Pub Date : 2025-04-01Epub Date: 2025-01-22DOI: 10.1016/j.ijbiomac.2025.140205
Xing Cao, Yuan-Yuan Huang, Xin-Yu Tian, Yan-Peng Ni, Yu-Zhong Wang
The development of bio-based flame retardants has garnered significant attention, however, significant challenges remain in achieving efficient flame retardancy and eco-friendly preparation methods. Herein, we propose a facile, atomic-efficient, and eco-friendly strategy for synthesizing a trinity chitosan-based flame retardant, phosphite-protonated chitosan (PCS). The chemical structure was systematically analyzed and the impact of varying degrees of protonation on the dissolution behavior and rheological properties were investigated. Benefiting from the promotion of dehydration and carbonization facilitated by phosphite groups, PCS exhibits high intrinsic flame retardancy with an LOI value of 80.7 %. Moreover, its favorable rheological and film-forming properties make it well-suited for easy application as a multifunctional coating in fabric finishing through blade coating processes. The finished cotton and polyester/cotton blended fabrics exhibit excellent flame retardancy, as evidenced by increased LOI values, successful passage of vertical burning tests, reductions of up to 65.0 % and 50.3 % in pHRR and THR values, respectively. Additionally, PCS imparts superior antibacterial properties to the fabrics, achieving a 99.99 % antibacterial rate against both E. coli and S. aureus. This study introduces a straightforward and atom-economical approach for preparing highly efficient chitosan-based flame retardants, along with the development of a transparent, green, and efficacious multifunctional coating system on textiles.
{"title":"Facile and atom-economical synthesis of highly efficient chitosan-based flame retardants towards fire-retarding and antibacterial multifunctional coatings on cotton fabrics.","authors":"Xing Cao, Yuan-Yuan Huang, Xin-Yu Tian, Yan-Peng Ni, Yu-Zhong Wang","doi":"10.1016/j.ijbiomac.2025.140205","DOIUrl":"10.1016/j.ijbiomac.2025.140205","url":null,"abstract":"<p><p>The development of bio-based flame retardants has garnered significant attention, however, significant challenges remain in achieving efficient flame retardancy and eco-friendly preparation methods. Herein, we propose a facile, atomic-efficient, and eco-friendly strategy for synthesizing a trinity chitosan-based flame retardant, phosphite-protonated chitosan (PCS). The chemical structure was systematically analyzed and the impact of varying degrees of protonation on the dissolution behavior and rheological properties were investigated. Benefiting from the promotion of dehydration and carbonization facilitated by phosphite groups, PCS exhibits high intrinsic flame retardancy with an LOI value of 80.7 %. Moreover, its favorable rheological and film-forming properties make it well-suited for easy application as a multifunctional coating in fabric finishing through blade coating processes. The finished cotton and polyester/cotton blended fabrics exhibit excellent flame retardancy, as evidenced by increased LOI values, successful passage of vertical burning tests, reductions of up to 65.0 % and 50.3 % in pHRR and THR values, respectively. Additionally, PCS imparts superior antibacterial properties to the fabrics, achieving a 99.99 % antibacterial rate against both E. coli and S. aureus. This study introduces a straightforward and atom-economical approach for preparing highly efficient chitosan-based flame retardants, along with the development of a transparent, green, and efficacious multifunctional coating system on textiles.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"140205"},"PeriodicalIF":7.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143035525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemotherapy serves as the primary treatment for cancers, facing challenges due to the emergence of drug resistance. Combination therapy has been developed to combat cancer drug resistance, yet it still suffers from lack of specific targeting of cancer cells and poor accumulation at the tumor site. Consequently, targeted administration of chemotherapy medications has been employed in cancer treatment. Doxorubicin (DOX) is one of the most frequently used chemotherapeutics, functioning by inhibiting topoisomerase activity. Enhancing the anti-cancer effects of DOX and overcoming drug resistance can be accomplished via delivery by nanoparticles. This review will focus on the development of peptide-DOX conjugates, the functionalization of nanoparticles with peptides, the co-delivery of DOX and peptides, as well as the theranostic use of peptide-modified nanoparticles in cancer treatment. The peptide-DOX conjugates have been designed to enhance the targeted delivery to cancer cells by interacting with receptors that are overexpressed on tumor surfaces. Moreover, nanoparticles can be modified with peptides to improve their uptake in tumor cells via endocytosis. Nanoparticles have the ability to co-deliver DOX along with therapeutic peptides for enhanced cancer treatment. Finally, nanoparticles modified with peptides can offer theranostic capabilities by facilitating both imaging and the delivery of DOX (chemotherapy).
{"title":"Peptide-modified nanoparticles for doxorubicin delivery: Strategies to overcome chemoresistance and perspectives on carbohydrate polymers.","authors":"Xu Han, Xue Zhang, Longdan Kang, Shuai Feng, Yinyan Li, Ge Zhao","doi":"10.1016/j.ijbiomac.2025.140143","DOIUrl":"10.1016/j.ijbiomac.2025.140143","url":null,"abstract":"<p><p>Chemotherapy serves as the primary treatment for cancers, facing challenges due to the emergence of drug resistance. Combination therapy has been developed to combat cancer drug resistance, yet it still suffers from lack of specific targeting of cancer cells and poor accumulation at the tumor site. Consequently, targeted administration of chemotherapy medications has been employed in cancer treatment. Doxorubicin (DOX) is one of the most frequently used chemotherapeutics, functioning by inhibiting topoisomerase activity. Enhancing the anti-cancer effects of DOX and overcoming drug resistance can be accomplished via delivery by nanoparticles. This review will focus on the development of peptide-DOX conjugates, the functionalization of nanoparticles with peptides, the co-delivery of DOX and peptides, as well as the theranostic use of peptide-modified nanoparticles in cancer treatment. The peptide-DOX conjugates have been designed to enhance the targeted delivery to cancer cells by interacting with receptors that are overexpressed on tumor surfaces. Moreover, nanoparticles can be modified with peptides to improve their uptake in tumor cells via endocytosis. Nanoparticles have the ability to co-deliver DOX along with therapeutic peptides for enhanced cancer treatment. Finally, nanoparticles modified with peptides can offer theranostic capabilities by facilitating both imaging and the delivery of DOX (chemotherapy).</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"140143"},"PeriodicalIF":7.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143035577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-01Epub Date: 2025-01-26DOI: 10.1016/j.ijbiomac.2025.140360
Buyuan Ma, Zengxin Ma, Ning Zhang
Metamorphic proteins switch reversibly between distinctly different folds often with different functions under physiological conditions. Here, the kinetics and thermodynamics of the fold-switching at different temperatures in a metamorphic protein, KaiB, involved in cyanobacterial circadian clock, reveal that enthalpy-driven the fold-switching to form fold-switched KaiB (fsKaiB) and the fsKaiB and ground-state KaiB (gsKaiB) are more dominantly at lower and higher temperatures, respectively. Thermodynamic analysis indicates that conformational and solvent entropy have opposing effects on KaiB's fold-switching. The folding kinetic reveals that as KaiB folds, it preferentially folds into gsKaiB and then switches fold to fsKaiB. Temperature-sensitive protein fold-switching can be further extended into applications, such as new temperature-sensitive molecular switcher and biosensors development.
{"title":"Enthalpy driven temperature-sensitive conformational changes in a metamorphic protein involved in the cyanobacterial circadian clock.","authors":"Buyuan Ma, Zengxin Ma, Ning Zhang","doi":"10.1016/j.ijbiomac.2025.140360","DOIUrl":"10.1016/j.ijbiomac.2025.140360","url":null,"abstract":"<p><p>Metamorphic proteins switch reversibly between distinctly different folds often with different functions under physiological conditions. Here, the kinetics and thermodynamics of the fold-switching at different temperatures in a metamorphic protein, KaiB, involved in cyanobacterial circadian clock, reveal that enthalpy-driven the fold-switching to form fold-switched KaiB (fsKaiB) and the fsKaiB and ground-state KaiB (gsKaiB) are more dominantly at lower and higher temperatures, respectively. Thermodynamic analysis indicates that conformational and solvent entropy have opposing effects on KaiB's fold-switching. The folding kinetic reveals that as KaiB folds, it preferentially folds into gsKaiB and then switches fold to fsKaiB. Temperature-sensitive protein fold-switching can be further extended into applications, such as new temperature-sensitive molecular switcher and biosensors development.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"140360"},"PeriodicalIF":7.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143057562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The probiotic encapsulation system has the potential to enhance the prebiotic effects of probiotics. However, challenges arise from the release behavior of this system in vivo and the large size of hydrogel beads. This study aims to address the issues related to the size of previous hydrogel beads and assess the colon-targeted delivery of probiotic polysaccharides composite hydrogel beads (PPHB). PPHB prepared by gas-shearing technique significantly reduced the average particle size and demonstrated a high protective capacity for probiotics (after simulating intestinal conditions for 4 h, the viability of encapsulated probiotics remained at 107 CFU/g). The use of indocyanine green along with near-infrared-II in vivo imaging technology demonstrated the colon-targeted delivery of PPHB in vivo, which also extended the retention time of probiotics in the cecum and colon. Additionally, the colon-targeted delivery of PPHB was also demonstrated by dietary supplementation in vivo. PPHB significantly enhanced the diversity and richness of intestinal microflora species, increased the levels of short-chain fatty acids, raised the relative abundance of beneficial bacteria, and significantly decreased the relative abundance of harmful bacteria. Alginate-based PPHB is more suitable for encapsulating functional ingredients for colon-targeted delivery and modulating gut microbiota.
{"title":"Sodium alginate/low methoxyl pectin composite hydrogel beads prepared via gas-shearing technology for enhancing the colon-targeted delivery of probiotics and modulating gut microbiota.","authors":"Fan Zhang, Xujiao Zheng, Ying Ma, Wuqiang Nan, Wenjing Wu, Ziru Chu, Xin Sun, Jihong Huang, Marat Muratkhan, Fangfang Yue, Xin Wang, Xin Lü","doi":"10.1016/j.ijbiomac.2025.140375","DOIUrl":"10.1016/j.ijbiomac.2025.140375","url":null,"abstract":"<p><p>The probiotic encapsulation system has the potential to enhance the prebiotic effects of probiotics. However, challenges arise from the release behavior of this system in vivo and the large size of hydrogel beads. This study aims to address the issues related to the size of previous hydrogel beads and assess the colon-targeted delivery of probiotic polysaccharides composite hydrogel beads (PPHB). PPHB prepared by gas-shearing technique significantly reduced the average particle size and demonstrated a high protective capacity for probiotics (after simulating intestinal conditions for 4 h, the viability of encapsulated probiotics remained at 10<sup>7</sup> CFU/g). The use of indocyanine green along with near-infrared-II in vivo imaging technology demonstrated the colon-targeted delivery of PPHB in vivo, which also extended the retention time of probiotics in the cecum and colon. Additionally, the colon-targeted delivery of PPHB was also demonstrated by dietary supplementation in vivo. PPHB significantly enhanced the diversity and richness of intestinal microflora species, increased the levels of short-chain fatty acids, raised the relative abundance of beneficial bacteria, and significantly decreased the relative abundance of harmful bacteria. Alginate-based PPHB is more suitable for encapsulating functional ingredients for colon-targeted delivery and modulating gut microbiota.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"140375"},"PeriodicalIF":7.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143057567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-01Epub Date: 2025-01-29DOI: 10.1016/j.ijbiomac.2025.140484
Xin Zuo, Yao Xu, Guangxi Ren, Dan Jiang, Chunsheng Liu
Terpenoids are widely distributed in plants and are often used as defense molecules in plant-microbe interactions. However, endophytic microorganisms usually establish a better symbiotic relationship with their hosts by secreting enzymes to avoid defense plant metabolites. This study evaluated the in vitro biotransformation activity of licorice endophytic fungi on glycyrrhizin and further explored the molecular regulation of their in vivo colonization on the licorice growth and metabolism. The results indicated that licorice endophytic fungi generally possessed the ability to bio-transform glycyrrhizin, with Z6 and Z15 exhibiting glycyrrhizin-induced β-glucuronidase activity. The Z6GH2 and Z15GH2 proteins were identified to hydrolyze glycyrrhizin in different ways by prokaryotic and eukaryotic experiments. In vivo re-infestation of licorice by Z6 and Z15 revealed significant promotion of glycyrrhizin biosynthesis and accumulation by regulating the expression levels of genes involved in glycolysis and glycyrrhizin biosynthesis pathway in licorice. These findings were further validated in J3, which has glycyrrhizin biotransformation properties. In summary, this study reveals the molecular mechanism by which endophytic fungi with glycyrrhizin β-glucuronidase activity promote glycyrrhizin biosynthesis and accumulation in licorice through feedback regulation of its metabolic flux. These finding highlight the importance of endophytic fungi in regulating the accumulation of active ingredients in medicinal plants.
{"title":"Licorice endophytes activate glycyrrhizin synthesis metabolic flux through feedback of β-glucuronidase conversion activity.","authors":"Xin Zuo, Yao Xu, Guangxi Ren, Dan Jiang, Chunsheng Liu","doi":"10.1016/j.ijbiomac.2025.140484","DOIUrl":"10.1016/j.ijbiomac.2025.140484","url":null,"abstract":"<p><p>Terpenoids are widely distributed in plants and are often used as defense molecules in plant-microbe interactions. However, endophytic microorganisms usually establish a better symbiotic relationship with their hosts by secreting enzymes to avoid defense plant metabolites. This study evaluated the in vitro biotransformation activity of licorice endophytic fungi on glycyrrhizin and further explored the molecular regulation of their in vivo colonization on the licorice growth and metabolism. The results indicated that licorice endophytic fungi generally possessed the ability to bio-transform glycyrrhizin, with Z6 and Z15 exhibiting glycyrrhizin-induced β-glucuronidase activity. The Z6GH2 and Z15GH2 proteins were identified to hydrolyze glycyrrhizin in different ways by prokaryotic and eukaryotic experiments. In vivo re-infestation of licorice by Z6 and Z15 revealed significant promotion of glycyrrhizin biosynthesis and accumulation by regulating the expression levels of genes involved in glycolysis and glycyrrhizin biosynthesis pathway in licorice. These findings were further validated in J3, which has glycyrrhizin biotransformation properties. In summary, this study reveals the molecular mechanism by which endophytic fungi with glycyrrhizin β-glucuronidase activity promote glycyrrhizin biosynthesis and accumulation in licorice through feedback regulation of its metabolic flux. These finding highlight the importance of endophytic fungi in regulating the accumulation of active ingredients in medicinal plants.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"140484"},"PeriodicalIF":7.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143072982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-01Epub Date: 2025-02-03DOI: 10.1016/j.ijbiomac.2025.140648
Yi Liu, Jihong Qu, Die Dong, Zhengzong Wu, Huiyan Ma, Lu Lu, Zheng Zhang, Chao Yuan, Meng Zhao, Bo Cui
Slowly digestible starches, known to confer health benefits, are often prepared via compounding with other substances. However, starch complexes often encounter problems such as low viscosity. This work aimed to develop a corn starch/type-A gelatin (CS/GA) complex that simultaneously exhibited rapidly digestible starch (RDS) reduction, and superior viscosity. The pH and drying temperature of the complexes were systematically optimized, and a novel freeze-thaw pretreatment (FTP) technique was innovatively introduced. This work investigated the effects of varying FTP cycles (ranging from 0 to 8) on the physicochemical properties of CS/GA complexes. Results showed that FTP significantly enhanced the viscosity of the complexes while effective RDS reduction. Notably, after six FTP cycles, the complexes attained optimal properties, characterized by the highest the complex index (CI), relative crystallinity (RC) and short-range molecular order, accompanied by the lowest RDS reduction of 46.24 %. The multivariate analysis revealed CI as the crucial parameter for altering the resistant starch (RS) content. Furthermore, FTP induced cracking on the surface of starch particles was observed. In conclusion, these results were of significance for developing CS-based food materials with RDS reduction, and high viscosity characteristics, such as noodles, corn porridge and sausage.
{"title":"Freeze-thaw pretreatment improved the anti-digestibility and viscosity of corn starch/type-A gelatin complexes.","authors":"Yi Liu, Jihong Qu, Die Dong, Zhengzong Wu, Huiyan Ma, Lu Lu, Zheng Zhang, Chao Yuan, Meng Zhao, Bo Cui","doi":"10.1016/j.ijbiomac.2025.140648","DOIUrl":"10.1016/j.ijbiomac.2025.140648","url":null,"abstract":"<p><p>Slowly digestible starches, known to confer health benefits, are often prepared via compounding with other substances. However, starch complexes often encounter problems such as low viscosity. This work aimed to develop a corn starch/type-A gelatin (CS/GA) complex that simultaneously exhibited rapidly digestible starch (RDS) reduction, and superior viscosity. The pH and drying temperature of the complexes were systematically optimized, and a novel freeze-thaw pretreatment (FTP) technique was innovatively introduced. This work investigated the effects of varying FTP cycles (ranging from 0 to 8) on the physicochemical properties of CS/GA complexes. Results showed that FTP significantly enhanced the viscosity of the complexes while effective RDS reduction. Notably, after six FTP cycles, the complexes attained optimal properties, characterized by the highest the complex index (CI), relative crystallinity (RC) and short-range molecular order, accompanied by the lowest RDS reduction of 46.24 %. The multivariate analysis revealed CI as the crucial parameter for altering the resistant starch (RS) content. Furthermore, FTP induced cracking on the surface of starch particles was observed. In conclusion, these results were of significance for developing CS-based food materials with RDS reduction, and high viscosity characteristics, such as noodles, corn porridge and sausage.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"140648"},"PeriodicalIF":7.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143254101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-01Epub Date: 2025-02-03DOI: 10.1016/j.ijbiomac.2025.140652
Arnat Ronte, Jongjit Chalitangkoon, Tanaporn Sintoppun, Nantawan Niemhom, Nuttaporn Manapradit, Pimpaporn Munpiriyakul, E Johan Foster, Pathavuth Monvisade
This study presents the development of intelligent screen-printed labels for real-time food freshness monitoring. Using chitosan grafted with rosolic acid (RA) and immobilized on montmorillonite (MMT) through cationic exchange, a hybrid dye was synthesized and applied in screen-printing inks. The hybrid structure was characterized by XRD, TGA, and UV-vis, confirming improved thermal stability and maintained halochromic properties. SEM analysis showed consistent ink deposition on filter paper, while water contact angle (WCA) measurements demonstrated enhanced surface hydrophobicity due to the MMT. The labels exhibited clear pH-sensitive color transitions from yellow to purplish red (pH 2.0-12.0) and rapid ammonia sensitivity, with ΔE values exceeding 45.0 within 10 min. The labels also demonstrated excellent reversibility, storage stability, leaching resistance, and cytocompatibility. Practical tests on shrimp and milk confirmed the labels' ability to accurately monitor freshness through visible color changes. These findings highlight the potential of hybrid labels as effective, scalable freshness indicators for intelligent food packaging.
{"title":"Advanced chitosan hybrid dye labels for dynamic monitoring of shrimp and milk freshness.","authors":"Arnat Ronte, Jongjit Chalitangkoon, Tanaporn Sintoppun, Nantawan Niemhom, Nuttaporn Manapradit, Pimpaporn Munpiriyakul, E Johan Foster, Pathavuth Monvisade","doi":"10.1016/j.ijbiomac.2025.140652","DOIUrl":"10.1016/j.ijbiomac.2025.140652","url":null,"abstract":"<p><p>This study presents the development of intelligent screen-printed labels for real-time food freshness monitoring. Using chitosan grafted with rosolic acid (RA) and immobilized on montmorillonite (MMT) through cationic exchange, a hybrid dye was synthesized and applied in screen-printing inks. The hybrid structure was characterized by XRD, TGA, and UV-vis, confirming improved thermal stability and maintained halochromic properties. SEM analysis showed consistent ink deposition on filter paper, while water contact angle (WCA) measurements demonstrated enhanced surface hydrophobicity due to the MMT. The labels exhibited clear pH-sensitive color transitions from yellow to purplish red (pH 2.0-12.0) and rapid ammonia sensitivity, with ΔE values exceeding 45.0 within 10 min. The labels also demonstrated excellent reversibility, storage stability, leaching resistance, and cytocompatibility. Practical tests on shrimp and milk confirmed the labels' ability to accurately monitor freshness through visible color changes. These findings highlight the potential of hybrid labels as effective, scalable freshness indicators for intelligent food packaging.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"140652"},"PeriodicalIF":7.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143254205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-01Epub Date: 2025-01-19DOI: 10.1016/j.ijbiomac.2025.140070
Yao Zheng, Pengcheng Xue, Rong Guo, Jianyu Gong, Guangfu Qian, Changzhou Chen, Douyong Min, Yan Tong, Minsheng Lu
The efficient isolation and lignin stabilization are critical to the fractionation process of lignocellulosic biomass, enabling the subsequent valorization of both carbohydrates and lignin. In this study, a ternary deep eutectic solvent pretreatment system with outstanding reusability has been developed. Under optimal conditions (ChCl: MT: p-TsOH = 1:1:0.5, 120 °C, 60 min), the system efficiently removed 94.66 % of hemicellulose and 95.74 % of lignin while retaining 84.50 % of cellulose. Glucose was obtained from the cellulose-rich solid residue via enzymatic hydrolysis, achieving an 87.12 % yield. This DES system inhibits lignin condensation through a dual mechanism of α-etherification and intermolecular forces (π-π stacking and hydrophobic interaction). The recovered lignin exhibits a low molecular weight (922-1049 g/mol), high phenolic hydroxyl content (2.57-3.37 mmol/g), low polydispersity (1.54-1.61), and high purity (93.02 %). Combined with its superior antioxidant activity and UV shielding properties, this lignin represents a promising new resource with potential applications.
{"title":"A ternary deep eutectic solvent for efficient biomass fractionation and lignin stabilization.","authors":"Yao Zheng, Pengcheng Xue, Rong Guo, Jianyu Gong, Guangfu Qian, Changzhou Chen, Douyong Min, Yan Tong, Minsheng Lu","doi":"10.1016/j.ijbiomac.2025.140070","DOIUrl":"10.1016/j.ijbiomac.2025.140070","url":null,"abstract":"<p><p>The efficient isolation and lignin stabilization are critical to the fractionation process of lignocellulosic biomass, enabling the subsequent valorization of both carbohydrates and lignin. In this study, a ternary deep eutectic solvent pretreatment system with outstanding reusability has been developed. Under optimal conditions (ChCl: MT: p-TsOH = 1:1:0.5, 120 °C, 60 min), the system efficiently removed 94.66 % of hemicellulose and 95.74 % of lignin while retaining 84.50 % of cellulose. Glucose was obtained from the cellulose-rich solid residue via enzymatic hydrolysis, achieving an 87.12 % yield. This DES system inhibits lignin condensation through a dual mechanism of α-etherification and intermolecular forces (π-π stacking and hydrophobic interaction). The recovered lignin exhibits a low molecular weight (922-1049 g/mol), high phenolic hydroxyl content (2.57-3.37 mmol/g), low polydispersity (1.54-1.61), and high purity (93.02 %). Combined with its superior antioxidant activity and UV shielding properties, this lignin represents a promising new resource with potential applications.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"140070"},"PeriodicalIF":7.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142997455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tyrosinase is a rate-limiting enzyme for melanogenesis and abnormal melanin production can be controlled by utilizing tyrosinase inhibitory substances. To develop potent and safe inhibitors of tyrosinase, complex tannins a narrowly distributed plant polyphenols were prepared from the fruit peel of Euryale ferox (EPTs) and then structurally characterized, as well as investigated for their inhibitory effects and the involved mechanisms against tyrosinase activity and melanogenesis. The structures of EPTs were established to consist of 63.49% hydrolyzable tannins and 36.51% flavan-3-ol units. EPTs inhibited both the monophenolase and diphenolase activities of tyrosinase efficiently. This outstanding inhibition was presumably ascribed to the strong copper-ion chelating ability of EPTs and the microenvironment modification and secondary structure rearrangement of tyrosinase caused by the formation of EPTs-tyrosinase complexes. Treatment of EPTs to B16F10 cells also decreased the intracellular tyrosinase activity, induced apoptosis and G2/M cell cycle arrest, suppressed melanoma cell proliferation and downregulated the mRNA expression of tyrosinase, TRP-1 and MITF, consequently leading to a distinct reduction in melanin content. Furthermore, EPTs exhibited powerful antioxidant properties, which maybe contributed to impeding the initial steps of melanin formation. This study offered theoretical guidance for the potential applications of EPTs in cosmetic, functional food and medical industries.
{"title":"Structural characterization of complex tannins from Euryale ferox fruit peels and their inhibitory mechanisms against tyrosinase activity and melanogenesis.","authors":"Lang Wu, Wei Song, Yu Jiang, Ying Dai, Zeya Qin, Lulu Liu, Shudong Wei, Hui Chen","doi":"10.1016/j.ijbiomac.2025.139909","DOIUrl":"10.1016/j.ijbiomac.2025.139909","url":null,"abstract":"<p><p>Tyrosinase is a rate-limiting enzyme for melanogenesis and abnormal melanin production can be controlled by utilizing tyrosinase inhibitory substances. To develop potent and safe inhibitors of tyrosinase, complex tannins a narrowly distributed plant polyphenols were prepared from the fruit peel of Euryale ferox (EPTs) and then structurally characterized, as well as investigated for their inhibitory effects and the involved mechanisms against tyrosinase activity and melanogenesis. The structures of EPTs were established to consist of 63.49% hydrolyzable tannins and 36.51% flavan-3-ol units. EPTs inhibited both the monophenolase and diphenolase activities of tyrosinase efficiently. This outstanding inhibition was presumably ascribed to the strong copper-ion chelating ability of EPTs and the microenvironment modification and secondary structure rearrangement of tyrosinase caused by the formation of EPTs-tyrosinase complexes. Treatment of EPTs to B16F10 cells also decreased the intracellular tyrosinase activity, induced apoptosis and G2/M cell cycle arrest, suppressed melanoma cell proliferation and downregulated the mRNA expression of tyrosinase, TRP-1 and MITF, consequently leading to a distinct reduction in melanin content. Furthermore, EPTs exhibited powerful antioxidant properties, which maybe contributed to impeding the initial steps of melanin formation. This study offered theoretical guidance for the potential applications of EPTs in cosmetic, functional food and medical industries.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":"298 ","pages":"139909"},"PeriodicalIF":7.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142997560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-01Epub Date: 2025-01-29DOI: 10.1016/j.ijbiomac.2025.140482
Carlos Murguiondo, Jorge Barriuso, Alicia Prieto
Polylactide (PLA) occupies the first position in the global production market of bioplastics, generating a large amount of waste. Cutinases have high potential to depolymerize plastic polyesters like PLA, since cutin, their natural substrate, is structurally similar. Here, the cutinase secreted by Fusarium solani (FsC) was heterologously produced in high yields, and its hydrolytic efficiency on PLA polymers of different stereochemistry, crystallinity, and polymerization degree was evaluated. Under the conditions tested, FsC proved to be enantioselective, with poly(D,L-lactic acid) (PDLLA) as its best substrate and no activity on poly(L-lactic acid) (PLLA). The hydrolysis of PDLLA was optimized by Response Surface Methodology (p-value <0.0001). After optimization, over 8 g/L of lactic acid were recovered from 10 g/L PDLLA in 15 h at 50 °C. This outstanding performance highlights the potential of FsC for its further improvement through computational design, with a focus on broadening its activity range or substrate versatility.
{"title":"Optimized enzymatic PLA hydrolysis by a recombinant fungal cutinase: A step towards a closed PLA cycle.","authors":"Carlos Murguiondo, Jorge Barriuso, Alicia Prieto","doi":"10.1016/j.ijbiomac.2025.140482","DOIUrl":"10.1016/j.ijbiomac.2025.140482","url":null,"abstract":"<p><p>Polylactide (PLA) occupies the first position in the global production market of bioplastics, generating a large amount of waste. Cutinases have high potential to depolymerize plastic polyesters like PLA, since cutin, their natural substrate, is structurally similar. Here, the cutinase secreted by Fusarium solani (FsC) was heterologously produced in high yields, and its hydrolytic efficiency on PLA polymers of different stereochemistry, crystallinity, and polymerization degree was evaluated. Under the conditions tested, FsC proved to be enantioselective, with poly(D,L-lactic acid) (PDLLA) as its best substrate and no activity on poly(L-lactic acid) (PLLA). The hydrolysis of PDLLA was optimized by Response Surface Methodology (p-value <0.0001). After optimization, over 8 g/L of lactic acid were recovered from 10 g/L PDLLA in 15 h at 50 °C. This outstanding performance highlights the potential of FsC for its further improvement through computational design, with a focus on broadening its activity range or substrate versatility.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"140482"},"PeriodicalIF":7.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143072989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}