This study focuses on stability of weak grid connected voltage source converter (WG-VSC) in Low-frequency mode (LFM) (around 1–10 Hz), which is dominated by interactions among phase-locked loop (PLL), outer loop control and weak grid condition. In order to clearly reveal LFM mechanism of WG-VSC, a simple but effective PLL-equivalent model has been proposed. First, a generic small signal model consisted of PLL and ‘outer loop & WG’ two parts is derived. Then, the transfer function of complicated ‘outer loop & WG’ part is divided into two parallel channels, representing the impact of active side control and reactive side control on LFM of WG-VSC respectively. Finally, based on the multi-mode decomposition theory, a simple but effective second order PLL-equivalent (E-PLL) model is obtained for LFM stability analysis of WG-VSC. The effectiveness of E-PLL model has been verified by simulation results in PSCAD/EMTDC and experimental results based on a hardware platform.
{"title":"A PLL-equivalent model for low-frequency stability analysis of voltage source converter connected to weak grid","authors":"Xialin Li, Chen Zhang, Lin Zhu, Zhi Wang, Li Guo","doi":"10.1049/esi2.12090","DOIUrl":"10.1049/esi2.12090","url":null,"abstract":"<p>This study focuses on stability of weak grid connected voltage source converter (WG-VSC) in Low-frequency mode (LFM) (around 1–10 Hz), which is dominated by interactions among phase-locked loop (PLL), outer loop control and weak grid condition. In order to clearly reveal LFM mechanism of WG-VSC, a simple but effective PLL-equivalent model has been proposed. First, a generic small signal model consisted of PLL and ‘outer loop & WG’ two parts is derived. Then, the transfer function of complicated ‘outer loop & WG’ part is divided into two parallel channels, representing the impact of active side control and reactive side control on LFM of WG-VSC respectively. Finally, based on the multi-mode decomposition theory, a simple but effective second order PLL-equivalent (E-PLL) model is obtained for LFM stability analysis of WG-VSC. The effectiveness of E-PLL model has been verified by simulation results in PSCAD/EMTDC and experimental results based on a hardware platform.</p>","PeriodicalId":33288,"journal":{"name":"IET Energy Systems Integration","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/esi2.12090","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49371088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study presents a grid interactive solar photovoltaic (PV) system proficient with low voltage ride through capability. When the supply voltage drops more than 10%, the solar PV system remains connected and continues to supply the active power to the loads as well as to the grid. Along with the active power supply, the solar PV array system supplies the reactive power for stabilising the system. Due to the supply of both the active and reactive powers, there is a chance for a grid fed inverter (GFI) current to exceed the maximum current limit. It may result in the tripping of inverter protection. Therefore, a current limiting logic is incorporated to keep the inverter current within the safe limit. The unbalanced voltages are responsible for circulation of negative sequence currents in the system. As the prime aim of the present work deals with the supply of positive sequence currents to the grid, it is required to estimate the positive and negative sequence voltages separately. Intending the estimation of sequence voltages from unbalanced supply voltages, a frequency adaptive higher order complex filter (FAHOCF) is used. A MATLAB model of grid interactive solar PV array is developed and simulated results are verified with test results.
{"title":"Weak grid integrated solar photovoltaic-based distributed generation system proficient in supplying VAR requirement with current restriction","authors":"Subarni Pradhan, Bhim Singh, Bijaya Ketan Panigrahi","doi":"10.1049/esi2.12091","DOIUrl":"10.1049/esi2.12091","url":null,"abstract":"<p>This study presents a grid interactive solar photovoltaic (PV) system proficient with low voltage ride through capability. When the supply voltage drops more than 10%, the solar PV system remains connected and continues to supply the active power to the loads as well as to the grid. Along with the active power supply, the solar PV array system supplies the reactive power for stabilising the system. Due to the supply of both the active and reactive powers, there is a chance for a grid fed inverter (GFI) current to exceed the maximum current limit. It may result in the tripping of inverter protection. Therefore, a current limiting logic is incorporated to keep the inverter current within the safe limit. The unbalanced voltages are responsible for circulation of negative sequence currents in the system. As the prime aim of the present work deals with the supply of positive sequence currents to the grid, it is required to estimate the positive and negative sequence voltages separately. Intending the estimation of sequence voltages from unbalanced supply voltages, a frequency adaptive higher order complex filter (FAHOCF) is used. A MATLAB model of grid interactive solar PV array is developed and simulated results are verified with test results.</p>","PeriodicalId":33288,"journal":{"name":"IET Energy Systems Integration","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2022-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/esi2.12091","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41802181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The interactive demand of electrical power between integrated energy microgrid (IEMG) and smart distribution network (SDN) is growing rapidly with the increase of distributed generation (DG) installed capacity. When SDN and IEMG are connected through a single gird-connected point, the renewable power consumption may be limited by tie-line capacity. A distributed optimal dispatching method of the SDN considering the IEMG with multiple gird-connected points is proposed. The impact of various flexible resources is also considered. Firstly, a IEMG connection mode, in which each IEMG can be connected to multiple nodes of the SDN, is designed. A distributed optimal dispatching method is proposed, by which the IEMG operation privacy and the SDN responsibility to consume renewable power can be considered. Then, the electric power on tie-lines is taken as the coupling variable to establish the IEMG and SDN coordinated dispatching model. The model can be solved by adjusting the power upper limits of tie-lines circularly. Finally, the improved IEEE 33-bus system is analysed based on the proposed method. It is found that when the IEMG is with large DG installed capacity, multiple gird-connected points can improve the SDN operation flexibility and increase the operation benefits of all entities.
{"title":"Distributed optimal dispatching method of smart distribution network considering integrated energy microgrid with multiple gird-connected points","authors":"Bing Sun, Ruipeng Jing, Yuan Zeng, Leijiao Ge, Gang Liang, Shimeng Dong","doi":"10.1049/esi2.12089","DOIUrl":"10.1049/esi2.12089","url":null,"abstract":"<p>The interactive demand of electrical power between integrated energy microgrid (IEMG) and smart distribution network (SDN) is growing rapidly with the increase of distributed generation (DG) installed capacity. When SDN and IEMG are connected through a single gird-connected point, the renewable power consumption may be limited by tie-line capacity. A distributed optimal dispatching method of the SDN considering the IEMG with multiple gird-connected points is proposed. The impact of various flexible resources is also considered. Firstly, a IEMG connection mode, in which each IEMG can be connected to multiple nodes of the SDN, is designed. A distributed optimal dispatching method is proposed, by which the IEMG operation privacy and the SDN responsibility to consume renewable power can be considered. Then, the electric power on tie-lines is taken as the coupling variable to establish the IEMG and SDN coordinated dispatching model. The model can be solved by adjusting the power upper limits of tie-lines circularly. Finally, the improved IEEE 33-bus system is analysed based on the proposed method. It is found that when the IEMG is with large DG installed capacity, multiple gird-connected points can improve the SDN operation flexibility and increase the operation benefits of all entities.</p>","PeriodicalId":33288,"journal":{"name":"IET Energy Systems Integration","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/esi2.12089","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42789967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lakshmanan Sorraka Arunagiri, Bharat Singh Rajpurohit, Amit Jain
A distribution system is connected with many non-linear loads, and generated harmonies are mitigated by using distribution static compensator (DSTATCOM) which is coupled at the point of common coupling through a voltage source inverter (VSI) and filter circuit. High-frequency switching ripples are generated along with the output of the VSI during pulse width modulation switching. Inductor-capacitor-inductor (LCL) filter is used to suppress the high frequency switching noises. Still, the primary concern about the LCL filter is generation of resonance peak at the resonance frequency. The conventional synchronous reference frame