safety assessment, hexyl butyrate, CAS Registry Number 2639-63-6","authors":"A.M. Api , A. Bartlett , D. Belsito , D. Botelho , M. Bruze , A. Bryant-Freidrich , G.A. Burton Jr. , M.A. Cancellieri , H. Chon , M.L. Dagli , W. Dekant , C. Deodhar , K. Farrell , A.D. Fryer , L. Jones , K. Joshi , A. Lapczynski , M. Lavelle , I. Lee , H. Moustakas , Y. Tokura","doi":"10.1016/j.fct.2024.115013","DOIUrl":"10.1016/j.fct.2024.115013","url":null,"abstract":"","PeriodicalId":317,"journal":{"name":"Food and Chemical Toxicology","volume":"192 ","pages":"Article 115013"},"PeriodicalIF":3.9,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142277839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-19DOI: 10.1016/j.fct.2024.115014
A.M. Api , A. Bartlett , D. Belsito , D. Botelho , M. Bruze , A. Bryant-Freidrich , G.A. Burton Jr. , M.A. Cancellieri , H. Chon , M.L. Dagli , W. Dekant , C. Deodhar , K. Farrell , A.D. Fryer , L. Jones , K. Joshi , A. Lapczynski , M. Lavelle , I. Lee , H. Moustakas , Y. Tokura
{"title":"RIFM fragrance ingredient safety assessment, furfural, CAS Registry Number 98-01-1","authors":"A.M. Api , A. Bartlett , D. Belsito , D. Botelho , M. Bruze , A. Bryant-Freidrich , G.A. Burton Jr. , M.A. Cancellieri , H. Chon , M.L. Dagli , W. Dekant , C. Deodhar , K. Farrell , A.D. Fryer , L. Jones , K. Joshi , A. Lapczynski , M. Lavelle , I. Lee , H. Moustakas , Y. Tokura","doi":"10.1016/j.fct.2024.115014","DOIUrl":"10.1016/j.fct.2024.115014","url":null,"abstract":"","PeriodicalId":317,"journal":{"name":"Food and Chemical Toxicology","volume":"192 ","pages":"Article 115014"},"PeriodicalIF":3.9,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142277834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zearalenone (ZEA), has emerged as a potential endocrine-disrupting chemical (EDC). Previous results show ZEA effects on endometrial stromal cell apoptosis, migration, and growth of endometriosis. Despite the reported presence of ZEA in Endometrial Cancer (EC) patient's blood and tissues, ZEA-induced EC promotion and its mechanism/s remain elusive. In this study, Ishikawa cells were used to investigate the ZEA effects on Ishikawa cell migration, invasion, and the underlying mechanism involved in these events. Ishikawa cells were exposed to low concentrations of ZEA (5, 25, and 125 nM) for 48 h, and morphological alterations, migration, invasion, markers associated with epithelial-mesenchymal transition (EMT), E-cadherin, Vimentin, RhoA/ROCK/PMLC pathway activation were analyzed. ZEA (25 nM) exposure caused morphological alterations like stress fiber, filopodia formation, loss of cell adhesion, and a significant increase in migration and invasive potential in extracellular matrix-coated porous membranes. Moreover, ZEA exposure also increases the Rho-GTPase activity and expression of pathway mediators, GEFH1, RhoA, ROCK1+2, CDC42, and PMLC/MLC. Furthermore, pre-treatment with specific pharmacological inhibitors for Estrogen receptor-alpha (ER-α) and ROCK attenuate the ZEA-induced stress fiber formation and altered expression of E-cadherin, Vimentin, and Rho/ROCK/PMLC pathway mediators. These findings suggest that Rho/ROCK/PMLC signaling pathways are involved in ZEA-induced Ishikawa cell migration and invasion.
{"title":"Zearalenone promotes endometrial cancer cell migration and invasion via activation of estrogen receptor-mediated Rho/ROCK/PMLC signaling pathway","authors":"Marhaba , Saria Anjum , Payal Mandal , Smriti Agrawal , Kausar Mahmood Ansari","doi":"10.1016/j.fct.2024.115017","DOIUrl":"10.1016/j.fct.2024.115017","url":null,"abstract":"<div><div>Zearalenone (ZEA), has emerged as a potential endocrine-disrupting chemical (EDC). Previous results show ZEA effects on endometrial stromal cell apoptosis, migration, and growth of endometriosis. Despite the reported presence of ZEA in Endometrial Cancer (EC) patient's blood and tissues, ZEA-induced EC promotion and its mechanism/s remain elusive. In this study, Ishikawa cells were used to investigate the ZEA effects on Ishikawa cell migration, invasion, and the underlying mechanism involved in these events. Ishikawa cells were exposed to low concentrations of ZEA (5, 25, and 125 nM) for 48 h, and morphological alterations, migration, invasion, markers associated with epithelial-mesenchymal transition (EMT), E-cadherin, Vimentin, RhoA/ROCK/PMLC pathway activation were analyzed. ZEA (25 nM) exposure caused morphological alterations like stress fiber, filopodia formation, loss of cell adhesion, and a significant increase in migration and invasive potential in extracellular matrix-coated porous membranes. Moreover, ZEA exposure also increases the Rho-GTPase activity and expression of pathway mediators, GEFH1, RhoA, ROCK1+2, CDC42, and PMLC/MLC. Furthermore, pre-treatment with specific pharmacological inhibitors for Estrogen receptor-alpha (ER-α) and ROCK attenuate the ZEA-induced stress fiber formation and altered expression of E-cadherin, Vimentin, and Rho/ROCK/PMLC pathway mediators. These findings suggest that Rho/ROCK/PMLC signaling pathways are involved in ZEA-induced Ishikawa cell migration and invasion.</div></div>","PeriodicalId":317,"journal":{"name":"Food and Chemical Toxicology","volume":"193 ","pages":"Article 115017"},"PeriodicalIF":3.9,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142277846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-19DOI: 10.1016/j.fct.2024.115015
A.M. Api , A. Bartlett , D. Belsito , D. Botelho , M. Bruze , A. Bryant-Friedrich , G.A. Burton , M.A. Cancellieri , H. Chon , M.L. Dagli , W. Dekant , C. Deodhar , K. Farrell , A.D. Fryer , L. Jones , K. Joshi , A. Lapczynski , M. Lavelle , I. Lee , H. Moustakas , Y. Tokura
{"title":"RIFM fragrance ingredient safety assessment, heptyl acetate, CAS registry number 112-06-1","authors":"A.M. Api , A. Bartlett , D. Belsito , D. Botelho , M. Bruze , A. Bryant-Friedrich , G.A. Burton , M.A. Cancellieri , H. Chon , M.L. Dagli , W. Dekant , C. Deodhar , K. Farrell , A.D. Fryer , L. Jones , K. Joshi , A. Lapczynski , M. Lavelle , I. Lee , H. Moustakas , Y. Tokura","doi":"10.1016/j.fct.2024.115015","DOIUrl":"10.1016/j.fct.2024.115015","url":null,"abstract":"","PeriodicalId":317,"journal":{"name":"Food and Chemical Toxicology","volume":"194 ","pages":"Article 115015"},"PeriodicalIF":3.9,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142277835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}