首页 > 最新文献

Intermetallics最新文献

英文 中文
Microstructure and properties of FeCoNiCr and FeCoNiCrW high entropy alloy coatings by electro-deposition 通过电沉积获得的铁钴镍铬和铁钴镍铬瓦高熵合金镀层的微观结构和性能
IF 4.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-09-16 DOI: 10.1016/j.intermet.2024.108492

The FeCoNiCr and FeCoNiCrW high-entropy alloy coatings, comprising a single solid solution, were successfully obtained by electro-deposition. The microstructure, microhardness, wear properties and corrosion behaviors of both coatings were investigated. The results revealed that both coatings consisted of amorphous phases and the component elements existed as metals and their oxides. Compared with the FeCoNiCr coating, the FeCoNiCrW coating exhibited superior mechanical properties attributed to solution strengthening. Specifically, the microhardness of the FeCoNiCrW coating was 35.9 % higher, and the width of the worn tracks was 8.3 % smaller than those of the FeCoNiCr coating. However, the FeCoNiCrW coating showed more serious adhesive wear than that of FeCoNiCr coating due to its thinner coating which was worn out during wear. The FeCoNiCrW coating has the highest corrosion resistance and the lowest corrosion rate compared to 304 stainless steel and FeCoNiCr coating in 3.5 % NaCl solution, attributed to the formation of a highly stable and resistant passive film.

通过电沉积法成功获得了由单一固溶体组成的铁钴镍铬和铁钴镍铬钨高熵合金镀层。研究了两种涂层的微观结构、显微硬度、磨损性能和腐蚀行为。结果表明,这两种涂层都由非晶相组成,组成元素以金属及其氧化物的形式存在。与铁钴镍铬涂层相比,铁钴镍铬钨涂层因溶液强化而表现出更优异的机械性能。具体来说,FeCoNiCrW 涂层的显微硬度比 FeCoNiCr 涂层高 35.9%,磨损痕迹的宽度比 FeCoNiCr 涂层小 8.3%。然而,由于铁钴镍铬钨涂层较薄,在磨损过程中会被磨掉,因此其粘着磨损比铁钴镍铬涂层更为严重。与 304 不锈钢和 FeCoNiCr 镀层相比,FeCoNiCrW 镀层在 3.5% 的 NaCl 溶液中具有最高的耐腐蚀性和最低的腐蚀率,这归功于形成了一层高度稳定和耐腐蚀的被动膜。
{"title":"Microstructure and properties of FeCoNiCr and FeCoNiCrW high entropy alloy coatings by electro-deposition","authors":"","doi":"10.1016/j.intermet.2024.108492","DOIUrl":"10.1016/j.intermet.2024.108492","url":null,"abstract":"<div><p>The FeCoNiCr and FeCoNiCrW high-entropy alloy coatings, comprising a single solid solution, were successfully obtained by electro-deposition. The microstructure, microhardness, wear properties and corrosion behaviors of both coatings were investigated. The results revealed that both coatings consisted of amorphous phases and the component elements existed as metals and their oxides. Compared with the FeCoNiCr coating, the FeCoNiCrW coating exhibited superior mechanical properties attributed to solution strengthening. Specifically, the microhardness of the FeCoNiCrW coating was 35.9 % higher, and the width of the worn tracks was 8.3 % smaller than those of the FeCoNiCr coating. However, the FeCoNiCrW coating showed more serious adhesive wear than that of FeCoNiCr coating due to its thinner coating which was worn out during wear. The FeCoNiCrW coating has the highest corrosion resistance and the lowest corrosion rate compared to 304 stainless steel and FeCoNiCr coating in 3.5 % NaCl solution, attributed to the formation of a highly stable and resistant passive film.</p></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142241826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microstructure evolution and its effect on high-temperature compressive properties of directionally solidified Ti-44.5Al-3Nb-0.6Si-0.2C alloy by electromagnetic confinement after heat treatment 热处理后电磁约束定向凝固 Ti-44.5Al-3Nb-0.6Si-0.2C 合金的微观结构演变及其对高温抗压性能的影响
IF 4.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-09-15 DOI: 10.1016/j.intermet.2024.108491

To regulate the microstructure of directionally solidified TiAl alloy and improve its service temperature and high-temperature mechanical properties, the large-size single crystal Ti-44.5Al-3Nb-0.6Si-0.2C alloy with full lamellar structure prepared by electromagnetic confinement directional solidification was heat-treated in the α single-phase region. The results show that this alloy has high stability and no recrystallization occurs at 1340 °C for 30 min. The (α2+γ) lamellar structure formed during the subsequent cooling process is consistent with the orientation of the original as-cast state, and the refinement effect is very significant. The thickness of the α2 and the γ phases is 1/3 and 1/10 of the original structure, respectively. The dislocation strengthening and the interface strengthening are enhanced with the increase of the dislocation density and the number of α2/γ phase boundaries in the refined lamellar structure after heat treatment, thus resulting in a substantial increase of compressive strength at 1000 °C. The corresponding compressive peak strength at 1000 °C is 2.6 times higher than that of the as-cast alloy, reaching 709 MPa. This exceeds almost all the TiAl alloys under the same conditions reported so far. This research is expected to increase the service temperature of TiAl alloy to 1000 °C, thereby replacing more Ni-based superalloy components and promoting the lightweight development of aero engines.

为调节定向凝固 TiAl 合金的微观结构,提高其使用温度和高温力学性能,在 α 单相区对电磁约束定向凝固制备的具有全片状结构的大尺寸单晶 Ti-44.5Al-3Nb-0.6Si-0.2C 合金进行了热处理。结果表明,这种合金具有很高的稳定性,在 1340 ℃ 30 分钟内不会发生再结晶。在随后的冷却过程中形成的(α2+γ)层状结构与原始铸造状态的取向一致,细化效果非常明显。α2和γ相的厚度分别为原始结构的1/3和1/10。随着热处理后细化层状结构中位错密度和α2/γ相界数量的增加,位错强化和界面强化得到加强,从而使 1000 °C 时的抗压强度大幅提高。相应的 1000 °C 抗压峰值强度是铸造合金的 2.6 倍,达到 709 兆帕。这几乎超过了迄今报道的所有相同条件下的 TiAl 合金。这项研究有望将 TiAl 合金的使用温度提高到 1000 °C,从而取代更多的镍基超级合金部件,促进航空发动机的轻量化发展。
{"title":"Microstructure evolution and its effect on high-temperature compressive properties of directionally solidified Ti-44.5Al-3Nb-0.6Si-0.2C alloy by electromagnetic confinement after heat treatment","authors":"","doi":"10.1016/j.intermet.2024.108491","DOIUrl":"10.1016/j.intermet.2024.108491","url":null,"abstract":"<div><p>To regulate the microstructure of directionally solidified TiAl alloy and improve its service temperature and high-temperature mechanical properties, the large-size single crystal Ti-44.5Al-3Nb-0.6Si-0.2C alloy with full lamellar structure prepared by electromagnetic confinement directional solidification was heat-treated in the α single-phase region. The results show that this alloy has high stability and no recrystallization occurs at 1340 °C for 30 min. The (α<sub>2</sub>+γ) lamellar structure formed during the subsequent cooling process is consistent with the orientation of the original as-cast state, and the refinement effect is very significant. The thickness of the α<sub>2</sub> and the γ phases is 1/3 and 1/10 of the original structure, respectively. The dislocation strengthening and the interface strengthening are enhanced with the increase of the dislocation density and the number of α<sub>2</sub>/γ phase boundaries in the refined lamellar structure after heat treatment, thus resulting in a substantial increase of compressive strength at 1000 °C. The corresponding compressive peak strength at 1000 °C is 2.6 times higher than that of the as-cast alloy, reaching 709 MPa. This exceeds almost all the TiAl alloys under the same conditions reported so far. This research is expected to increase the service temperature of TiAl alloy to 1000 °C, thereby replacing more Ni-based superalloy components and promoting the lightweight development of aero engines.</p></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142233794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Space group prediction of complex alloy systems by product-based neural networks 基于产品的神经网络预测复杂合金系统的空间群
IF 4.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-09-12 DOI: 10.1016/j.intermet.2024.108489

Complex alloy systems exhibit some unique properties, many of which are attributed to ordering phenomena. At the atomic scale, this phenomenon refers to the occupancy probability of particles at the lattice sites. From the perspective of symmetry, it corresponds to different space groups. This study uses several machine learning algorithms to predict some common space groups of complex alloy systems. Under a large data set and a difficult classification task, the relevant models achieved excellent results on the test set. In the traditional support vector machine algorithm model, the prediction can reach the first-class level. Further, through the Product-based Neural Networks method under the wide and deep framework, the bottleneck of the traditional algorithm is broken through, and the prediction ability of the model is further improved. The average Area under curve value of the model can reach 99 %, and the prediction ability of multiple space groups has been improved. This study can not only provide more ideas for cross-scale modeling of complex systems, but the related models can also provide guidance for specific alloy design.

复杂合金系统表现出一些独特的性质,其中许多都归因于有序现象。在原子尺度上,这种现象指的是粒子在晶格位点的占据概率。从对称性的角度来看,它对应于不同的空间群。本研究利用几种机器学习算法来预测复杂合金体系的一些常见空间群。在数据量大、分类难度高的情况下,相关模型在测试集上取得了优异的成绩。在传统的支持向量机算法模型中,预测结果可以达到一流水平。此外,在广度和深度框架下,通过基于产品的神经网络方法,突破了传统算法的瓶颈,进一步提高了模型的预测能力。模型的平均曲线下面积(Area under curve)值可以达到 99%,多空间群的预测能力也得到了提高。这项研究不仅能为复杂系统的跨尺度建模提供更多思路,而且相关模型还能为具体的合金设计提供指导。
{"title":"Space group prediction of complex alloy systems by product-based neural networks","authors":"","doi":"10.1016/j.intermet.2024.108489","DOIUrl":"10.1016/j.intermet.2024.108489","url":null,"abstract":"<div><p>Complex alloy systems exhibit some unique properties, many of which are attributed to ordering phenomena. At the atomic scale, this phenomenon refers to the occupancy probability of particles at the lattice sites. From the perspective of symmetry, it corresponds to different space groups. This study uses several machine learning algorithms to predict some common space groups of complex alloy systems. Under a large data set and a difficult classification task, the relevant models achieved excellent results on the test set. In the traditional support vector machine algorithm model, the prediction can reach the first-class level. Further, through the Product-based Neural Networks method under the wide and deep framework, the bottleneck of the traditional algorithm is broken through, and the prediction ability of the model is further improved. The average Area under curve value of the model can reach 99 %, and the prediction ability of multiple space groups has been improved. This study can not only provide more ideas for cross-scale modeling of complex systems, but the related models can also provide guidance for specific alloy design.</p></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142169490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microstructure evolution and magnetic characteristics of a novel high entropy alloy produced by mechanical alloying and spark plasma sintering 通过机械合金化和火花等离子烧结生产的新型高熵合金的微观结构演变和磁性特征
IF 4.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-09-12 DOI: 10.1016/j.intermet.2024.108488

In this research, CoMoMnNiV high entropy alloys were successfully prepared by mechanical alloying (MA) and spark plasma sintering (SPS). The microstructure, phases and magnetic properties of the as-milled powders and bulk sample were examined, employing X-ray diffraction, differential scanning calorimeter (DSC), scanning electron microscopy, and Vibrating Sample Magnetometer (VSM) techniques. The resultant phase following MA exhibits a dual-phase microstructure comprising BCC and FCC solid solutions, with individual crystal dimensions below 18 nm. Thermal stability assessment via DSC reveals the alloy robustness up to 1216 °C. The SPS was performed on the MA samples at 980 °C and 50 MPa pressure, and their density was determined to be 89.64 %. The sample subjected to a milling duration of 40 h demonstrated a saturation magnetization of 25.977 electromagnetic units per gram (emu/g) and a coercivity of 371.5 Oersteds (Oe).

本研究通过机械合金化(MA)和火花等离子烧结(SPS)成功制备了 CoMoMnNiV 高熵合金。利用 X 射线衍射、差示扫描量热仪 (DSC)、扫描电子显微镜和振动样品磁力计 (VSM) 技术,对研磨粉末和块状样品的微观结构、相和磁性能进行了检测。MA 后的结果相呈现出由 BCC 和 FCC 固溶体组成的双相微观结构,单个晶体尺寸低于 18 纳米。通过 DSC 进行的热稳定性评估表明,合金在 1216 ℃ 下仍具有很强的稳定性。在 980 °C、50 兆帕压力下对 MA 样品进行了 SPS 分析,确定其密度为 89.64%。经过 40 小时研磨的样品的饱和磁化率为 25.977 电磁单位/克(emu/g),矫顽力为 371.5 奥斯特(Oe)。
{"title":"Microstructure evolution and magnetic characteristics of a novel high entropy alloy produced by mechanical alloying and spark plasma sintering","authors":"","doi":"10.1016/j.intermet.2024.108488","DOIUrl":"10.1016/j.intermet.2024.108488","url":null,"abstract":"<div><p>In this research, CoMoMnNiV high entropy alloys were successfully prepared by mechanical alloying (MA) and spark plasma sintering (SPS). The microstructure, phases and magnetic properties of the as-milled powders and bulk sample were examined, employing X-ray diffraction, differential scanning calorimeter (DSC), scanning electron microscopy, and Vibrating Sample Magnetometer (VSM) techniques. The resultant phase following MA exhibits a dual-phase microstructure comprising BCC and FCC solid solutions, with individual crystal dimensions below 18 nm. Thermal stability assessment via DSC reveals the alloy robustness up to 1216 °C. The SPS was performed on the MA samples at 980 °C and 50 MPa pressure, and their density was determined to be 89.64 %. The sample subjected to a milling duration of 40 h demonstrated a saturation magnetization of 25.977 electromagnetic units per gram (emu/g) and a coercivity of 371.5 Oersteds (Oe).</p></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142173434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of Co/Ni ratio on microstructure and mechanical properties of as-cast Cr-Fe-Ni-Co-Al-Si-Ti-Cu high entropy alloys 钴/镍比对铸态铬-镍-钴-铝-硅-钛-铜高熵合金微观结构和机械性能的影响
IF 4.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-09-12 DOI: 10.1016/j.intermet.2024.108490

In this paper, partial replacement of Ni for Co was adopted in FCC + BCC heterostructure as-cast CrFeNi1-xCoxAl0.28Si0.09Ti0.02Cu0.01 high entropy alloys (HEAs), and the modification in microstructure and mechanical properties of these alloys with the increase in the Co/Ni ratio has been systematically investigated. It was observed that all these designed HEAs consist of FCC sideplates with a surrounding BCC phase, as well as well-dispersed B2 phase in as-cast state. Additionally, higher Co/Ni ratio leads to a larger proportion of BCC phase, which has following impacts on the mechanical properties of this series of HEAs: when such ratio begins to increase, it has obvious enhancement in strength and gradual decrease in plasticity; when it reaches 0.15/0.85, it has high strength of ∼1.4 GPa and good plasticity of >10 %. While further enhancing Co/Ni ratio leads to significant connection of BCC phase, resulting in drastic increase in brittleness. The detailed mechanism for such phenomenon has been discussed in detail. This study provides a novel route on improving the comprehensive mechanical properties of this series of as-cast HEAs.

本文在 FCC + BCC 异质结构的铸态 CrFeNi1-xCoxAl0.28Si0.09Ti0.02Cu0.01 高熵合金(HEAs)中采用了部分镍替代 Co 的方法,并系统地研究了这些合金的微观结构和机械性能随 Co/Ni 比率的增加而发生的变化。研究发现,所有这些设计的 HEA 都由 FCC 侧板和周围的 BCC 相以及在铸造状态下分散良好的 B2 相组成。此外,Co/Ni 比值越高,BCC 相的比例越大,这对该系列 HEA 的力学性能有以下影响:当该比值开始增大时,强度明显提高,塑性逐渐降低;当该比值达到 0.15/0.85 时,强度高达 1.4 GPa,塑性为 10%。进一步提高钴/镍比会导致 BCC 相的显著连接,从而使脆性急剧增加。我们详细讨论了这种现象的详细机理。这项研究为改善该系列铸造 HEA 的综合机械性能提供了一条新途径。
{"title":"Effects of Co/Ni ratio on microstructure and mechanical properties of as-cast Cr-Fe-Ni-Co-Al-Si-Ti-Cu high entropy alloys","authors":"","doi":"10.1016/j.intermet.2024.108490","DOIUrl":"10.1016/j.intermet.2024.108490","url":null,"abstract":"<div><p>In this paper, partial replacement of Ni for Co was adopted in FCC + BCC heterostructure as-cast CrFeNi<sub>1-x</sub>Co<sub>x</sub>Al<sub>0.28</sub>Si<sub>0.09</sub>Ti<sub>0.02</sub>Cu<sub>0.01</sub> high entropy alloys (HEAs), and the modification in microstructure and mechanical properties of these alloys with the increase in the Co/Ni ratio has been systematically investigated. It was observed that all these designed HEAs consist of FCC sideplates with a surrounding BCC phase, as well as well-dispersed B2 phase in as-cast state. Additionally, higher Co/Ni ratio leads to a larger proportion of BCC phase, which has following impacts on the mechanical properties of this series of HEAs: when such ratio begins to increase, it has obvious enhancement in strength and gradual decrease in plasticity; when it reaches 0.15/0.85, it has high strength of ∼1.4 GPa and good plasticity of &gt;10 %. While further enhancing Co/Ni ratio leads to significant connection of BCC phase, resulting in drastic increase in brittleness. The detailed mechanism for such phenomenon has been discussed in detail. This study provides a novel route on improving the comprehensive mechanical properties of this series of as-cast HEAs.</p></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142173433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Relationship between the entropy of mixing, excess entropy and the shear viscosity of metallic glasses near the glass transition 接近玻璃化转变的金属玻璃的混合熵、过量熵和剪切粘度之间的关系
IF 4.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-09-11 DOI: 10.1016/j.intermet.2024.108478

We measured the shear viscosity of 14 metallic glasses (MGs) differing with their mixing entropy ΔSmix. It is found that the viscosity at the glass transition temperature Tg significantly increases with ΔSmix. Using calorimetric data, we calculated the excess entropy ΔS of all MGs with respect to their maternal crystalline states as a function of temperature. It is shown that the excess entropy ΔS both at room temperature and at Tg decreases with ΔSmix. It is concluded that glasses with ‘high mixing entropy’ ΔSmix correspond to MGs with low excess entropy ΔS. The origin of the increased shear viscosity at Tg of glasses with high ΔSmix is determined by their reduced excess entropy ΔS.

我们测量了 14 种不同混合熵 ΔSmix 的金属玻璃 (MGs) 的剪切粘度。结果发现,玻璃转化温度 Tg 下的粘度随 ΔSmix 的增加而显著增加。利用量热数据,我们计算了所有 MG 相对于母晶状态的过量熵 ΔS 与温度的函数关系。结果表明,室温下和 Tg 下的过量熵 ΔS 都会随着 ΔSmix 的减小而减小。由此得出结论,具有 "高混合熵 "ΔSmix 的玻璃与具有低过剩熵 ΔS 的 MG 相对应。高ΔSmix玻璃在Tg温度下剪切粘度增加的原因取决于其过量熵ΔS的降低。
{"title":"Relationship between the entropy of mixing, excess entropy and the shear viscosity of metallic glasses near the glass transition","authors":"","doi":"10.1016/j.intermet.2024.108478","DOIUrl":"10.1016/j.intermet.2024.108478","url":null,"abstract":"<div><p>We measured the shear viscosity of 14 metallic glasses (MGs) differing with their mixing entropy Δ<em>S</em><sub><em>mix</em></sub>. It is found that the viscosity at the glass transition temperature <em>T</em><sub><em>g</em></sub> significantly increases with Δ<em>S</em><sub><em>mix</em></sub>. Using calorimetric data, we calculated the excess entropy Δ<em>S</em> of all MGs with respect to their maternal crystalline states as a function of temperature. It is shown that the excess entropy Δ<em>S</em> both at room temperature and at <em>T</em><sub><em>g</em></sub> decreases with Δ<em>S</em><sub><em>mix</em></sub>. It is concluded that glasses with ‘high mixing entropy’ Δ<em>S</em><sub><em>mix</em></sub> correspond to MGs with low excess entropy Δ<em>S</em>. The origin of the increased shear viscosity at <em>T</em><sub><em>g</em></sub> of glasses with high Δ<em>S</em><sub><em>mix</em></sub> is determined by their reduced excess entropy Δ<em>S</em>.</p></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142169488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Temperature-dependent deformation mechanisms of γ′ phases in a newly developed NiCoCr-based superalloy 新开发的镍钴铬基超级合金中γ′相随温度变化的变形机制
IF 4.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-09-11 DOI: 10.1016/j.intermet.2024.108481

The γ′-strengthened NiCoCr-based superalloys are extensively used in aerospace, energy, and chemical industries. This work focuses on tensile properties and evolution of deformation mechanism in a newly developed NiCoCr-based superalloy, designated K439B, at temperatures ranging from 25 °C to 1000 °C. The results demonstrate that the deformation mechanisms of this alloy are temperature-dependent. Slip bands and strongly-coupled dislocation pairs shear γ′ precipitates at 25 °C, resulting in high yield strength and work hardening rate. At 600 °C and 700 °C, the Lomer-Cottrell (L-C) locks are observed, and stacking faults shearing γ′ precipitates become the primary deformation mechanism. At temperatures reaching 800 °C, the yield strength exhibits an anomalous increase originating from the formation of Kear-Wilsdorf (K-W) locks. When the temperature exceeds 800 °C, the primary deformation mechanism is transformed into dislocations bypassing γ′ through the Orowan mechanism. The present study elucidates the deformation mechanism of this novel designed superalloy, thereby furnishing a theoretical foundation for the further development of the alloy system.

γ′强化镍钴铬基超级合金广泛应用于航空航天、能源和化工行业。本研究重点研究了一种新开发的镍钴铬基超级合金(命名为 K439B)在 25 ℃ 至 1000 ℃ 温度范围内的拉伸性能和变形机制的演变。研究结果表明,这种合金的变形机制与温度有关。25 ℃时,滑移带和强耦合位错对剪切γ′析出,从而产生高屈服强度和加工硬化率。在 600 ℃ 和 700 ℃ 时,观察到 Lomer-Cottrell (L-C) 锁,堆叠断层剪切 γ′ 沉淀成为主要的变形机制。当温度达到 800 ℃ 时,屈服强度因 Kear-Wilsdorf (K-W) 锁的形成而出现异常增长。当温度超过 800 ℃ 时,主要变形机制通过奥罗恩机制转变为绕过 γ′ 的位错。本研究阐明了这种新型超合金的变形机理,从而为合金体系的进一步发展奠定了理论基础。
{"title":"Temperature-dependent deformation mechanisms of γ′ phases in a newly developed NiCoCr-based superalloy","authors":"","doi":"10.1016/j.intermet.2024.108481","DOIUrl":"10.1016/j.intermet.2024.108481","url":null,"abstract":"<div><p>The γ′-strengthened NiCoCr-based superalloys are extensively used in aerospace, energy, and chemical industries. This work focuses on tensile properties and evolution of deformation mechanism in a newly developed NiCoCr-based superalloy, designated K439B, at temperatures ranging from 25 °C to 1000 °C. The results demonstrate that the deformation mechanisms of this alloy are temperature-dependent. Slip bands and strongly-coupled dislocation pairs shear γ′ precipitates at 25 °C, resulting in high yield strength and work hardening rate. At 600 °C and 700 °C, the Lomer-Cottrell (L-C) locks are observed, and stacking faults shearing γ′ precipitates become the primary deformation mechanism. At temperatures reaching 800 °C, the yield strength exhibits an anomalous increase originating from the formation of Kear-Wilsdorf (K-W) locks. When the temperature exceeds 800 °C, the primary deformation mechanism is transformed into dislocations bypassing γ′ through the Orowan mechanism. The present study elucidates the deformation mechanism of this novel designed superalloy, thereby furnishing a theoretical foundation for the further development of the alloy system.</p></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142169489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of extrusion temperature on the microstructure and mechanical properties of low-alloyed Mg-Bi-Ca-Mn alloy 挤压温度对低合金镁-铋-钙-锰合金微观结构和力学性能的影响
IF 4.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-09-10 DOI: 10.1016/j.intermet.2024.108480

A new rare earth-free low-alloyed Mg-0.5Bi-0.8Ca-0.8Mn (wt.%) alloy was prepared at three extrusion temperatures (225, 250 and 275 °C). The effects of low-temperature extrusion on the microstructure and mechanical properties of the alloy were studied. Experimental results show that the dynamic recrystallization (DRX) grains are significantly refined by low-temperature extrusion, and the dynamic recrystallization process is further delayed by the Mn precipitate phase, resulting in a bimodal structure composed of ultrafine DRXed grains and coarse undynamic recrystallized (unDRXed) regions. At an extrusion temperature of 225 °C, the grain size was significantly refined, with an average DRXed grain size of 0.84 μm and a tensile yield strength of 418 MPa. Compared with other extruded magnesium alloys, the ultra-fine DRXed grains, strong basal fiber texture, high Schmid Factors of pyramidal <c + a> slip in the unDRXed regions, and along with a certain amount of second phase (Mg2Ca) distributed along the grain boundaries and nano-Mn particles uniformly distributed in the matrix, are the main reasons for the strength enhancement of low-temperature extruded magnesium alloys. The orientation of the DRXed grains in the alloy after extrusion at 250 °C is more random, which improves ductility. In addition, when the extrusion temperature reaches 275 °C, the alloy shows a fully recrystallized structure and exhibits rare earth (RE)-texture, obtaining high ductility but decreasing strength. This study provides a new idea for the development of high-strength Mg-Bi-based magnesium alloys by adjusting the extrusion temperature and alloying elements. This new high-strength and low-alloyed Mg-Bi-based alloy will help to enrich the series of high-performance, rare-earth free, low-cost extruded Mg alloy with certain application prospects.

在三种挤压温度(225、250 和 275 ℃)下制备了一种新型无稀土低合金 Mg-0.5Bi-0.8Ca-0.8Mn (重量百分比)合金。研究了低温挤压对合金微观结构和机械性能的影响。实验结果表明,动态再结晶(DRX)晶粒在低温挤压下明显细化,动态再结晶过程被锰沉淀相进一步延迟,从而形成了由超细 DRX 晶粒和粗大的非动态再结晶(unDRX)区域组成的双峰结构。在 225 °C 的挤压温度下,晶粒尺寸明显细化,平均 DRX 化晶粒尺寸为 0.84 μm,拉伸屈服强度为 418 MPa。与其他挤压镁合金相比,DRX化晶粒超细、基底纤维纹理强、未DRX化区域金字塔<c + a>滑移的施密德因子高,以及沿晶界分布的一定量的第二相(Mg2Ca)和基体中均匀分布的纳米锰颗粒,是低温挤压镁合金强度提高的主要原因。在 250 °C 挤压后,合金中 DRX 化晶粒的取向更加随机,从而提高了延展性。此外,当挤压温度达到 275 ℃ 时,合金会出现完全再结晶结构,并呈现稀土(RE)纹理,从而获得较高的延展性,但强度会下降。这项研究为通过调整挤压温度和合金元素开发高强度镁铋基镁合金提供了新思路。这种新型高强度、低合金化的镁铋基合金将有助于丰富高性能、无稀土、低成本的挤压镁合金系列,具有一定的应用前景。
{"title":"Effects of extrusion temperature on the microstructure and mechanical properties of low-alloyed Mg-Bi-Ca-Mn alloy","authors":"","doi":"10.1016/j.intermet.2024.108480","DOIUrl":"10.1016/j.intermet.2024.108480","url":null,"abstract":"<div><p>A new rare earth-free low-alloyed Mg-0.5Bi-0.8Ca-0.8Mn (wt.%) alloy was prepared at three extrusion temperatures (225, 250 and 275 °C). The effects of low-temperature extrusion on the microstructure and mechanical properties of the alloy were studied. Experimental results show that the dynamic recrystallization (DRX) grains are significantly refined by low-temperature extrusion, and the dynamic recrystallization process is further delayed by the Mn precipitate phase, resulting in a bimodal structure composed of ultrafine DRXed grains and coarse undynamic recrystallized (unDRXed) regions. At an extrusion temperature of 225 °C, the grain size was significantly refined, with an average DRXed grain size of 0.84 μm and a tensile yield strength of 418 MPa. Compared with other extruded magnesium alloys, the ultra-fine DRXed grains, strong basal fiber texture, high Schmid Factors of pyramidal &lt;c + a&gt; slip in the unDRXed regions, and along with a certain amount of second phase (Mg<sub>2</sub>Ca) distributed along the grain boundaries and nano-Mn particles uniformly distributed in the matrix, are the main reasons for the strength enhancement of low-temperature extruded magnesium alloys. The orientation of the DRXed grains in the alloy after extrusion at 250 °C is more random, which improves ductility. In addition, when the extrusion temperature reaches 275 °C, the alloy shows a fully recrystallized structure and exhibits rare earth (RE)-texture, obtaining high ductility but decreasing strength. This study provides a new idea for the development of high-strength Mg-Bi-based magnesium alloys by adjusting the extrusion temperature and alloying elements. This new high-strength and low-alloyed Mg-Bi-based alloy will help to enrich the series of high-performance, rare-earth free, low-cost extruded Mg alloy with certain application prospects.</p></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142164049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine learning assisted design of new ductile high-entropy alloys: Application to Al-Cr-Nb-Ti-V-Zr system 机器学习辅助设计新型韧性高熵合金:应用于 Al-Cr-Nb-Ti-V-Zr 系统
IF 4.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-09-09 DOI: 10.1016/j.intermet.2024.108469

The search for new high-entropy alloys (HEAs) with desired properties is an urgent problem that is hardly solvable experimentally due to the extremely large number of possible alloy compositions. Thus, methods for theoretical prediction of HEA's properties play a key role. Currently, effective predictive models are based on machine learning methods and modern data analysis algorithms. Here we address developing data-driven machine learning models (DDML) to predict the ductility of HEAs. We have built several DDMLs and found that the best approach is based on the Support Vector Classifier, which significantly outperforms phenomenological models (balanced accuracy of 0.784 and F-score of 0.824). By combining this model with a previously developed yield strength prediction model, we have predicted and fabricated novel HEAs of the Al-Cr-Nb-Ti-V-Zr system with good mechanical properties. An obtained Al1Cr9Nb35Ti5V40Zr10 alloy demonstrates a combination of high strength at room and elevated temperature, combined with good ductility at room temperature.

寻找具有理想特性的新型高熵合金(HEAs)是一个亟待解决的问题,但由于可能的合金成分极多,很难通过实验解决。因此,HEA 性能的理论预测方法起着关键作用。目前,有效的预测模型基于机器学习方法和现代数据分析算法。在此,我们致力于开发数据驱动的机器学习模型(DDML),以预测 HEA 的延展性。我们建立了几个 DDML,发现最好的方法是基于支持向量分类器,其性能明显优于现象模型(平衡精度为 0.784,F-score 为 0.824)。通过将该模型与之前开发的屈服强度预测模型相结合,我们预测并制造出了具有良好机械性能的新型 Al-Cr-Nb-Ti-V-Zr 系 HEA。获得的 Al1Cr9Nb35Ti5V40Zr10 合金在室温和高温下均具有高强度,同时在室温下具有良好的延展性。
{"title":"Machine learning assisted design of new ductile high-entropy alloys: Application to Al-Cr-Nb-Ti-V-Zr system","authors":"","doi":"10.1016/j.intermet.2024.108469","DOIUrl":"10.1016/j.intermet.2024.108469","url":null,"abstract":"<div><p>The search for new high-entropy alloys (HEAs) with desired properties is an urgent problem that is hardly solvable experimentally due to the extremely large number of possible alloy compositions. Thus, methods for theoretical prediction of HEA's properties play a key role. Currently, effective predictive models are based on machine learning methods and modern data analysis algorithms. Here we address developing data-driven machine learning models (DDML) to predict the ductility of HEAs. We have built several DDMLs and found that the best approach is based on the Support Vector Classifier, which significantly outperforms phenomenological models (balanced accuracy of 0.784 and F-score of 0.824). By combining this model with a previously developed yield strength prediction model, we have predicted and fabricated novel HEAs of the Al-Cr-Nb-Ti-V-Zr system with good mechanical properties. An obtained Al<sub>1</sub>Cr<sub>9</sub>Nb<sub>35</sub>Ti<sub>5</sub>V<sub>40</sub>Zr<sub>10</sub> alloy demonstrates a combination of high strength at room and elevated temperature, combined with good ductility at room temperature.</p></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142157547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Cr addition on the formation of Fe-Al intermetallic phases in Al2O3/Fe-Al coatings 添加铬对 Al2O3/Fe-Al 涂层中铁铝金属间相形成的影响
IF 4.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-09-07 DOI: 10.1016/j.intermet.2024.108475

Al2O3/Fe-Al coatings are favored for their excellent comprehensive properties in nuclear fusion power applications. A critical step in fabricating Al2O3/Fe-Al tritium-resistant coatings via “aluminizing + oxidation” method is the formation of Fe-Al intermetallic layer on the substrate surface at high temperatures. The present work aims to investigate the influence of chromium (Cr), a prevalent alloying element in Fe-base alloys (such as austenitic stainless steels, RAFM steels) used in fusion reactors, on the formation of Fe-Al intermetallic layers. The Fe-Al phase composition and microstructure of Fe-Cr alloys with different Cr content (0, 9, 19 wt%) were investigated by combinations of X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results indicate that Cr significantly influences the phase structure and microstructure of Fe-Al intermetallic layers, despite minimal effects on its overall thickness. Cr exists in the form of Cr-rich second phase in Fe2Al5, which reduces the transformation rate of an aluminum-rich phase to an iron-rich phase, and also delays the generation of zigzag- or tongue-shaped structure between the intermetallic layer and the substrate, resulting in the formation of a smooth interface.

Al2O3/Fe-Al 涂层因其优异的综合性能而在核聚变动力应用中备受青睐。通过 "镀铝+氧化 "方法制造 Al2O3/Fe-Al 抗氚涂层的关键步骤是在高温下在基体表面形成 Fe-Al 金属间层。铬是用于聚变反应堆的铁基合金(如奥氏体不锈钢、RAFM 钢)中的一种常见合金元素,本研究旨在探讨铬对 Fe-Al 金属间层形成的影响。研究人员结合 X 射线衍射 (XRD) 和扫描电子显微镜 (SEM) 对不同 Cr 含量(0、9、19 wt%)的铁铬合金的 Fe-Al 相组成和微观结构进行了研究。结果表明,尽管铬对铁铝金属间层的整体厚度影响很小,但它对金属间层的相结构和微观结构影响很大。铬以富铬第二相的形式存在于 Fe2Al5 中,它降低了富铝相向富铁相的转化率,也延迟了金属间层与基体之间之字形或舌形结构的生成,从而形成了光滑的界面。
{"title":"Effect of Cr addition on the formation of Fe-Al intermetallic phases in Al2O3/Fe-Al coatings","authors":"","doi":"10.1016/j.intermet.2024.108475","DOIUrl":"10.1016/j.intermet.2024.108475","url":null,"abstract":"<div><p>Al<sub>2</sub>O<sub>3</sub>/Fe-Al coatings are favored for their excellent comprehensive properties in nuclear fusion power applications. A critical step in fabricating Al<sub>2</sub>O<sub>3</sub>/Fe-Al tritium-resistant coatings via “aluminizing + oxidation” method is the formation of Fe-Al intermetallic layer on the substrate surface at high temperatures. The present work aims to investigate the influence of chromium (Cr), a prevalent alloying element in Fe-base alloys (such as austenitic stainless steels, RAFM steels) used in fusion reactors, on the formation of Fe-Al intermetallic layers. The Fe-Al phase composition and microstructure of Fe-Cr alloys with different Cr content (0, 9, 19 wt%) were investigated by combinations of X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results indicate that Cr significantly influences the phase structure and microstructure of Fe-Al intermetallic layers, despite minimal effects on its overall thickness. Cr exists in the form of Cr-rich second phase in Fe<sub>2</sub>Al<sub>5</sub>, which reduces the transformation rate of an aluminum-rich phase to an iron-rich phase, and also delays the generation of zigzag- or tongue-shaped structure between the intermetallic layer and the substrate, resulting in the formation of a smooth interface.</p></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142149034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Intermetallics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1