首页 > 最新文献

Intermetallics最新文献

英文 中文
The effect of Hf addition on the precipitation hardening and dynamic softening behavior of NiTi alloy during hot deformation 添加 Hf 对热变形过程中镍钛合金沉淀硬化和动态软化行为的影响
IF 4.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-09-06 DOI: 10.1016/j.intermet.2024.108474

Nanoindentation test, high-temperature compression test, SEM, EBSD, and TEM observations are performed to investigate the effects of Hf additions on the microstructure and properties of NiTi alloy. The high-temperature deformation behavior of NiTi-8/12Hf alloys is discussed. The constitutive model and hot processing map are constructed, and the optimal processing interval of the two alloys is predicted. The results show that the content and size of precipitates increase with the addition of Hf. The nanoindentation hardness of the matrix with different Hf content increased from 3.36 ± 0.11 GPa to 5.47 ± 0.13 GPa. The main strengthening mechanism of the addition of the Hf to improve the strength is the solid solution strengthening effect and the load transfer effect. With the addition of 8 wt% and 12 wt% Hf, the instability areas are expanded. The optimal processing area of 8/12Hf alloys are 900 °C, 0.01s−1. Under this condition, the microstructure of the alloy has a high DRX volume fraction and low average ρGND. As hot deformation progresses, the accumulated energy inside the alloy increases, leading to the activation of dislocations and the formation of more DDRX at grain boundaries. Dislocations within the grains aggregate to form LAGBs. The softening mechanism of 56Ni-Ti-8/12Hf alloy are DDRX and dynamic recover.

通过纳米压痕试验、高温压缩试验、扫描电镜、EBSD 和 TEM 观察,研究了添加 Hf 对镍钛合金微观结构和性能的影响。讨论了 NiTi-8/12Hf 合金的高温变形行为。构建了构成模型和热加工图,并预测了两种合金的最佳加工间隔。结果表明,析出物的含量和尺寸随 Hf 的加入而增加。不同 Hf 含量基体的纳米压痕硬度从 3.36 ± 0.11 GPa 增加到 5.47 ± 0.13 GPa。添加 Hf 提高强度的主要强化机制是固溶强化效应和载荷传递效应。随着 8 wt% 和 12 wt% Hf 的添加,不稳定区域扩大。8/12Hf 合金的最佳加工区域为 900 °C、0.01s-1。在此条件下,合金的微观结构具有较高的 DRX 体积分数和较低的平均 ρGND。随着热变形的进行,合金内部累积的能量增加,导致位错活化,并在晶界处形成更多的 DDRX。晶粒内的位错聚集形成 LAGB。56Ni-Ti-8/12Hf 合金的软化机制是 DDRX 和动态恢复。
{"title":"The effect of Hf addition on the precipitation hardening and dynamic softening behavior of NiTi alloy during hot deformation","authors":"","doi":"10.1016/j.intermet.2024.108474","DOIUrl":"10.1016/j.intermet.2024.108474","url":null,"abstract":"<div><p>Nanoindentation test, high-temperature compression test, SEM, EBSD, and TEM observations are performed to investigate the effects of Hf additions on the microstructure and properties of NiTi alloy. The high-temperature deformation behavior of NiTi-8/12Hf alloys is discussed. The constitutive model and hot processing map are constructed, and the optimal processing interval of the two alloys is predicted. The results show that the content and size of precipitates increase with the addition of Hf. The nanoindentation hardness of the matrix with different Hf content increased from 3.36 ± 0.11 GPa to 5.47 ± 0.13 GPa. The main strengthening mechanism of the addition of the Hf to improve the strength is the solid solution strengthening effect and the load transfer effect. With the addition of 8 wt% and 12 wt% Hf, the instability areas are expanded. The optimal processing area of 8/12Hf alloys are 900 °C, 0.01s<sup>−1</sup>. Under this condition, the microstructure of the alloy has a high DRX volume fraction and low average ρ<sub>GND</sub>. As hot deformation progresses, the accumulated energy inside the alloy increases, leading to the activation of dislocations and the formation of more DDRX at grain boundaries. Dislocations within the grains aggregate to form LAGBs. The softening mechanism of 56Ni-Ti-8/12Hf alloy are DDRX and dynamic recover.</p></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142149033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tensile properties and deformation mechanisms of a fourth-generation nickel-based single crystal superalloy at intermediate temperatures 第四代镍基单晶超级合金在中温条件下的拉伸性能和变形机制
IF 4.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-09-05 DOI: 10.1016/j.intermet.2024.108471

This paper comprehensively explores the causes of intermediate-temperature brittleness of a fourth-generation Nickel-based single-crystal superalloy through a systematic study of tensile properties and deformation mechanisms at intermediate-temperatures. The research was performed at temperature of 700 °C, 800 °C, 850 °C and 900 °C. The experimental alloy demonstrated the highest yield strength of 914 MPa and worst plasticity at 800 °C. It was found that pure-shearing fracture occurred at 700 °C and 800 °C, while the fracture characteristics of shear fracture and ductile fracture were found at 850 °C and 900 °C. Then, the slip bands extended in the same direction at 700 °C and 800 °C. The phenomenon was different at 850 °C and 900 °C. These deformation traces extended in the different directions. At 700 °C and 800 °C, the partial dislocation with Burgers Vector of a/3 <112> shearing into the γ′ phases was the predominate deformation mechanism, while both the partial dislocation with Burgers Vector of a/3 <112> and the super-dislocation with Burgers Vector of a <110> and a <010> shearing into the γ′ phases were present at 850 °C and 900 °C. Nevertheless, the mechanism of the super-dislocation with Burgers Vector of a <110> and a <010> shearing γ′ phases pervaded in the alloy at 900 °C. In general, it was concluded that the alloy underwent intermediate-temperature brittleness at 800 °C in terms of the changes of fracture features, slip bands and dislocation configurations. The results of this study provided an experimental reference and guidance for improving the safe serviceability of the fourth-generation single crystal superalloy.

本文通过系统研究第四代镍基单晶超级合金在中间温度下的拉伸性能和变形机制,全面探讨了其中间温度脆性的成因。研究在 700 ℃、800 ℃、850 ℃ 和 900 ℃ 温度下进行。实验合金在 800 °C 时的屈服强度最高,达到 914 兆帕,塑性最差。研究发现,纯剪切断裂发生在 700 °C 和 800 °C 时,而剪切断裂和韧性断裂的断裂特征则出现在 850 °C 和 900 °C 时。在 700 ℃ 和 800 ℃ 时,滑移带向同一方向延伸。这一现象在 850 °C 和 900 °C 时有所不同。这些变形痕迹向不同方向延伸。在700 °C和800 °C时,伯格斯矢量为a/3 <112>的部分位错剪切到γ′相是主要的变形机制,而在850 °C和900 °C时,伯格斯矢量为a/3 <112>的部分位错和伯格斯矢量为a <110>和a <010>的超位错剪切到γ′相都存在。然而,在 900 °C时,超位错机制与布尔格斯矢量的<110>和<010>剪切γ′相在合金中普遍存在。总之,从断口特征、滑移带和位错构型的变化来看,合金在 800 ℃ 时发生了中温脆性。该研究结果为提高第四代单晶超合金的安全适用性提供了实验参考和指导。
{"title":"Tensile properties and deformation mechanisms of a fourth-generation nickel-based single crystal superalloy at intermediate temperatures","authors":"","doi":"10.1016/j.intermet.2024.108471","DOIUrl":"10.1016/j.intermet.2024.108471","url":null,"abstract":"<div><p>This paper comprehensively explores the causes of intermediate-temperature brittleness of a fourth-generation Nickel-based single-crystal superalloy through a systematic study of tensile properties and deformation mechanisms at intermediate-temperatures. The research was performed at temperature of 700 °C, 800 °C, 850 °C and 900 °C. The experimental alloy demonstrated the highest yield strength of 914 MPa and worst plasticity at 800 °C. It was found that pure-shearing fracture occurred at 700 °C and 800 °C, while the fracture characteristics of shear fracture and ductile fracture were found at 850 °C and 900 °C. Then, the slip bands extended in the same direction at 700 °C and 800 °C. The phenomenon was different at 850 °C and 900 °C. These deformation traces extended in the different directions. At 700 °C and 800 °C, the partial dislocation with Burgers Vector of a/3 &lt;112&gt; shearing into the γ′ phases was the predominate deformation mechanism, while both the partial dislocation with Burgers Vector of a/3 &lt;112&gt; and the super-dislocation with Burgers Vector of a &lt;110&gt; and a &lt;010&gt; shearing into the γ′ phases were present at 850 °C and 900 °C. Nevertheless, the mechanism of the super-dislocation with Burgers Vector of a &lt;110&gt; and a &lt;010&gt; shearing γ′ phases pervaded in the alloy at 900 °C. In general, it was concluded that the alloy underwent intermediate-temperature brittleness at 800 °C in terms of the changes of fracture features, slip bands and dislocation configurations. The results of this study provided an experimental reference and guidance for improving the safe serviceability of the fourth-generation single crystal superalloy.</p></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142149116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The electrochemical behaviour of Ti-48Al-2Cr-2Nb produced by electron beam powder bed fusion process 电子束粉末床熔融工艺制备的 Ti-48Al-2Cr-2Nb 的电化学行为
IF 4.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-09-05 DOI: 10.1016/j.intermet.2024.108472

Titanium aluminides (TiAl) are distinguished by their exceptional strength-to-weight ratio, making them ideal for aerospace and medical applications. Notably, TiAl alloys offer a unique combination of high-temperature resistance and corrosion resilience, contributing to their growing prominence in advanced engineering and biomedical fields. Although initially developed for aerospace applications, TiAl alloys have demonstrated promising potential as implant materials over time. Hence, this research focuses on producing γ-TiAl alloy through electron beam powder bed fusion (EB-PBF) technology, utilising a powder with a composition of Ti-48Al-2Cr-2Nb. For comparative purposes, the corrosion characteristics of Ti6Al4V produced via EB-PBF were also evaluated under identical conditions. The findings indicate that the EB-PBF γ-TiAl exhibits exceptional resistance to corrosion. This is supported by the significantly high polarisation resistance and corrosion potential values, as well as the notably low corrosion current value. However, based on the analysis of the polarisation and impedance curves, it can be observed that the γ-TiAl sample displayed a less protective passive film formation. This occurrence can be attributed to the presence of aluminium ions within the passive layer, resulting in the formation of unstable oxides. As a consequence, it can be inferred that γ-TiAl exhibits inferior resistance to pitting corrosion when compared to Ti6Al4V alloy. The point defect model and Mott-Schottky test further revealed that the γ-TiAl alloy exhibited increased oxygen vacancies. Additionally, the presence of aluminium ions as impurities or dopants led to their substitution for titanium ions, creating cationic vacancies within the passive film. The accumulation of excessive cation vacancies ultimately led to the initiation of pitting corrosion.

钛铝合金(TiAl)具有优异的强度重量比,是航空航天和医疗应用的理想材料。值得注意的是,钛铝合金具有独特的耐高温性和耐腐蚀性,因此在先进工程和生物医学领域的应用日益突出。虽然 TiAl 合金最初是为航空航天应用而开发的,但随着时间的推移,其作为植入材料的潜力也得到了充分展现。因此,本研究的重点是通过电子束粉末床熔融(EB-PBF)技术生产γ-TiAl 合金,使用的粉末成分为 Ti-48Al-2Cr-2Nb 。为了进行比较,还在相同条件下评估了通过 EB-PBF 生产的 Ti6Al4V 的腐蚀特性。研究结果表明,EB-PBF γ-TiAl 具有优异的耐腐蚀性。极化电阻值和腐蚀电位值明显偏高,腐蚀电流值明显偏低,都证明了这一点。然而,根据对极化和阻抗曲线的分析,可以发现 γ-TiAl 样品形成的被动保护膜较少。出现这种情况的原因是被动层中存在铝离子,从而形成了不稳定的氧化物。因此,可以推断出与 Ti6Al4V 合金相比,γ-TiAl 的抗点蚀性能较差。点缺陷模型和 Mott-Schottky 测试进一步表明,γ-TiAl 合金显示出更多的氧空位。此外,铝离子作为杂质或掺杂剂的存在导致其取代钛离子,从而在被动膜中产生阳离子空位。过多阳离子空位的积累最终导致点蚀的发生。
{"title":"The electrochemical behaviour of Ti-48Al-2Cr-2Nb produced by electron beam powder bed fusion process","authors":"","doi":"10.1016/j.intermet.2024.108472","DOIUrl":"10.1016/j.intermet.2024.108472","url":null,"abstract":"<div><p>Titanium aluminides (TiAl) are distinguished by their exceptional strength-to-weight ratio, making them ideal for aerospace and medical applications. Notably, TiAl alloys offer a unique combination of high-temperature resistance and corrosion resilience, contributing to their growing prominence in advanced engineering and biomedical fields. Although initially developed for aerospace applications, TiAl alloys have demonstrated promising potential as implant materials over time. Hence, this research focuses on producing γ-TiAl alloy through electron beam powder bed fusion (EB-PBF) technology, utilising a powder with a composition of Ti-48Al-2Cr-2Nb. For comparative purposes, the corrosion characteristics of Ti6Al4V produced via EB-PBF were also evaluated under identical conditions. The findings indicate that the EB-PBF γ-TiAl exhibits exceptional resistance to corrosion. This is supported by the significantly high polarisation resistance and corrosion potential values, as well as the notably low corrosion current value. However, based on the analysis of the polarisation and impedance curves, it can be observed that the γ-TiAl sample displayed a less protective passive film formation. This occurrence can be attributed to the presence of aluminium ions within the passive layer, resulting in the formation of unstable oxides. As a consequence, it can be inferred that γ-TiAl exhibits inferior resistance to pitting corrosion when compared to Ti6Al4V alloy. The point defect model and Mott-Schottky test further revealed that the γ-TiAl alloy exhibited increased oxygen vacancies. Additionally, the presence of aluminium ions as impurities or dopants led to their substitution for titanium ions, creating cationic vacancies within the passive film. The accumulation of excessive cation vacancies ultimately led to the initiation of pitting corrosion.</p></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0966979524002917/pdfft?md5=4a36388d7a8693ea2a1eeeb489815b66&pid=1-s2.0-S0966979524002917-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142149094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microstructure and properties of typical equiatomic CrMnFeCoNi high entropy alloy doped with different rare earth elements 掺杂不同稀土元素的典型等原子铬锰铁钴镍高熵合金的显微结构和性能
IF 4.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-09-05 DOI: 10.1016/j.intermet.2024.108477

The addition of rare earth elements (REEs) can effectively modify the microstructure of alloy and improve the properties. The effects of doping REEs in equiatomic CrMnFeCoNi high entropy alloys were investigated. Doping with REEs led to the formation of a few new phases enriched in the interdendritic regions and reduced the grain size. Doping REEs significantly improved the hardness and wear resistance of the alloy, and the Sm-doped alloy showed the most notable enhancement with the hardness value, the average friction coefficient and wear rate of HV 347.9, 0.28 and 0.91 × 10−6 mm3 N−1 m−1, respectively. The mechanical properties of the alloy were improved by the second phase strengthening and grain refinement and the wear mechanism was typical abrasive wear. However, the electrochemical properties indicated that doping with REEs weakened the corrosion resistance of the alloys; Pr- and La-doped alloys altered the corrosion behaviors on the alloy surfaces. The self-corrosion current density and potential of CrMnFeCoNiSm0.2 alloy were 2.94 × 10−6 A cm−2 and -0.46 V, respectively. This research plays a guiding role to study in REEs doping in HEA, meanwhile is of great significance in promoting the industrial application of HEA.

添加稀土元素(REEs)可有效改变合金的微观结构并改善其性能。研究了在等原子铬锰铁钴镍高熵合金中掺杂稀土元素的影响。掺杂 REEs 后,在树枝间区域形成了一些富集的新相,并减小了晶粒尺寸。掺杂 REEs 能明显提高合金的硬度和耐磨性,其中掺杂 Sm 的合金的硬度值、平均摩擦系数和磨损率分别达到 HV 347.9、0.28 和 0.91 × 10-6 mm3 N-1 m-1 ,提高最为明显。合金的机械性能通过第二相强化和晶粒细化得到改善,磨损机理为典型的磨料磨损。然而,电化学性能表明,掺杂 REEs 削弱了合金的耐腐蚀性;掺杂 Pr- 和 La 的合金改变了合金表面的腐蚀行为。CrMnFeCoNiSm0.2合金的自腐蚀电流密度和电位分别为2.94 × 10-6 A cm-2和-0.46 V。该研究对在 HEA 中掺杂稀土元素的研究具有指导作用,同时对促进 HEA 的工业应用具有重要意义。
{"title":"Microstructure and properties of typical equiatomic CrMnFeCoNi high entropy alloy doped with different rare earth elements","authors":"","doi":"10.1016/j.intermet.2024.108477","DOIUrl":"10.1016/j.intermet.2024.108477","url":null,"abstract":"<div><p>The addition of rare earth elements (REEs) can effectively modify the microstructure of alloy and improve the properties. The effects of doping REEs in equiatomic CrMnFeCoNi high entropy alloys were investigated. Doping with REEs led to the formation of a few new phases enriched in the interdendritic regions and reduced the grain size. Doping REEs significantly improved the hardness and wear resistance of the alloy, and the Sm-doped alloy showed the most notable enhancement with the hardness value, the average friction coefficient and wear rate of HV 347.9, 0.28 and 0.91 × 10<sup>−6</sup> mm<sup>3</sup> N<sup>−1</sup> m<sup>−1</sup>, respectively. The mechanical properties of the alloy were improved by the second phase strengthening and grain refinement and the wear mechanism was typical abrasive wear. However, the electrochemical properties indicated that doping with REEs weakened the corrosion resistance of the alloys; Pr- and La-doped alloys altered the corrosion behaviors on the alloy surfaces. The self-corrosion current density and potential of CrMnFeCoNiSm<sub>0.2</sub> alloy were 2.94 × 10<sup>−6</sup> A cm<sup>−2</sup> and -0.46 V, respectively. This research plays a guiding role to study in REEs doping in HEA, meanwhile is of great significance in promoting the industrial application of HEA.</p></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142149093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low cycle fatigue and cycle hardening behavior of heterogeneous Ni2Co1Fe1V0.5Mo0.2 medium entropy alloy 异质 Ni2Co1Fe1V0.5Mo0.2 中熵合金的低循环疲劳和循环硬化行为
IF 4.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-09-04 DOI: 10.1016/j.intermet.2024.108473

Low-cycle fatigue behavior of high-entropy alloy (HEAs) and medium-entropy alloys (MEAs) have rarely been reported in literature though it is critical for industrial applications. In our previous work, a non-equiatomic Ni2Co1Fe1V0.5Mo0.2 MEA was designed by adding V and Mo elements with bigger atomic size to heighten solution strengthening effect. Due to larger atomic size mismatch and more severe lattice distortion, the Ni2Co1Fe1V0.5Mo0.2 MEA exhibits stronger strain hardening effect than that in CoCrFeMnNi HEA. In present work, the low-cycle fatigue behavior of the non-equiatomic Ni2Co1Fe1V0.5Mo0.2 MEA with heterogeneous grain structures was further investigated. The heterogeneous Ni2Co1Fe1V0.5Mo0.2 MEA exhibits high fatigue resistance at 0.25 % strain amplitude (51285 N), attributed to the pronounced dislocation planar slip and formation of stacking faults. At 0.3 % and 0.5 % strain amplitudes, dislocation interactions (including tangles and microbands) induced by extensive dislocation cross-slip result in obvious cyclic hardening but reduced lifetime. The findings assess the effect of solid solution strengthening on the fatigue behavior of MEAs. The fatigue cracks form either along slip bands in large grains or grain boundaries of small grains.

高熵合金(HEAs)和中熵合金(MEAs)的低循环疲劳行为虽然对工业应用至关重要,但文献中却鲜有报道。在我们之前的工作中,我们设计了一种非等原子 Ni2Co1Fe1V0.5Mo0.2 MEA,通过添加原子尺寸更大的 V 和 Mo 元素来提高溶液强化效果。由于更大的原子尺寸不匹配和更严重的晶格畸变,Ni2Co1Fe1V0.5Mo0.2 MEA 比 CoCrFeMnNi HEA 表现出更强的应变硬化效应。本研究进一步探讨了具有异质晶粒结构的非等原子 Ni2Co1Fe1V0.5Mo0.2 MEA 的低循环疲劳行为。异质 Ni2Co1Fe1V0.5Mo0.2 MEA 在应变振幅为 0.25 %(51285 N)时表现出很高的抗疲劳性,这归因于明显的位错平面滑移和堆积断层的形成。在应变振幅为 0.3 % 和 0.5 % 时,广泛的差排交叉滑移引起的差排相互作用(包括纠结和微带)导致明显的循环硬化,但寿命缩短。研究结果评估了固溶强化对 MEA 疲劳行为的影响。疲劳裂纹沿着大晶粒的滑移带或小晶粒的晶界形成。
{"title":"Low cycle fatigue and cycle hardening behavior of heterogeneous Ni2Co1Fe1V0.5Mo0.2 medium entropy alloy","authors":"","doi":"10.1016/j.intermet.2024.108473","DOIUrl":"10.1016/j.intermet.2024.108473","url":null,"abstract":"<div><p>Low-cycle fatigue behavior of high-entropy alloy (HEAs) and medium-entropy alloys (MEAs) have rarely been reported in literature though it is critical for industrial applications. In our previous work, a non-equiatomic Ni<sub>2</sub>Co<sub>1</sub>Fe<sub>1</sub>V<sub>0.5</sub>Mo<sub>0.2</sub> MEA was designed by adding V and Mo elements with bigger atomic size to heighten solution strengthening effect. Due to larger atomic size mismatch and more severe lattice distortion, the Ni<sub>2</sub>Co<sub>1</sub>Fe<sub>1</sub>V<sub>0.5</sub>Mo<sub>0.2</sub> MEA exhibits stronger strain hardening effect than that in CoCrFeMnNi HEA. In present work, the low-cycle fatigue behavior of the non-equiatomic Ni<sub>2</sub>Co<sub>1</sub>Fe<sub>1</sub>V<sub>0.5</sub>Mo<sub>0.2</sub> MEA with heterogeneous grain structures was further investigated. The heterogeneous Ni<sub>2</sub>Co<sub>1</sub>Fe<sub>1</sub>V<sub>0.5</sub>Mo<sub>0.2</sub> MEA exhibits high fatigue resistance at 0.25 % strain amplitude (51285 <em>N</em>), attributed to the pronounced dislocation planar slip and formation of stacking faults. At 0.3 % and 0.5 % strain amplitudes, dislocation interactions (including tangles and microbands) induced by extensive dislocation cross-slip result in obvious cyclic hardening but reduced lifetime. The findings assess the effect of solid solution strengthening on the fatigue behavior of MEAs. The fatigue cracks form either along slip bands in large grains or grain boundaries of small grains.</p></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142136796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermal stability and grain growth kinetics in rotary swaged Al0.35CoCrFeNi complex concentrated alloy 旋转压接 Al0.35CoCrFeNi 复合浓缩合金的热稳定性和晶粒生长动力学
IF 4.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-09-04 DOI: 10.1016/j.intermet.2024.108456

A complex concentrated alloy (CCA) with a nominal composition of Al0.35CoCrFeNi (mol.%) was prepared by vacuum induction melting and tilt casting. The microstructure of the alloy in the as-cast state consists of columnar dendritic grains. The ingots were solution annealed, rotary swaged, and heat treated to obtain a uniform fine-grain structure. To study the behavior of recrystallization and grain growth, heat treatment was carried out at temperatures from 1150 °C to 1300 °C and holding times up to 480 min. The resulting microstructures were analyzed by LM, SEM, TEM, EBSD, and XRD methods followed by a comparison with the results of hardness measurements. The alloy has a thermally stable single-phase face-centered cubic (FCC) structure in the studied temperature range. The grain growth kinetics were analyzed using classical models, and the activation energy was estimated to be ∼458 kJ mol−1 using an Arrhenius-type equation. The greatest resistance to grain growth was observed at a temperature of 1150 °C. Hardness tests demonstrated an almost double increase in hardness after swaging and a sharp drop during the following heat treatment due to the onset of recrystallization. The Hall-Petch hardening coefficient was calculated to be ∼277.5 HV μm−1/2.

通过真空感应熔炼和倾斜铸造制备了一种标称成分为 Al0.35CoCrFeNi (mol.%) 的复合浓缩合金 (CCA)。铸态合金的微观结构由柱状树枝状晶粒组成。铸锭经过固溶退火、旋转压接和热处理后,获得了均匀的细晶粒结构。为了研究再结晶和晶粒长大的行为,热处理温度为 1150 °C 至 1300 °C,保温时间长达 480 分钟。通过 LM、SEM、TEM、EBSD 和 XRD 方法对所得到的微观结构进行了分析,并与硬度测量结果进行了比较。在研究的温度范围内,合金具有热稳定的单相面心立方(FCC)结构。采用经典模型分析了晶粒生长动力学,并利用阿伦尼乌斯方程估算出活化能为 ∼458 kJ mol-1。在 1150 °C 的温度下,晶粒生长的阻力最大。硬度测试表明,锻造后硬度几乎增加了一倍,而在接下来的热处理过程中,由于再结晶的开始,硬度急剧下降。经计算,霍尔-佩奇硬化系数为 ∼277.5 HV μm-1/2。
{"title":"Thermal stability and grain growth kinetics in rotary swaged Al0.35CoCrFeNi complex concentrated alloy","authors":"","doi":"10.1016/j.intermet.2024.108456","DOIUrl":"10.1016/j.intermet.2024.108456","url":null,"abstract":"<div><p>A complex concentrated alloy (CCA) with a nominal composition of Al<sub>0.35</sub>CoCrFeNi (mol.%) was prepared by vacuum induction melting and tilt casting. The microstructure of the alloy in the as-cast state consists of columnar dendritic grains. The ingots were solution annealed, rotary swaged, and heat treated to obtain a uniform fine-grain structure. To study the behavior of recrystallization and grain growth, heat treatment was carried out at temperatures from 1150 °C to 1300 °C and holding times up to 480 min. The resulting microstructures were analyzed by LM, SEM, TEM, EBSD, and XRD methods followed by a comparison with the results of hardness measurements. The alloy has a thermally stable single-phase face-centered cubic (FCC) structure in the studied temperature range. The grain growth kinetics were analyzed using classical models, and the activation energy was estimated to be ∼458 kJ mol<sup>−1</sup> using an Arrhenius-type equation. The greatest resistance to grain growth was observed at a temperature of 1150 °C. Hardness tests demonstrated an almost double increase in hardness after swaging and a sharp drop during the following heat treatment due to the onset of recrystallization. The Hall-Petch hardening coefficient was calculated to be ∼277.5 HV μm<sup>−1/2</sup>.</p></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142136754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Primary slip induced band-like structures and the associated recrystallization kinetics in Ti2AlNb alloy with centimeter-grade coarse grains 具有厘米级粗晶粒的 Ti2AlNb 合金中的原生滑移诱导带状结构及相关再结晶动力学
IF 4.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-09-02 DOI: 10.1016/j.intermet.2024.108466

Ti2AlNb alloy, as a highly promising superalloy in the aerospace field, is limited by inferior workability due to centimeter-grade coarse grains formed through casting. An in-depth understanding of the relationship between deformation heterogeneities and recrystallization kinetics of the matrix B2 phase is critical to refine and optimize its microstructure. Plane strain compression followed by heat treatment, microstructure characterizations, and full-field crystal plasticity simulations were conducted. The research found that uniform primary-slips existed in most regions of the alloy. These regions exhibited negligible deformation stored energy and misorientation, and therefore, recrystallization cannot occur after heating. The observed slip transfer at grain boundaries with good geometric alignment also indicates the difficulty in dislocation pileup as the potential recrystallization site. Three typical band-like structures, i.e., transition band, slip-interlacing band, and shear band, formed by intersection and localization of slips, possessed high deformation stored energy. Cell-like substructures readily developed in the first two regions with intersecting slips, rather than in the shear band with parallel slips. As a result, many subgrains and unclosed boundaries were formed in the first two types of bands within grains after heating due to the significant recovery effect. These multilevel deformation heterogeneities were found to be strongly associated with the dislocation structure of the alloy. TEM observations found the dissociation of dislocations with narrow widths, which enhances dislocation mobility. Consequently, the primary-slip characteristic can be maintained at a relatively large deformation, and slip transfer can occur at grain boundaries where a good geometric alignment exists.

Ti2AlNb 合金是一种在航空航天领域极具发展前景的超级合金,但由于在铸造过程中形成的厘米级粗大晶粒,其可加工性受到限制。深入了解基体 B2 相的变形异质性和再结晶动力学之间的关系对于完善和优化其微观结构至关重要。研究人员进行了平面应变压缩热处理、微结构表征和全场晶体塑性模拟。研究发现,合金的大部分区域都存在均匀的初级滑移。这些区域的变形储能和错取向可忽略不计,因此加热后不会发生再结晶。在具有良好几何排列的晶界处观察到的滑移转移也表明,位错堆积难以成为潜在的再结晶部位。三种典型的带状结构,即过渡带、滑移交错带和剪切带,由滑移的交错和定位形成,具有很高的变形储能。细胞状亚结构很容易在前两个滑移相交的区域形成,而不是在滑移平行的剪切带形成。因此,由于显著的恢复效应,加热后在晶粒内的前两类带中形成了许多亚晶粒和非封闭边界。研究发现,这些多级变形异质性与合金的位错结构密切相关。TEM 观察发现,位错的解离宽度较窄,这增强了位错的流动性。因此,初级滑移特性可在相对较大的变形量下保持,滑移转移可发生在存在良好几何排列的晶界处。
{"title":"Primary slip induced band-like structures and the associated recrystallization kinetics in Ti2AlNb alloy with centimeter-grade coarse grains","authors":"","doi":"10.1016/j.intermet.2024.108466","DOIUrl":"10.1016/j.intermet.2024.108466","url":null,"abstract":"<div><p>Ti<sub>2</sub>AlNb alloy, as a highly promising superalloy in the aerospace field, is limited by inferior workability due to centimeter-grade coarse grains formed through casting. An in-depth understanding of the relationship between deformation heterogeneities and recrystallization kinetics of the matrix B2 phase is critical to refine and optimize its microstructure. Plane strain compression followed by heat treatment, microstructure characterizations, and full-field crystal plasticity simulations were conducted. The research found that uniform primary-slips existed in most regions of the alloy. These regions exhibited negligible deformation stored energy and misorientation, and therefore, recrystallization cannot occur after heating. The observed slip transfer at grain boundaries with good geometric alignment also indicates the difficulty in dislocation pileup as the potential recrystallization site. Three typical band-like structures, <em>i.e.</em>, transition band, slip-interlacing band, and shear band, formed by intersection and localization of slips, possessed high deformation stored energy. Cell-like substructures readily developed in the first two regions with intersecting slips, rather than in the shear band with parallel slips. As a result, many subgrains and unclosed boundaries were formed in the first two types of bands within grains after heating due to the significant recovery effect. These multilevel deformation heterogeneities were found to be strongly associated with the dislocation structure of the alloy. TEM observations found the dissociation of dislocations with narrow widths, which enhances dislocation mobility. Consequently, the primary-slip characteristic can be maintained at a relatively large deformation, and slip transfer can occur at grain boundaries where a good geometric alignment exists.</p></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142121635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TiO2 nanofiber-derived in-situ Al2O3 particles reinforced TiAl matrix composites 纳米 TiO2 纤维衍生的原位 Al2O3 粒子增强 TiAl 基复合材料
IF 4.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-09-02 DOI: 10.1016/j.intermet.2024.108470

In this study, Al2O3/TiAl composites were synthesized via powder metallurgy by incorporating TiO2 nanoparticles and nanofibers as oxygen sources into Ti-45Al-8Nb pre-alloy powders, followed by vacuum hot-pressing sintering to form in-situ Al2O3 particles as reinforcements. The addition of TiO2 nanofibers results in a better grain refinement effect and a more uniform distribution of Al2O3 particles within the composites. High-temperature tensile testing revealed that the composites prepared using TiO2 nanofibers exhibited slightly higher strengths and significantly improved ductility compared to those synthesized with TiO2 nanoparticles. This work not only introduces a novel additive for fabricating high-performance in-situ Al2O3/TiAl composites but also demonstrates a unique application of TiO2 nanofibers.

本研究通过粉末冶金法合成了 Al2O3/TiAl 复合材料,在 Ti-45Al-8Nb 预合金粉末中加入 TiO2 纳米颗粒和纳米纤维作为氧源,然后通过真空热压烧结形成原位 Al2O3 颗粒作为增强体。加入 TiO2 纳米纤维后,复合材料的晶粒细化效果更好,Al2O3 颗粒的分布也更均匀。高温拉伸测试表明,与使用 TiO2 纳米粒子合成的复合材料相比,使用 TiO2 纳米纤维制备的复合材料强度略高,延展性明显改善。这项工作不仅为制造高性能原位 Al2O3/TiAl 复合材料引入了一种新型添加剂,还展示了 TiO2 纳米纤维的独特应用。
{"title":"TiO2 nanofiber-derived in-situ Al2O3 particles reinforced TiAl matrix composites","authors":"","doi":"10.1016/j.intermet.2024.108470","DOIUrl":"10.1016/j.intermet.2024.108470","url":null,"abstract":"<div><p>In this study, Al<sub>2</sub>O<sub>3</sub>/TiAl composites were synthesized via powder metallurgy by incorporating TiO<sub>2</sub> nanoparticles and nanofibers as oxygen sources into Ti-45Al-8Nb pre-alloy powders, followed by vacuum hot-pressing sintering to form in-situ Al<sub>2</sub>O<sub>3</sub> particles as reinforcements. The addition of TiO<sub>2</sub> nanofibers results in a better grain refinement effect and a more uniform distribution of Al<sub>2</sub>O<sub>3</sub> particles within the composites. High-temperature tensile testing revealed that the composites prepared using TiO<sub>2</sub> nanofibers exhibited slightly higher strengths and significantly improved ductility compared to those synthesized with TiO<sub>2</sub> nanoparticles. This work not only introduces a novel additive for fabricating high-performance in-situ Al<sub>2</sub>O<sub>3</sub>/TiAl composites but also demonstrates a unique application of TiO<sub>2</sub> nanofibers.</p></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142121636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of substitution of Cr by Cu on phase equilibria and microstructures in the Fe–Ni–Co–Cr high-entropy alloys 用铜替代铬对铁-镍-钴-铬高熵合金相平衡和显微结构的影响
IF 4.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-08-30 DOI: 10.1016/j.intermet.2024.108455

The article describes how substitution of chromium by copper affects phase equilibria in Fe–Ni–Co–Cr high-entropy alloy. The alloys with copper content ranging from 0 to 20 % (at.) of Cu were prepared. The alloys were equilibrated at 900, 800, 700, and 650 °C. The samples were investigated by electron microscopy, EDX spectroscopy, and EBSD method. The face-centred cubic phases have only occurred in equilibrated alloys: austenite matrix, copper-rich FCC(Cu) phase, and regions containing these phases. The compositions of equilibrated samples at annealing temperatures are given. Fine microstructures including a semicoherent FCC phase rich in Cu and an FCC phase including the main magnetic elements (Fe, Co, Ni) were formed. The experimental results were compared with the calculated phase equilibria obtained by the CALPHAD method.

文章介绍了铜代铬如何影响铁-镍-钴-铬高熵合金中的相平衡。研究人员制备了铜含量为 0% 至 20% (at.) 的合金。合金分别在 900、800、700 和 650 °C 下进行平衡。采用电子显微镜、EDX 光谱和 EBSD 方法对样品进行了研究。平衡合金中只出现了面心立方相:奥氏体基体、富铜 FCC(Cu) 相以及含有这些相的区域。给出了退火温度下平衡样品的成分。形成了精细的微观结构,包括富含铜的半固态 FCC 相和包含主要磁性元素(铁、钴、镍)的 FCC 相。实验结果与通过 CALPHAD 方法计算得出的相平衡进行了比较。
{"title":"Influence of substitution of Cr by Cu on phase equilibria and microstructures in the Fe–Ni–Co–Cr high-entropy alloys","authors":"","doi":"10.1016/j.intermet.2024.108455","DOIUrl":"10.1016/j.intermet.2024.108455","url":null,"abstract":"<div><p>The article describes how substitution of chromium by copper affects phase equilibria in Fe–Ni–Co–Cr high-entropy alloy. The alloys with copper content ranging from 0 to 20 % (at.) of Cu were prepared. The alloys were equilibrated at 900, 800, 700, and 650 °C. The samples were investigated by electron microscopy, EDX spectroscopy, and EBSD method. The face-centred cubic phases have only occurred in equilibrated alloys: austenite matrix, copper-rich FCC(Cu) phase, and regions containing these phases. The compositions of equilibrated samples at annealing temperatures are given. Fine microstructures including a semicoherent FCC phase rich in Cu and an FCC phase including the main magnetic elements (Fe, Co, Ni) were formed. The experimental results were compared with the calculated phase equilibria obtained by the CALPHAD method.</p></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142096885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of room temperature rolling and annealing on microstructure and mechanical properties of (CrCoNi)96V4 medium entropy alloy 室温轧制和退火对 (CrCoNi)96V4 中等熵合金微观结构和机械性能的影响
IF 4.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-08-29 DOI: 10.1016/j.intermet.2024.108468

As cast (CrCoNi)96V4 medium entropy alloy(MEA)was prepared by vacuum arc melting. The MEA is deformed by rolling at room temperature with a total deformation of 67 %, The yield strength and tensile strength of the deformed MEA are 1297 MPa and 1410 MPa respectively, the elongation of the alloy is only 8 %.Then the deformed MEA was annealed for 30min at 700 °C, 800 °C and 900 °C respectively. The results show that the strength and ductility of the MEA after annealing were well balanced. The yield strength and tensile strength of the MEA after annealing at 900 °C/30 min are 678 MPa and 1024 MPa, and the elongation is maintained at 26 %. After annealing, a large number of annealing twins were formed in the MEA, which makes the strength and ductility of the MEA significantly improved. At the same time, Cr-rich particles were found in the MEA, which had positive effect on the improvement of the strength and ductility of the alloy.

采用真空电弧熔炼法制备了铸态(铬钴镍)96V4中熵合金(MEA)。然后分别在 700 ℃、800 ℃ 和 900 ℃ 下退火 30 分钟。结果表明,退火后 MEA 的强度和延展性得到了很好的平衡。在 900 °C/30 分钟退火后,MEA 的屈服强度和拉伸强度分别为 678 兆帕和 1024 兆帕,伸长率保持在 26%。退火后,MEA 中形成了大量的退火孪晶,这使得 MEA 的强度和延展性显著提高。同时,在 MEA 中发现了富铬颗粒,这对提高合金的强度和延展性有积极作用。
{"title":"Effect of room temperature rolling and annealing on microstructure and mechanical properties of (CrCoNi)96V4 medium entropy alloy","authors":"","doi":"10.1016/j.intermet.2024.108468","DOIUrl":"10.1016/j.intermet.2024.108468","url":null,"abstract":"<div><p>As cast (CrCoNi)<sub>96</sub>V<sub>4</sub> medium entropy alloy(MEA)was prepared by vacuum arc melting. The MEA is deformed by rolling at room temperature with a total deformation of 67 %, The yield strength and tensile strength of the deformed MEA are 1297 MPa and 1410 MPa respectively, the elongation of the alloy is only 8 %.Then the deformed MEA was annealed for 30min at 700 °C, 800 °C and 900 °C respectively. The results show that the strength and ductility of the MEA after annealing were well balanced. The yield strength and tensile strength of the MEA after annealing at 900 °C/30 min are 678 MPa and 1024 MPa, and the elongation is maintained at 26 %. After annealing, a large number of annealing twins were formed in the MEA, which makes the strength and ductility of the MEA significantly improved. At the same time, Cr-rich particles were found in the MEA, which had positive effect on the improvement of the strength and ductility of the alloy.</p></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142096884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Intermetallics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1