This study aims to analyze and improve modelled extreme precipitation. It was conducted in the German Federal State of Saxony using the WEREX V data set. WEREX V is a model that statistically downscales Global Circulation Model (GCM) data. Inputs for the WEREX V model included GCMs ECHAM 5, HadCM3C and HadGEM2 (sometimes downscaled with Regional Climate Models RCMs REMO, RACMO and CCLM), SRES scenarios A1B and E1, and different model runs. The output of analysis was shown by a boxplot since the WEREX V data set has 120 future projections of precipitation. The model results were verified against observed data obtained from representative meteorological stations, and systematical deviations or biases were identified. To improve the model results, two bias correction methods were applied with special emphasis given to the reproduction of precipitation extremes. Empirical quantile mapping and gamma quantile mapping methods were applied. The ability of the WEREX V ensemble to capture extreme precipitation values varied; this was described in terms of biases. All of the identified correction methods were capable of reducing the bias related to the intensity of extreme precipitation occurrence during the calibration period. The performance of empirical quantile mapping is better than gamma quantile mapping to reduce biases (median value) and uncertainty (inter quartile range value). Penelitian ini bertujuan untuk mengoreksi bias curah hujan ekstrim keluaran model. Wilayah kajian dalam penelitian ini adalah negara bagian Saxony, German sedangkan data model yang digunakan adalah data WEREX V. Dataset WEREX V adalah data GCM yang yang didownscale secara statistic. Adapun GMC yang digunakan adalah ECHAM 5, HadCM3, HadGem2 dan beberapa RCM (REMO, RAMCO, dan CCLM) dengan menggunakan skenarios SRES A1B and E1. Karena dataset WEREX V terdiri dari 120 data model, maka boxplot digunakan untuk menggambarkan hasil analisis baik untuk identifikasi maupun koreksi bias. Hasil keluaran model dibandingkan dengan data pengamatan (observasi) dari stasiun meteorologi. Dari hasil perbandingan ini, bias akan dideteksi. Untuk meningkatkan akurasi model, bias dikoreksi menggunakan dua metode yaitu Emperical quantile mappinh (EQM) dan Gamma quatile mapping (gamma). Kemampuan model (data WEREX V) untuk menggambarkan curah hujan ekstrim berbeda antar stasiun hal ini digambarkan dengan nilai bias yang berbeda. Metode EQM dan Gamma mampu mengurangi bias maupun ketidakpastian model (uncertainty). Performa EQM lebih baik dibandingkan Gamma. Secara umum EQM mampu mengurangi bias maupun ketidakpastian model.
本研究旨在分析和改进模拟的极端降水。它是在德国萨克森联邦州使用WEREX V数据集进行的。WEREX V是一种统计上缩小全球环流模式(GCM)数据的模式。WEREX V模式的输入包括GCMs的echam5、HadCM3C和HadGEM2(有时用区域气候模式RCMs的REMO、RACMO和CCLM进行缩小)、SRES情景A1B和E1以及不同的模式运行。分析结果用箱线图表示,因为WEREX V数据集有120个未来降水预估。模型结果与代表性气象站的观测数据进行了验证,并确定了系统偏差或偏差。为了改善模式结果,采用了两种偏差校正方法,重点对降水极值的再现进行了校正。采用经验分位数映射和伽马分位数映射方法。WEREX V系统捕获极端降水值的能力各不相同;这是用偏差来描述的。所有校正方法均能减小与校准期间极端降水发生强度相关的偏差。经验分位数映射在减少偏差(中位数)和不确定性(四分位数间范围值)方面优于伽马分位数映射。Penelitian ini bertujuan untuk mengoreksi bias curah hujan ekstrim keluaran模型。Wilayah kajian dalam penelitian ini adalah negara bagian Saxony,德国sedangkan数据模型yang digunakan adalah数据WEREX V. Dataset WEREX V adalah数据GCM yang didownscale secara统计。adadapun GMC yang digunakan adalah echam5, HadCM3, hadggen2和beberapa RCM (REMO, RAMCO, dan CCLM) dengan menggunakan情景SRES A1B和E1。Karena数据集WEREX V terdiri dari 120数据模型,maka箱线图digunakan untuk menggambarkan hasil分析baik untuk识别kasi maupun koreksi偏差。Hasil keluaran模式dibandingkan dengan资料(观测)。达尔达尔有可能是一个人,也有可能是一个人。Untuk meningkatkan akurasi模型,bias dikoreksi menggunakan dua method yitu经验分位数映射(EQM)和伽玛分位数映射(Gamma)。Kemampuan模型(数据为WEREX V): untuk menggambarkan cura hujan ekstrim berbeda antar stasiun hal ini digambarkan dengan nilai bias yang berbeda。方法EQM dan Gamma mampu mengurangi bias maupun ketidakpastian模型(不确定性)。执行EQM lebih baik dibandingkan Gamma。Secara umum EQM mampu mengurangi bias maupun ketidakpastian模型。
{"title":"COMPARING BIAS CORRECTION METHODS TO IMPROVE MODELLED PRECIPITATION EXTREMES","authors":"Y. Sarvina, T. Pluntke, C. Bernhofer","doi":"10.31172/JMG.V19I2.449","DOIUrl":"https://doi.org/10.31172/JMG.V19I2.449","url":null,"abstract":"This study aims to analyze and improve modelled extreme precipitation. It was conducted in the German Federal State of Saxony using the WEREX V data set. WEREX V is a model that statistically downscales Global Circulation Model (GCM) data. Inputs for the WEREX V model included GCMs ECHAM 5, HadCM3C and HadGEM2 (sometimes downscaled with Regional Climate Models RCMs REMO, RACMO and CCLM), SRES scenarios A1B and E1, and different model runs. The output of analysis was shown by a boxplot since the WEREX V data set has 120 future projections of precipitation. The model results were verified against observed data obtained from representative meteorological stations, and systematical deviations or biases were identified. To improve the model results, two bias correction methods were applied with special emphasis given to the reproduction of precipitation extremes. Empirical quantile mapping and gamma quantile mapping methods were applied. The ability of the WEREX V ensemble to capture extreme precipitation values varied; this was described in terms of biases. All of the identified correction methods were capable of reducing the bias related to the intensity of extreme precipitation occurrence during the calibration period. The performance of empirical quantile mapping is better than gamma quantile mapping to reduce biases (median value) and uncertainty (inter quartile range value). Penelitian ini bertujuan untuk mengoreksi bias curah hujan ekstrim keluaran model. Wilayah kajian dalam penelitian ini adalah negara bagian Saxony, German sedangkan data model yang digunakan adalah data WEREX V. Dataset WEREX V adalah data GCM yang yang didownscale secara statistic. Adapun GMC yang digunakan adalah ECHAM 5, HadCM3, HadGem2 dan beberapa RCM (REMO, RAMCO, dan CCLM) dengan menggunakan skenarios SRES A1B and E1. Karena dataset WEREX V terdiri dari 120 data model, maka boxplot digunakan untuk menggambarkan hasil analisis baik untuk identifikasi maupun koreksi bias. Hasil keluaran model dibandingkan dengan data pengamatan (observasi) dari stasiun meteorologi. Dari hasil perbandingan ini, bias akan dideteksi. Untuk meningkatkan akurasi model, bias dikoreksi menggunakan dua metode yaitu Emperical quantile mappinh (EQM) dan Gamma quatile mapping (gamma). Kemampuan model (data WEREX V) untuk menggambarkan curah hujan ekstrim berbeda antar stasiun hal ini digambarkan dengan nilai bias yang berbeda. Metode EQM dan Gamma mampu mengurangi bias maupun ketidakpastian model (uncertainty). Performa EQM lebih baik dibandingkan Gamma. Secara umum EQM mampu mengurangi bias maupun ketidakpastian model.","PeriodicalId":32347,"journal":{"name":"Jurnal Meteorologi dan Geofisika","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77925784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Model OFS-BMKG yang sudah beroperasi sejak akhir tahun 2016 belum banyak dilakukan verifikasi secara menyeluruh di perairan Indonesia. Penelitian kali ini melakukan kajian verifikasi tinggi gelombang laut signifikan (SWH) hasil pemodelan OFS menggunakan pengamatan satelit altimetri untuk periode Januari 2017. Verifikasi dilakukan dengan menyesuaikan posisi SWH yang diperoleh dari lintasan satelit terhadap kontur model menggunakan grid yang sama. Hasil analisis statistika menunjukkan nilai koefisien korelasi SWH antara hasil model dengan pengamatan satelit tergolong baik, yaitu sebesar 0.64. Sedangkan untuk uji bias, RMSE, dan SI masing-masing bernilai 0.41, 0.89, dan 0.52. Secara umum bila dilihat dari plot time series dan sebaran data setiap waktu pengamatan umumnya hasil model lebih tinggi dibandingkan pengamatan satelit. Sehingga dibutuhkan penyesuaian untuk hasil model agar sesuai dengan pengamatan sebenarnya. The OFS-BMKG system has been operating since the end of 2016 but has not been verified in Indonesian waters. This system was developed from the WaveWatch III (WW3) model. This study was conducted to verify OFS Significant Wave Height (SWH) against satellite altimetry measurements for the period of January 2017. The verification was performed by adjusting the position of SWH obtained from the altimetry satellite path to the contour of the WW3 model for the same grids. The results showed that the OFS SWH had good accordance with the satellite measurement. The correlation coefficient was 0,64 while bias, RMSE, and SI values were 0,41; 0,89; and 0,52, respectively. The time series and data distribution showed that OFS SWH, in general, had higher values than that measured by altimetry satellite. Adjustments or fine-tuning therefore are required for the WW3 model results to match actual observations.
{"title":"PEMANFAATAN SATELIT ALTIMETRI UNTUK VERIFIKASI TINGGI GELOMBANG SIGNIFIKAN OCEAN FORECAST SYSTEM (OFS) – MODEL BMKG","authors":"Eko Supriyadi","doi":"10.31172/JMG.V19I2.586","DOIUrl":"https://doi.org/10.31172/JMG.V19I2.586","url":null,"abstract":"Model OFS-BMKG yang sudah beroperasi sejak akhir tahun 2016 belum banyak dilakukan verifikasi secara menyeluruh di perairan Indonesia. Penelitian kali ini melakukan kajian verifikasi tinggi gelombang laut signifikan (SWH) hasil pemodelan OFS menggunakan pengamatan satelit altimetri untuk periode Januari 2017. Verifikasi dilakukan dengan menyesuaikan posisi SWH yang diperoleh dari lintasan satelit terhadap kontur model menggunakan grid yang sama. Hasil analisis statistika menunjukkan nilai koefisien korelasi SWH antara hasil model dengan pengamatan satelit tergolong baik, yaitu sebesar 0.64. Sedangkan untuk uji bias, RMSE, dan SI masing-masing bernilai 0.41, 0.89, dan 0.52. Secara umum bila dilihat dari plot time series dan sebaran data setiap waktu pengamatan umumnya hasil model lebih tinggi dibandingkan pengamatan satelit. Sehingga dibutuhkan penyesuaian untuk hasil model agar sesuai dengan pengamatan sebenarnya. The OFS-BMKG system has been operating since the end of 2016 but has not been verified in Indonesian waters. This system was developed from the WaveWatch III (WW3) model. This study was conducted to verify OFS Significant Wave Height (SWH) against satellite altimetry measurements for the period of January 2017. The verification was performed by adjusting the position of SWH obtained from the altimetry satellite path to the contour of the WW3 model for the same grids. The results showed that the OFS SWH had good accordance with the satellite measurement. The correlation coefficient was 0,64 while bias, RMSE, and SI values were 0,41; 0,89; and 0,52, respectively. The time series and data distribution showed that OFS SWH, in general, had higher values than that measured by altimetry satellite. Adjustments or fine-tuning therefore are required for the WW3 model results to match actual observations.","PeriodicalId":32347,"journal":{"name":"Jurnal Meteorologi dan Geofisika","volume":"40 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86955021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Siklon Tropis Cempaka dan Dahlia yang terbentuk di wilayah Tropical Cyclone Warning Center (TCWC) Jakarta pada akhir bulan November 2017 telah mengakibatkan banjir dan tanah longsor di sebagian besar Pulau Jawa. Posisi kedua siklon tersebut yang sangat dekat dengan Pulau Jawa mempengaruhi kondisi tropospher atas dan stratosphere bawah di Pulau Jawa. Pada penelitian ini dilakukan analisis profil vertikal atmosphere di Pulau Jawa dengan menggunakan data Radiosonde pada tiga stasiun pengamatan radiosonde, yaitu Stasiun Meteorologi Cengkareng, Stasiun Meteorologi Cilacap, dan Stasiun Meteorologi Juanda. Penelitian ini bertujuan mengetahui kondisi profil vertikal pada saat terjadi Siklon Tropis Cempaka dan Siklon Tropis Dahlia. Data yang digunakan adalah data radiosonde pada Desember-Februari (DJF) tahun 2013-2017 di Stasiun Meteorologi Cengkareng dan Juanda, DJF tahun 2017 di Stasiun Meteorologi Cilacap, serta data pada ketiga stasiun saat terjadi siklon tropis. Nilai rerata parameter cuaca dan indeks stabilitas a tmosphere yang diperoleh melalui software RAOB versi 6.5 menunjukan Siklon Tropis Cempaka memiliki pengaruh yang lebih signifikan terhadap kondisi profil vertikal atmosfer di Pulau Jawa dibandingkan dengan Siklon Tropis Dahlia. Equatorial Undercurrent (EUC) plays an important role in the dynamic of the eastern Indian Ocean. EUC supplies water masses with high salinity into Indonesian waters. This article examines the EUC and its water mass characteristics at 90°E across 2°S - 2°N on 1st - 3rd March 2017 which is part of the Initiative on Maritime Observation and Analysis Expedition (Indonesian Prima 2017). The analysis of temperature, salinity, and sigma-t data obtained from conductivity, temperature and depth (CTD) instruments at five stations (CTD11-CTD14) and current profiles of Shipboard Acoustic Doppler Current Profiles (SADCP) indicate the presence of high-speed water column flowing the Arabian Sea High Salinity Water (ASHSW) as characterized by maximum salinity (35.15 - 35.2 PSU) in the temperature range of 18 ° C - 23 ° C and density of 23 - 25 kg / m3. ASHSW is carried by EUC from the western Indian Ocean at the upper thermocline layer. It was found that EUC during this study tended to be asymmetrically stronger to the north of the equator. The analysis shows a maximum speed of 94 cm/sec and a transport estimated of EUC water masses based on salinity contour 35.15 and 35.2 PSU respectively of 3.4 Sv and 1.4 Sv, while at salinity 35.00 - 35.10 PSU of 8.7 Sv. The total estimated EUC mass transport calculated in this study is 13.5 Sv.
2017年11月底,在雅加达热带气旋保护中心(TCWC)地区形成的西帕卡和大丽花造成了大多数爪哇岛的洪水和山体滑坡。这两个气旋的位置距离爪哇岛很近,影响了爪哇岛上部的托普斯图和下部的地层。这项研究对爪哇岛的大气层进行了垂直分析,利用无线电观测站的数据对其进行分析。本研究旨在确定西帕卡热带气旋和大丽花热带气旋垂直轮廓的状况。2013-2017年12月至2月在西拉卡普气象站使用无线电数据(DJF), 2017年在西拉卡普气象站使用无线电数据,以及热带气旋发生时的三站数据。通过RAOB软件版本6.5获得的天气参数参数值和tmosphere稳定指数表明,热带气旋Cempaka比热带气旋大丽更能影响爪哇岛的垂直大气配置条件。东方印度海洋动力动力中心的一个重要角色。EUC供应高盐分的水质量印尼水域。这文章examines EUC and its水上团characteristics at 90°E穿过°S - 2°N在1月1 - 3 2017年三月,这一部分是Initiative on Maritime Observation和分析印尼Expedition(2017)首席演员。salinity温度之分析》,从conductivity sigma-t获得数据,温度和深度(CTD)仪器at five位置(CTD11-CTD14)》和Shipboard当前》多普勒Acoustic当前》先声》(SADCP) indicate高速水纵队流动的阿拉伯海高salinity水上(约合ASHSW) characterized by maximum salinity 15 - 35(35。2 PSU)《太阳城的18°C - 23°C的温度和密度的23 - 25公斤/立方米。这是西部印度海洋的EUC在上热层中留下的印象。它发现,在这项研究中,EUC与平衡的关系比以往任何时候都要紧密。分析显示,以3.4 Sv和1.4 Sv为基础的EUC water masses的最大速度是94厘米/sec,并根据3.4 Sv和1.4 Sv的运输标准。这项研究的总估计EUC质量传输为13.5 Sv。
{"title":"ANALISIS PROFIL VERTIKAL PADA SIKLON TROPIS CEMPAKA DAN DAHLIA","authors":"Eka Fibriantika","doi":"10.31172/JMG.V19I2.589","DOIUrl":"https://doi.org/10.31172/JMG.V19I2.589","url":null,"abstract":"Siklon Tropis Cempaka dan Dahlia yang terbentuk di wilayah Tropical Cyclone Warning Center (TCWC) Jakarta pada akhir bulan November 2017 telah mengakibatkan banjir dan tanah longsor di sebagian besar Pulau Jawa. Posisi kedua siklon tersebut yang sangat dekat dengan Pulau Jawa mempengaruhi kondisi tropospher atas dan stratosphere bawah di Pulau Jawa. Pada penelitian ini dilakukan analisis profil vertikal atmosphere di Pulau Jawa dengan menggunakan data Radiosonde pada tiga stasiun pengamatan radiosonde, yaitu Stasiun Meteorologi Cengkareng, Stasiun Meteorologi Cilacap, dan Stasiun Meteorologi Juanda. Penelitian ini bertujuan mengetahui kondisi profil vertikal pada saat terjadi Siklon Tropis Cempaka dan Siklon Tropis Dahlia. Data yang digunakan adalah data radiosonde pada Desember-Februari (DJF) tahun 2013-2017 di Stasiun Meteorologi Cengkareng dan Juanda, DJF tahun 2017 di Stasiun Meteorologi Cilacap, serta data pada ketiga stasiun saat terjadi siklon tropis. Nilai rerata parameter cuaca dan indeks stabilitas a tmosphere yang diperoleh melalui software RAOB versi 6.5 menunjukan Siklon Tropis Cempaka memiliki pengaruh yang lebih signifikan terhadap kondisi profil vertikal atmosfer di Pulau Jawa dibandingkan dengan Siklon Tropis Dahlia. Equatorial Undercurrent (EUC) plays an important role in the dynamic of the eastern Indian Ocean. EUC supplies water masses with high salinity into Indonesian waters. This article examines the EUC and its water mass characteristics at 90°E across 2°S - 2°N on 1st - 3rd March 2017 which is part of the Initiative on Maritime Observation and Analysis Expedition (Indonesian Prima 2017). The analysis of temperature, salinity, and sigma-t data obtained from conductivity, temperature and depth (CTD) instruments at five stations (CTD11-CTD14) and current profiles of Shipboard Acoustic Doppler Current Profiles (SADCP) indicate the presence of high-speed water column flowing the Arabian Sea High Salinity Water (ASHSW) as characterized by maximum salinity (35.15 - 35.2 PSU) in the temperature range of 18 ° C - 23 ° C and density of 23 - 25 kg / m3. ASHSW is carried by EUC from the western Indian Ocean at the upper thermocline layer. It was found that EUC during this study tended to be asymmetrically stronger to the north of the equator. The analysis shows a maximum speed of 94 cm/sec and a transport estimated of EUC water masses based on salinity contour 35.15 and 35.2 PSU respectively of 3.4 Sv and 1.4 Sv, while at salinity 35.00 - 35.10 PSU of 8.7 Sv. The total estimated EUC mass transport calculated in this study is 13.5 Sv.","PeriodicalId":32347,"journal":{"name":"Jurnal Meteorologi dan Geofisika","volume":"13 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77131878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dalam rangka mempelajari karakteristik Zona Sesar Cimandiri (ZSC), telah dilakukan pengukuran metode gravitasi di sekitar Pelabuhanratu. Kegiatan ini menghasilkan 53 data pengukuran baru dengan interval jarak 750-1500 meter (selanjutnya disebut GCG16). Untuk menggambarkan tingkat kualitas data yang dihasilkan, GCG16 dievaluasi dengan cara dibandingkan dengan dataset gravitasi skala regional dan global terpublikasi. Secara visual peta GCG16 memperlihatkan pola anomali gravitasi yang sama dengan data gravitasi regional (GRAV-P3G), model geopotensial global data satelit (EIGEN-6S2 dan GO_CONS_GCF_2_DIR_R5), serta model geopotensial global kombinasi (EGM2008 dan EIGEN-6C4). Dataset GRAV-P3G yang juga merupakan hasil pengukuran terestrial menunjukkan tingkat kesesuaian paling tinggi dengan GCG16. Sementara model potensial global kombinasi menunjukkan tingkat kesesuaian yang lebih baik jika dibandingkan dengan model geopotensial data satelit. Keenam dataset memperlihatkan pola Anomali Bouguer tinggi di bagian selatan area penelitian, mengindikasikan kontribusi dari frekuensi rendah. Variasi anomali tinggi di sekitar Sungai Cimandiri tidak teramati pada data gravitasi satelit, diinterpretasikan sebagai kontribusi dari frekuensi tinggi (berkorelasi dengan kondisi bawah permukaan lebih dangkal). Oleh karena itu untuk mempelajari struktur dangkal CFZ perlu dilakukan pemisahan anomali residual dari anomali regionalnya. Analisis First Horizontal Derivative (FHD) dan First Vertical Derivative (FVD) tidak menunjukkan kehadiran ZSC pada segmen timur GCG16, dan mengindikasikan ZSC sebagai sistem sesar yang tersegmentasi. To study the characteristics of the Cimandiri Fault Zone (CFZ), gravity method measurement has been done around Pelabuhanratu. This activity resulted in 53 new measurement data with intervals of 750-1500 meters (hereafter referred to as GCG16). To illustrate the quality level of resulted data, GCG16 was evaluated by comparing with published regional and global scale gravity datasets. Visually, GCG16 maps show the same gravity anomalies pattern with regional gravity data (GRAV-P3G), global geopotential model of satellite data (EIGEN-6S2 and GO_CONS_GCF_2_DIR_R5), as well as combined global geopotential model (EGM2008 and EIGEN-6C4). GRAV-P3G dataset, which is also a result of terrestrial measurement, shows the highest agreement level to GCG16. The six datasets show a high Bouguer Anomaly pattern in the southern part of the research area, indicating the contribution of low frequencies. High anomaly variations around the Cimandiri River were not observed in satellite gravity data and interpreted as high frequencies contribution (correlated with more superficial subsurface conditions). Therefore, to study the shallow structure of the CFZ, it is necessary to separate the residual anomaly from the regional anomaly. First Horizontal Derivative (FHD) and First Vertical Derivative (FVD) analysis do not show the presence of CFZ in the eastern segment of
为了研究Sesar Cimandiri区域(ZSC)的特征,研究了皇后港口周围的重力方法。这一活动产生了53个新的测量数据,间隔为700 -1500米(进一步称为GCG16)。为了描述数据的质量水平,GCG16是通过与已知的区域和全球尺度的重力数据数据进行比较来进行评估的。gcgg16地图视觉上显示了与区域重力数据(GRAV-P3G)相同的重力异常模式,卫星数据的全球潜在地球势模型(EIGEN-6S2)、gcf_gcf_2_dir_r5)以及全球联合地球势测模型(EGM2008和EIGEN-6C4)。陆地测量结果也显示了与GCG16最匹配的水平。尽管全球潜力组合模型与卫星数据数据模型相比具有更好的一致性。六个数据集显示了研究区域南部布格尔的高频率异常模式,表明低频贡献。Cimandiri河周围高度异常的变化并没有在卫星重力数据中观察到,被解释为高频的贡献(与较浅的表面条件相关)。因此,为了研究CFZ较浅的结构,需要对其区域异常进行剩余异常的分离。一种一级水平导数(FHD)和第一垂直导数(FVD)的分析没有显示ZSC在GCG16的东段存在,表明ZSC是分散的剖腹产系统。为了研究cifz区域的特性,重力的测量方法已经在皇后的港口附近完成。这个活动导致了53条新数据的更新,其中750-1500米的内部中断。为了说明可回收数据的质量,GCG16是通过比较区域和全球scale重力数据来评价的。形形上,GCG16 maps展示了区域重力数据的不同模式,全球卫星潜在模式(EIGEN-6S2和GO_CONS_GCF_2_DIR_R5),正如combined global geopotential model (EGM2008和EIGEN-6C4)。来自地球的外星人补给,向GCG16展示最高度的攻击性。六份数据显示,研究区域南部的一个高级集市存在着罕见的模式,涉及低频率的限制。在Cimandiri河周围的高级变量没有观察到卫星重力数据并解释为高频率限制。在此之前,研究CFZ的低结构,有必要将其他剩余的反常现象分离出来。分析分析不会在GCG16的东部段显示CFZ的存在并暗示CFZ是一个分段错误。
{"title":"EVALUASI DATA GRAVITASI TERESTRIAL DAN PERBANDINGANNYA DENGAN DATA GRAVITASI SKALA REGIONAL DAN MODEL GEOPOTENSIAL GLOBAL: STUDI KASUS ZONA SESAR CIMANDIRI DI SEKITAR PELABUHANRATU","authors":"Ilham Arisbaya, Lina Handayani, Yayat Sudrajat","doi":"10.31172/JMG.V19I1.399","DOIUrl":"https://doi.org/10.31172/JMG.V19I1.399","url":null,"abstract":"Dalam rangka mempelajari karakteristik Zona Sesar Cimandiri (ZSC), telah dilakukan pengukuran metode gravitasi di sekitar Pelabuhanratu. Kegiatan ini menghasilkan 53 data pengukuran baru dengan interval jarak 750-1500 meter (selanjutnya disebut GCG16). Untuk menggambarkan tingkat kualitas data yang dihasilkan, GCG16 dievaluasi dengan cara dibandingkan dengan dataset gravitasi skala regional dan global terpublikasi. Secara visual peta GCG16 memperlihatkan pola anomali gravitasi yang sama dengan data gravitasi regional (GRAV-P3G), model geopotensial global data satelit (EIGEN-6S2 dan GO_CONS_GCF_2_DIR_R5), serta model geopotensial global kombinasi (EGM2008 dan EIGEN-6C4). Dataset GRAV-P3G yang juga merupakan hasil pengukuran terestrial menunjukkan tingkat kesesuaian paling tinggi dengan GCG16. Sementara model potensial global kombinasi menunjukkan tingkat kesesuaian yang lebih baik jika dibandingkan dengan model geopotensial data satelit. Keenam dataset memperlihatkan pola Anomali Bouguer tinggi di bagian selatan area penelitian, mengindikasikan kontribusi dari frekuensi rendah. Variasi anomali tinggi di sekitar Sungai Cimandiri tidak teramati pada data gravitasi satelit, diinterpretasikan sebagai kontribusi dari frekuensi tinggi (berkorelasi dengan kondisi bawah permukaan lebih dangkal). Oleh karena itu untuk mempelajari struktur dangkal CFZ perlu dilakukan pemisahan anomali residual dari anomali regionalnya. Analisis First Horizontal Derivative (FHD) dan First Vertical Derivative (FVD) tidak menunjukkan kehadiran ZSC pada segmen timur GCG16, dan mengindikasikan ZSC sebagai sistem sesar yang tersegmentasi. To study the characteristics of the Cimandiri Fault Zone (CFZ), gravity method measurement has been done around Pelabuhanratu. This activity resulted in 53 new measurement data with intervals of 750-1500 meters (hereafter referred to as GCG16). To illustrate the quality level of resulted data, GCG16 was evaluated by comparing with published regional and global scale gravity datasets. Visually, GCG16 maps show the same gravity anomalies pattern with regional gravity data (GRAV-P3G), global geopotential model of satellite data (EIGEN-6S2 and GO_CONS_GCF_2_DIR_R5), as well as combined global geopotential model (EGM2008 and EIGEN-6C4). GRAV-P3G dataset, which is also a result of terrestrial measurement, shows the highest agreement level to GCG16. The six datasets show a high Bouguer Anomaly pattern in the southern part of the research area, indicating the contribution of low frequencies. High anomaly variations around the Cimandiri River were not observed in satellite gravity data and interpreted as high frequencies contribution (correlated with more superficial subsurface conditions). Therefore, to study the shallow structure of the CFZ, it is necessary to separate the residual anomaly from the regional anomaly. First Horizontal Derivative (FHD) and First Vertical Derivative (FVD) analysis do not show the presence of CFZ in the eastern segment of ","PeriodicalId":32347,"journal":{"name":"Jurnal Meteorologi dan Geofisika","volume":"60 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84638204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pengamatan laut bawah permukaan sampai kedalaman 1000m telah dilakukan selama Expedisi Indonesia PRIMA 2017 dengan meluncurkan instrumen Conductivity Temperature Depth (CTD). Terdapat tujuh stasiun CTD yang terletak di jalur ArusKatulistiwaSelatan (South Equatorial Current, SEC). Pengamatan atmosfer telah dilakukan dengan pelepasan balon radiosonde hingga ketinggian 17 km dan pengamatan meteorologisinoptiktiap jam di atas kapal. Makalah ini membahas analisis data kelautan bawah permukaan (suhu dan salinitas)serta konvektifitas atmosfer yang diperoleh pada saat etape I expedisi menuju 12LS 85BT untuk menyelidiki kemungkinan terusan massa air Arus Lintas Indonesia(ARLINDO) di Samudra Hindia dan kaitannya dengan dinamika pusat tekanan rendah atmosfer di Samudera Hindia barat daya Sumetera. Analisis menunjukkan bahwa terdapat interaksi timbal balik laut-atmosfer pada saat berkembangnya daerah tekanan rendah di Samudera Hindia barat daya Sumatera yaitu keberadaan kolam air yang lebih panas (>28C) dari sekitarnya yang berasosiasi dengan pusat tekanan rendah atmosfer di atasnya. Kolam air hangat berasal dari massa air intrusif yang diduga berkaitan dengan penetrasi massa air ARLINDO di Samudera Hindia. Sea sub-surface observations down to 1000m depth have been done during Expedition Indonesia PRIMA 2017 Indonesia by launching Conductivity Temperature Depth (CTD) instrument. There are seven CTD stations located on the South's Equatorial Current (SEC) pathway. Observations of the atmosphere have been done by releasing radiosonde balloons up to a height of 17 km and the hourly synoptic meteorological observation on board. This paper discusses the analysis of sub-surface marine data (temperature and salinity) as well as atmospheric convectivity obtained at the ship time of Stage I of the Expedition towards 12S 85E to investigate the possibility of Indonesia Throughflow (ITF) water masses penetration in the Indian Ocean and its relation to the dynamics of the atmospheric low-pressure center in the Indian Ocean southwest of Sumatera. The analysis shows that there is an air-sea interaction at the time of the development of the low-pressure-area in the region i.e. the presence of a warm pool region (> 28°C) associated with a low-pressure atmospheric center. The warm pool is possible came from intrusive water masses suspected to be associated with ITF's water mass penetration in the Indian Ocean.
在2017年2月印尼博览会期间,通过发射可降水温度仪器(CTD)进行了1000米的水下观测。在aruskatulitiwasouth(南赤道,SEC)有七个CTD站。大气观测是通过将放射性气球释放到17公里(11英里)的高度和船上每小时的气象观测来进行的。本文讨论数据分析海洋表面之下(大气温度和盐度)和konvektifitas我expedisi阶段到12时获得的运河85BT来调查可能是印度尼西亚(ARLINDO交通流的水质量)在印度洋和空气动力学有关大气低压中心Sumetera西南印度洋。分析表明,当时有互动互惠laut-atmosfer低压苏门答腊西南印度洋地区的发展更热的水池的存在(> 28C)相关联的周围的大气,上面有低压中心。温水池的来源是一团入侵的水,被认为与印度洋上的ARLINDO水质量的渗透有关。海底观测下降到1000米以下。在南赤道洋流上有七个CTD位置。大气观测已经完成了。数据分析》这篇文章discusses sub-surface海军(温度和salinity) as well as大气convectivity船》(英语)舞台我》获得at Expedition向12S 85E to investigate印尼Throughflow可能性》(ITF)水质量渗透在印度海洋动力学》和它的关系到《印度海洋大气low-pressure中心西南的苏门答腊。分析节目的那里是一个air-sea interaction at The time of The development of境low-pressure-area地区先声》神盾局a温暖的地区(>池28°C)美联社(associated with a low-pressure大气中心。温暖的水池可能来自ITF的水源,与印度海洋的ITF大规模渗透有关。
{"title":"AIR-SEA INTERACTION MECHANISMS IN THE GENERATION OF PERSISTENCE LOW PRESSURE AREA OVER THE EASTERN INDIAN OCEAN SOUTHWEST SUMATERA OBSERVED DURING THE INDONESIA PRIMA 2017 FIELD CAMPAIGN","authors":"S. Siswanto, E. Kusmanto, Sri Puji Rahayu","doi":"10.31172/JMG.V19I1.523","DOIUrl":"https://doi.org/10.31172/JMG.V19I1.523","url":null,"abstract":"Pengamatan laut bawah permukaan sampai kedalaman 1000m telah dilakukan selama Expedisi Indonesia PRIMA 2017 dengan meluncurkan instrumen Conductivity Temperature Depth (CTD). Terdapat tujuh stasiun CTD yang terletak di jalur ArusKatulistiwaSelatan (South Equatorial Current, SEC). Pengamatan atmosfer telah dilakukan dengan pelepasan balon radiosonde hingga ketinggian 17 km dan pengamatan meteorologisinoptiktiap jam di atas kapal. Makalah ini membahas analisis data kelautan bawah permukaan (suhu dan salinitas)serta konvektifitas atmosfer yang diperoleh pada saat etape I expedisi menuju 12LS 85BT untuk menyelidiki kemungkinan terusan massa air Arus Lintas Indonesia(ARLINDO) di Samudra Hindia dan kaitannya dengan dinamika pusat tekanan rendah atmosfer di Samudera Hindia barat daya Sumetera. Analisis menunjukkan bahwa terdapat interaksi timbal balik laut-atmosfer pada saat berkembangnya daerah tekanan rendah di Samudera Hindia barat daya Sumatera yaitu keberadaan kolam air yang lebih panas (>28C) dari sekitarnya yang berasosiasi dengan pusat tekanan rendah atmosfer di atasnya. Kolam air hangat berasal dari massa air intrusif yang diduga berkaitan dengan penetrasi massa air ARLINDO di Samudera Hindia. Sea sub-surface observations down to 1000m depth have been done during Expedition Indonesia PRIMA 2017 Indonesia by launching Conductivity Temperature Depth (CTD) instrument. There are seven CTD stations located on the South's Equatorial Current (SEC) pathway. Observations of the atmosphere have been done by releasing radiosonde balloons up to a height of 17 km and the hourly synoptic meteorological observation on board. This paper discusses the analysis of sub-surface marine data (temperature and salinity) as well as atmospheric convectivity obtained at the ship time of Stage I of the Expedition towards 12S 85E to investigate the possibility of Indonesia Throughflow (ITF) water masses penetration in the Indian Ocean and its relation to the dynamics of the atmospheric low-pressure center in the Indian Ocean southwest of Sumatera. The analysis shows that there is an air-sea interaction at the time of the development of the low-pressure-area in the region i.e. the presence of a warm pool region (> 28°C) associated with a low-pressure atmospheric center. The warm pool is possible came from intrusive water masses suspected to be associated with ITF's water mass penetration in the Indian Ocean.","PeriodicalId":32347,"journal":{"name":"Jurnal Meteorologi dan Geofisika","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76382524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Penentuan konstanta harmonik pasang surut, datum dan tipe pasang surut air laut sangat dipengaruhi oleh lokasi, posisi bulan dan matahari yang mempunyai nilai periode tersendiri setiap waktunya. Penelitian ini mengunakan data observasi pasang surut perairan Pamengpeuk, Belitung dan Sarmi bulan Juni 2016 yang diperoleh dari Badan Informasi Geospasial (BIG). Dalam artikel ini, konstanta harmonik pasang surut dihitung menggunakan metode Admiralty. Analisis menghasilkan 8 konstanta harmonik yang selanjutnya digunakan untuk menentukan bilangan Form dan datum muka air perairan tersebut. Karakterisasi bilangan Form menunjukkan bahwa wilayah perairan Pamengpeuk dan Sarmi memiliki tipe pasang surut campuran condong harian ganda sedangkan perairan Belitung memiliki tipe pasang surut harian tunggal. Sedangkan karakterisasi datum menggunakan analisis elevasi tinggi muka laut didapatkan hasil pada perairan Pamengpeuk. Belitung, dan Sarmi masing-masing memiliki tinggi muka air tertinggi pada saat pasang purnama yaitu 2,14 m; 3,56 m; dan 3,59 m. Tinggi muka air terendah pada saat surut purnama masing-masing memiliki nilai 0,32m; 0,39; dan 1,70 m.
{"title":"KARAKTERISTIK PASANG SURUT DI PERAIRAN PAMEUNGPEUK, BELITUNG, DAN SARMI BERDASARKAN METODE ADMIRALTY","authors":"Eko Supriyadi, S. Siswanto, Widodo S Pranowo","doi":"10.31172/JMG.V19I1.518","DOIUrl":"https://doi.org/10.31172/JMG.V19I1.518","url":null,"abstract":"Penentuan konstanta harmonik pasang surut, datum dan tipe pasang surut air laut sangat dipengaruhi oleh lokasi, posisi bulan dan matahari yang mempunyai nilai periode tersendiri setiap waktunya. Penelitian ini mengunakan data observasi pasang surut perairan Pamengpeuk, Belitung dan Sarmi bulan Juni 2016 yang diperoleh dari Badan Informasi Geospasial (BIG). Dalam artikel ini, konstanta harmonik pasang surut dihitung menggunakan metode Admiralty. Analisis menghasilkan 8 konstanta harmonik yang selanjutnya digunakan untuk menentukan bilangan Form dan datum muka air perairan tersebut. Karakterisasi bilangan Form menunjukkan bahwa wilayah perairan Pamengpeuk dan Sarmi memiliki tipe pasang surut campuran condong harian ganda sedangkan perairan Belitung memiliki tipe pasang surut harian tunggal. Sedangkan karakterisasi datum menggunakan analisis elevasi tinggi muka laut didapatkan hasil pada perairan Pamengpeuk. Belitung, dan Sarmi masing-masing memiliki tinggi muka air tertinggi pada saat pasang purnama yaitu 2,14 m; 3,56 m; dan 3,59 m. Tinggi muka air terendah pada saat surut purnama masing-masing memiliki nilai 0,32m; 0,39; dan 1,70 m.","PeriodicalId":32347,"journal":{"name":"Jurnal Meteorologi dan Geofisika","volume":"79 4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87944414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"ANALISIS PENGARUH SIKLON TROPIS CEMPAKA TERHADAP CURAH HUJAN DI WILAYAH JAWA","authors":"M. Habibie, Sri Noviati, Hastuadi Harsa","doi":"10.31172/jmg.v19i1.542","DOIUrl":"https://doi.org/10.31172/jmg.v19i1.542","url":null,"abstract":"","PeriodicalId":32347,"journal":{"name":"Jurnal Meteorologi dan Geofisika","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89707302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
One of the classical problem in seismology is to determine time travel and ray path of seismic wave betweentwo points at a given heterogeneous media. This problem is expressed by eikonal equation and can be seen as a propagation of a wavefront and interface evolution. One of methods to solve this problem is Fast Marching Method abbreviated as FMM. This method is used to produce entropy-satisfying viscosity solution of eikonal equation. FMM combines viscosity solution of Hamilton-Jacobi equation and Huygen's Principle that centered on min-heap data structure to determine the minimum value at every loop. In this study, FMM is applied to determine time travel and raypath of seismic wave. FMM also is used to determine the location of wavesource using simple algorithm. From our forward modeling schemes, it is found that FMM is an accurate, robust, and effcient method to simulate seismic wave propagation. For further study, FMM also can be used to be a part of passive seismic inverse scheme to locate hypocenter location.
{"title":"Fast Marching Method Aplication for Forward Modelling of Seismic Wave Propagation","authors":"W. Srigutomo, Ghany Hanifan Muslim","doi":"10.36435/JGF.V16I3.107","DOIUrl":"https://doi.org/10.36435/JGF.V16I3.107","url":null,"abstract":"One of the classical problem in seismology is to determine time travel and ray path of seismic wave betweentwo points at a given heterogeneous media. This problem is expressed by eikonal equation and can be seen as a propagation of a wavefront and interface evolution. One of methods to solve this problem is Fast Marching Method abbreviated as FMM. This method is used to produce entropy-satisfying viscosity solution of eikonal equation. FMM combines viscosity solution of Hamilton-Jacobi equation and Huygen's Principle that centered on min-heap data structure to determine the minimum value at every loop. In this study, FMM is applied to determine time travel and raypath of seismic wave. FMM also is used to determine the location of wavesource using simple algorithm. From our forward modeling schemes, it is found that FMM is an accurate, robust, and effcient method to simulate seismic wave propagation. For further study, FMM also can be used to be a part of passive seismic inverse scheme to locate hypocenter location.","PeriodicalId":32347,"journal":{"name":"Jurnal Meteorologi dan Geofisika","volume":"8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87858793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Sihotang, Rodrigo Osvaldus, Danny Bona Tua Munte, Nasib Priono, F. Mohamad
Administratively, the research area is located in around Cikopomayak Village, Jasinga, Bogor, West Java,Indonesia. Based on the Hydrogeological and Groundwater Basin Map, this research area was classied to non-potential groundwater basin. In addition, when the summer comes, the lack of water will be happened around the area. Consequently, the water reserve wasn't enough to fulll the necessity of freshwater. Thus, the research about identifying aquifer location was needed. This research aims to determine the depth and thickness of aquifer for the alternative ways to overcome the problem, particularly, for the Cikopomayak Village. Theresearch used the geophysical method by modeling the several data such as Geoelectric 1-D to know the aquifer location based on the section of medium resistivity value. Then, the geoelectric data was correlated to the borehole drilling data that is Gamma Ray (GR) Log, Spontaneous Potential (SP) Log, Resistivity Log, and the cutting data. Commonly, the most suitable lithology for an aquifer is sandstone because of its good characteristic of permeability and porosity. Logging data result will show the small value of GR log, SP Log lean-ing to the right, and low-value resistivity for indicating the aquifer zone. Based on geoelectric data, the research zone has 3 groups of resistivity value and lithology that are shaly clay-stone and siltstone with low-value resistivity (0-50 ohm.m), sandy claystone, medium sandstone, and coarse sandstone with medium value resistivity (50-150 ohm.m), fine sand-stone, sandy claystone, and andesite with high-value resistivity (> 150ohm.m). The aquifer system in the research area was classied into 3 groups that are aquifer, aquitard, andaquiqlud.
{"title":"Aquifer Area Investigation Using Resistivity Method in Cikopomayak, West Java, Indonesia","authors":"J. Sihotang, Rodrigo Osvaldus, Danny Bona Tua Munte, Nasib Priono, F. Mohamad","doi":"10.36435/JGF.V16I3.375","DOIUrl":"https://doi.org/10.36435/JGF.V16I3.375","url":null,"abstract":"Administratively, the research area is located in around Cikopomayak Village, Jasinga, Bogor, West Java,Indonesia. Based on the Hydrogeological and Groundwater Basin Map, this research area was classied to non-potential groundwater basin. In addition, when the summer comes, the lack of water will be happened around the area. Consequently, the water reserve wasn't enough to fulll the necessity of freshwater. Thus, the research about identifying aquifer location was needed. This research aims to determine the depth and thickness of aquifer for the alternative ways to overcome the problem, particularly, for the Cikopomayak Village. Theresearch used the geophysical method by modeling the several data such as Geoelectric 1-D to know the aquifer location based on the section of medium resistivity value. Then, the geoelectric data was correlated to the borehole drilling data that is Gamma Ray (GR) Log, Spontaneous Potential (SP) Log, Resistivity Log, and the cutting data. Commonly, the most suitable lithology for an aquifer is sandstone because of its good characteristic of permeability and porosity. Logging data result will show the small value of GR log, SP Log lean-ing to the right, and low-value resistivity for indicating the aquifer zone. Based on geoelectric data, the research zone has 3 groups of resistivity value and lithology that are shaly clay-stone and siltstone with low-value resistivity (0-50 ohm.m), sandy claystone, medium sandstone, and coarse sandstone with medium value resistivity (50-150 ohm.m), fine sand-stone, sandy claystone, and andesite with high-value resistivity (> 150ohm.m). The aquifer system in the research area was classied into 3 groups that are aquifer, aquitard, andaquiqlud.","PeriodicalId":32347,"journal":{"name":"Jurnal Meteorologi dan Geofisika","volume":"21 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73482956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alfin Ari Nugraha, A. A. Ilmanto, J. Jonathan, R. M. Rashad, S. Maghrifa
The presence of dump stations around resident's houses besides resulting air pollution, it is also affectingthe cleanliness of water used by society to meet their daily needs. Location where we researched is at ex-Pasirimpun Dump Station, Karang Pamulang Village, Kecamatan Cicadas, Bandung. Although Pasirimpun Dump Station has been closed and turned function into Taman Abdi Negara, it is feared that there is a water pollution caused by leach zone. Geophysical measurements by geoelectric method are performed to prove the leaching zone. This study aims to determine the depth of the leaching zone, its position against the groundwater level, and what potential harm can caused by the leaching zone. The methodology that is used are direct observation, interviews, and literature studies. Our measurements is done by using schlumberger conguration and Induced Polarization (IP) method on morphology that tend to be at with a length of 141 meters stretch and a spaceof 3 meters. Groundwater faces are mapped to be correlated with the depth of the existing leaching zone. From the results of literature studies, there is a leaching zone in the area with a depth of about 30 meters. By knowing this leaching zone, we hope that there will be cooperation between government and society to avoidthe impacts of leaching zone on the water which they consumed. One way to know, is to drill deeper water level from the leach zone.
{"title":"Identification of Leaching Zone in Pasirimpun Dump Station, West Java, Indonesia Using Resistivity and Induced Polarization Method","authors":"Alfin Ari Nugraha, A. A. Ilmanto, J. Jonathan, R. M. Rashad, S. Maghrifa","doi":"10.36435/JGF.V16I3.379","DOIUrl":"https://doi.org/10.36435/JGF.V16I3.379","url":null,"abstract":"The presence of dump stations around resident's houses besides resulting air pollution, it is also affectingthe cleanliness of water used by society to meet their daily needs. Location where we researched is at ex-Pasirimpun Dump Station, Karang Pamulang Village, Kecamatan Cicadas, Bandung. Although Pasirimpun Dump Station has been closed and turned function into Taman Abdi Negara, it is feared that there is a water pollution caused by leach zone. Geophysical measurements by geoelectric method are performed to prove the leaching zone. This study aims to determine the depth of the leaching zone, its position against the groundwater level, and what potential harm can caused by the leaching zone. The methodology that is used are direct observation, interviews, and literature studies. Our measurements is done by using schlumberger conguration and Induced Polarization (IP) method on morphology that tend to be at with a length of 141 meters stretch and a spaceof 3 meters. Groundwater faces are mapped to be correlated with the depth of the existing leaching zone. From the results of literature studies, there is a leaching zone in the area with a depth of about 30 meters. By knowing this leaching zone, we hope that there will be cooperation between government and society to avoidthe impacts of leaching zone on the water which they consumed. One way to know, is to drill deeper water level from the leach zone.","PeriodicalId":32347,"journal":{"name":"Jurnal Meteorologi dan Geofisika","volume":"189 6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84457533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}