Deep eutectic solvents (DES) are renowned for their effectiveness in deconstructing lignocellulose and extracting lignin, yet the challenges lie in lignin condensation and the disposal of the DES remnants after pretreatment. To overcome these issues, this work proposed a holistic strategy utilizing deep eutectic solvent (DES)-driven lignocellulose deconstruction to upgrade lignocellulose into nitrogen-doped carbon dots (CDs) and iron-decorated porous carbons, serving as photocatalysts and adsorbents, respectively. These nitrogen-doped CDs via the choline chloride/FeCl3 DES pretreatment exhibited abundant nitrogen/oxygen functional groups, enhancing photocatalytic activities and facilitating effective charge separation and transfer. The photocatalytic efficiency of the CDs on dyes reached 97 % under acidic conditions primarily, and free radical quenching experiments indicated that singlet oxygen was the dominant oxidant species. Moreover, the adsorption capabilities of Fe-decorated porous carbons for Congo red reached 2432.3 mg·g-1, surpassing most existing carbon materials. The adsorption mechanism was due to a synergistic effect including physical adsorption, coordination, hydrogen bonding, electrostatic, and π-π interactions. This study proposed a synergetic conversion of DES and lignocellulose into functional carbon materials for wastewater remediation, which inspired the development of a green and cost-effective biorefinery.
深共晶溶剂(DES)因其在解构木质纤维素和提取木质素方面的有效性而闻名,但其面临的挑战在于木质素的凝结以及预处理后 DES 残留物的处理。为了克服这些问题,本研究提出了一种整体策略,利用深共晶溶剂(DES)驱动的木质纤维素解构,将木质纤维素升级为掺氮碳点(CD)和铁装饰多孔碳,分别用作光催化剂和吸附剂。通过氯化胆碱/FeCl3 DES 预处理的掺氮碳点表现出丰富的氮/氧官能团,增强了光催化活性,促进了有效的电荷分离和转移。主要在酸性条件下,CD 对染料的光催化效率达到 97%,自由基淬灭实验表明单线态氧是主要的氧化剂物种。此外,Fe 装饰多孔碳对刚果红的吸附能力达到 2432.3 mg-g-1,超过了大多数现有碳材料。吸附机理是由物理吸附、配位、氢键、静电和π-π相互作用等协同效应引起的。该研究提出了将 DES 和木质纤维素协同转化为功能性碳材料用于废水修复的方法,为开发绿色、经济的生物精炼厂提供了启发。
{"title":"DES-driven sustainable dual valorization of lignocellulose into carbon dots and porous biochar for effective wastewater remediation.","authors":"Si Hong, Aocheng Wei, Chao Xie, Xiaojun Shen, Jia-Long Wen, Tong-Qi Yuan","doi":"10.1016/j.ijbiomac.2024.137159","DOIUrl":"https://doi.org/10.1016/j.ijbiomac.2024.137159","url":null,"abstract":"<p><p>Deep eutectic solvents (DES) are renowned for their effectiveness in deconstructing lignocellulose and extracting lignin, yet the challenges lie in lignin condensation and the disposal of the DES remnants after pretreatment. To overcome these issues, this work proposed a holistic strategy utilizing deep eutectic solvent (DES)-driven lignocellulose deconstruction to upgrade lignocellulose into nitrogen-doped carbon dots (CDs) and iron-decorated porous carbons, serving as photocatalysts and adsorbents, respectively. These nitrogen-doped CDs via the choline chloride/FeCl<sub>3</sub> DES pretreatment exhibited abundant nitrogen/oxygen functional groups, enhancing photocatalytic activities and facilitating effective charge separation and transfer. The photocatalytic efficiency of the CDs on dyes reached 97 % under acidic conditions primarily, and free radical quenching experiments indicated that singlet oxygen was the dominant oxidant species. Moreover, the adsorption capabilities of Fe-decorated porous carbons for Congo red reached 2432.3 mg·g<sup>-1</sup>, surpassing most existing carbon materials. The adsorption mechanism was due to a synergistic effect including physical adsorption, coordination, hydrogen bonding, electrostatic, and π-π interactions. This study proposed a synergetic conversion of DES and lignocellulose into functional carbon materials for wastewater remediation, which inspired the development of a green and cost-effective biorefinery.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":null,"pages":null},"PeriodicalIF":7.7,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-03DOI: 10.1016/j.ijbiomac.2024.137059
Jing Ma, Yongdong Huang, Guodong Jia, Xiaoyan Dong, Qinghong Shi, Yan Sun
To combat with emerging SARS-CoV-2 variants of concern (VOCs), we report the identification of a set of unique HWK-motif peptide ligands for the receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein from a phage-displayed peptide library. These HWK-motif peptides exhibited nanomolar affinity for RBD. Among them, the peptide, HWKAVNWLKPWT (SP-HWK), had not only the highest affinities for RBD and trimer S protein, but also broad-spectrum affinities for RBDs from VOCs. Molecular dynamics simulations and competitive ELISA revealed a conserved pocket between the cryptic and the outer faces of RBD for SP-HWK binding, distinct from the human angiotensin-converting enzyme 2 receptor binding site. By coupling SP-HWK to agarose gel, the as-prepared affinity gel could efficiently capture RBD and trimer S from the ancestral strain and the Omicron variant, and the bound targets could be recovered by mild elution at pH 6.0. More importantly, the affinity gel presented excellent and stable chromatographic performance in the purification of inactivated SARS-CoV-2 and Omicron vaccines, affording high yields and purities, and strong HCP reduction. The results demonstrated the potential of SP-HWK as a broad-spectrum peptide ligand for developing a universal platform for the vaccine purification of SARS-CoV-2 and VOCs.
{"title":"Discovery of broad-spectrum high-affinity peptide ligands of spike protein for the vaccine purification of SARS-CoV-2 and Omicron variants.","authors":"Jing Ma, Yongdong Huang, Guodong Jia, Xiaoyan Dong, Qinghong Shi, Yan Sun","doi":"10.1016/j.ijbiomac.2024.137059","DOIUrl":"https://doi.org/10.1016/j.ijbiomac.2024.137059","url":null,"abstract":"<p><p>To combat with emerging SARS-CoV-2 variants of concern (VOCs), we report the identification of a set of unique HWK-motif peptide ligands for the receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein from a phage-displayed peptide library. These HWK-motif peptides exhibited nanomolar affinity for RBD. Among them, the peptide, HWKAVNWLKPWT (SP-HWK), had not only the highest affinities for RBD and trimer S protein, but also broad-spectrum affinities for RBDs from VOCs. Molecular dynamics simulations and competitive ELISA revealed a conserved pocket between the cryptic and the outer faces of RBD for SP-HWK binding, distinct from the human angiotensin-converting enzyme 2 receptor binding site. By coupling SP-HWK to agarose gel, the as-prepared affinity gel could efficiently capture RBD and trimer S from the ancestral strain and the Omicron variant, and the bound targets could be recovered by mild elution at pH 6.0. More importantly, the affinity gel presented excellent and stable chromatographic performance in the purification of inactivated SARS-CoV-2 and Omicron vaccines, affording high yields and purities, and strong HCP reduction. The results demonstrated the potential of SP-HWK as a broad-spectrum peptide ligand for developing a universal platform for the vaccine purification of SARS-CoV-2 and VOCs.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":null,"pages":null},"PeriodicalIF":7.7,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-03DOI: 10.1016/j.ijbiomac.2024.137238
At present, a major effort in biophysical studies has been paid towards exploring the interactions and release of therapeutic payloads to the specific site leaving behind healthy cells unaffected and hence, lower the drug-induced toxicity. For the purpose, interaction of β-bound CUR with calf thymus DNA (ctDNA) has been examined intensely using a series of biophysical methods like absorption, steady state fluorescence emission, and circular dichroism together with molecular docking study. The experimental analysis divulge that CUR interacts with both β–CD (although with different molar ratio) and DNA. However, the binding affinity of CUR with the target (DNA) is higher than it does with the β–CD. When β–CD-carried (10 mM) CUR (μM) (inclusion complex) comes near DNA (15–372 μM), CUR gets out from β–CD's void and approaches to binds with the DNA. The relocation of the probe occurred due to competitive binding of the CUR between β–CD and the DNA. The present investigation may provide a simple yet probable route for the transfer of encapsulated therapeutic payload of β–CD to the most relevant biomolecular target DNA.
目前,生物物理研究的主要方向是探索治疗有效载荷与特定部位的相互作用和释放,使健康细胞不受影响,从而降低药物毒性。为此,我们使用一系列生物物理方法,如吸收、稳态荧光发射和圆二色性,并结合分子对接研究,对 β 结合的 CUR 与小牛胸腺 DNA(ctDNA)的相互作用进行了深入研究。实验分析表明,CUR 与 β-CD(尽管摩尔比不同)和 DNA 都有相互作用。但是,CUR 与目标物(DNA)的结合亲和力要高于与 β-CD 的结合亲和力。当β-CD携带的(10 mM)CUR(μM)(包涵复合物)靠近DNA(15-372 μM)时,CUR从β-CD的空隙中脱出,接近DNA并与之结合。探针的迁移是由于 CUR 与 β-CD 和 DNA 之间的竞争性结合造成的。本研究为将β-CD封装的治疗载荷转移到最相关的生物分子靶DNA提供了一条简单而可行的途径。
{"title":"Exploring the interaction of curcumin with β-cyclodextrin and its binding with DNA: A combined spectroscopic and molecular docking study","authors":"","doi":"10.1016/j.ijbiomac.2024.137238","DOIUrl":"10.1016/j.ijbiomac.2024.137238","url":null,"abstract":"<div><div>At present, a major effort in biophysical studies has been paid towards exploring the interactions and release of therapeutic payloads to the specific site leaving behind healthy cells unaffected and hence, lower the drug-induced toxicity. For the purpose, interaction of β-bound CUR with calf thymus DNA (ctDNA) has been examined intensely using a series of biophysical methods like absorption, steady state fluorescence emission, and circular dichroism together with molecular docking study. The experimental analysis divulge that CUR interacts with both β–CD (although with different molar ratio) and DNA. However, the binding affinity of CUR with the target (DNA) is higher than it does with the β–CD. When β–CD-carried (10 mM) CUR (μM) (inclusion complex) comes near DNA (15–372 μM), CUR gets out from β–CD's void and approaches to binds with the DNA. The relocation of the probe occurred due to competitive binding of the CUR between β–CD and the DNA. The present investigation may provide a simple yet probable route for the transfer of encapsulated therapeutic payload of <em>β</em>–CD to the most relevant biomolecular target DNA.</div></div>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":null,"pages":null},"PeriodicalIF":7.7,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emissions of particulate matter (PM) originating from industrial and agricultural incineration had emerged as a significant public health concern. Furthermore, the considerable annual production of straw remains underutilized, particularly in China. In this study, we proposed a novel approach for holocellulose air filter production from corn stalks via low-temperature anthraquinone pulping, partial dissolving, and high-speed shear-induced regeneration. About 61.40-78.23 % of hemicellulose in corn stalks was retained in holocellulose, furthermore, the delignification rate was up to 81.63-92.51 % after low temperature (<100 °C) alkaline exactment. Subsequently, holocellulose air filters (RHF) was prepared through regeneration with high-speed shear induced (25,000 rpm) and freeze-drying. The final air filters contained approximately 8.56-12.4 % hemicellulose, exhibiting a substantial adsorption capacity for low molecules such as formaldehyde. The results revealed remarkably low PM2.5 penetration ratio (0.12 %) and pressure drop (14.3 Pa) of the air filter, while exhibiting a remarkable formaldehyde adsorption capacity of 54.5 mg/g. Moreover, the characters of high crystallinity index and robust micro/nano-structure of regenerated cellulose were obtained. This study introduced an innovative and facile strategy for gaseous formaldehyde adsorption and introduced novel solutions for agricultural waste utilization.
{"title":"A holocellulose air filter with highly efficient formaldehyde adsorption prepared via low temperature pulping and partial dissolving from corn stalks.","authors":"Xingyu Wang, Qiuyue Hu, Xueping Wang, Xiaoran Zhang, Tian Si, Xin Gao, Lincai Peng, Keli Chen, Heng Zhang","doi":"10.1016/j.ijbiomac.2024.137164","DOIUrl":"https://doi.org/10.1016/j.ijbiomac.2024.137164","url":null,"abstract":"<p><p>Emissions of particulate matter (PM) originating from industrial and agricultural incineration had emerged as a significant public health concern. Furthermore, the considerable annual production of straw remains underutilized, particularly in China. In this study, we proposed a novel approach for holocellulose air filter production from corn stalks via low-temperature anthraquinone pulping, partial dissolving, and high-speed shear-induced regeneration. About 61.40-78.23 % of hemicellulose in corn stalks was retained in holocellulose, furthermore, the delignification rate was up to 81.63-92.51 % after low temperature (<100 °C) alkaline exactment. Subsequently, holocellulose air filters (RHF) was prepared through regeneration with high-speed shear induced (25,000 rpm) and freeze-drying. The final air filters contained approximately 8.56-12.4 % hemicellulose, exhibiting a substantial adsorption capacity for low molecules such as formaldehyde. The results revealed remarkably low PM<sub>2.5</sub> penetration ratio (0.12 %) and pressure drop (14.3 Pa) of the air filter, while exhibiting a remarkable formaldehyde adsorption capacity of 54.5 mg/g. Moreover, the characters of high crystallinity index and robust micro/nano-structure of regenerated cellulose were obtained. This study introduced an innovative and facile strategy for gaseous formaldehyde adsorption and introduced novel solutions for agricultural waste utilization.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":null,"pages":null},"PeriodicalIF":7.7,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study focuses on the synthesis and practical application of bio-nanocomposite films made from a mixture of starch (ST) and Kraft lignin (KL) with graphene oxide (GO) nanoparticles. FTIR, XRD, Raman, SEM, and TEM analysis confirmed the synthesis's success of GO. The bio-nanocomposites were used as advanced coatings for triple superphosphate (TSP) fertilizers, and their implications for maize (Zea mays L.) plant growth were examined. Incorporating GO into the composite matrix is a significant accomplishment of this study, as demonstrated by the noticeable changes observed in the FTIR spectra, indicating consequent structural changes. Morphological analyses conducted by SEM reveal changes in the surface characteristics of the ST/KL films, providing essential information about the structural details of the bio-nanocomposite. The utilization of precision-coated TSP fertilizers leads to a significant enhancement in mechanical strength, as demonstrated by the improved crush resistance. Furthermore, these formulations guarantee a gradual release of phosphorus, showcasing their potential for efficient nutrient management in agricultural settings. The study examines the practical application of coated TSP fertilizers in agriculture and their positive effects on various growth parameters of Maize (Zea mays L.) plants. Using these fertilizers promotes sustainable and efficient agricultural practices, contributing to developing innovative agrochemical solutions.
本研究的重点是淀粉(ST)和牛皮纸木质素(KL)与氧化石墨烯(GO)纳米粒子混合物制成的生物纳米复合薄膜的合成和实际应用。傅立叶变换红外光谱(FTIR)、X 射线衍射(XRD)、拉曼光谱(Raman)、扫描电镜(SEM)和电子显微镜(TEM)分析证实了 GO 的成功合成。生物纳米复合材料被用作三过磷酸钙(TSP)肥料的高级涂层,并研究了其对玉米(Zea mays L.)植物生长的影响。傅立叶变换红外光谱中观察到的明显变化表明,将 GO 加入到复合基质中是本研究的一项重要成果,这也表明了随之而来的结构变化。通过扫描电镜进行的形态分析表明,ST/KL 薄膜的表面特征发生了变化,提供了有关生物纳米复合材料结构细节的重要信息。使用精密涂层的 TSP 肥料可显著提高机械强度,抗压性能的改善就证明了这一点。此外,这些配方还能保证磷的逐步释放,展示了其在农业环境中进行高效养分管理的潜力。本研究探讨了包衣 TSP 肥料在农业中的实际应用及其对玉米(Zea mays L.)植物各种生长参数的积极影响。使用这些肥料可促进可持续和高效的农业实践,有助于开发创新的农用化学品解决方案。
{"title":"Graphene oxide, starch, and kraft lignin bio-nanocomposite controlled-release phosphorus fertilizer: Effect on P management and maize growth.","authors":"Badr-Eddine Channab, Fatima Tayi, Meryem Aqlil, Adil Akil, Younes Essamlali, Achraf Chakir, Mohamed Zahouily","doi":"10.1016/j.ijbiomac.2024.137190","DOIUrl":"https://doi.org/10.1016/j.ijbiomac.2024.137190","url":null,"abstract":"<p><p>This study focuses on the synthesis and practical application of bio-nanocomposite films made from a mixture of starch (ST) and Kraft lignin (KL) with graphene oxide (GO) nanoparticles. FTIR, XRD, Raman, SEM, and TEM analysis confirmed the synthesis's success of GO. The bio-nanocomposites were used as advanced coatings for triple superphosphate (TSP) fertilizers, and their implications for maize (Zea mays L.) plant growth were examined. Incorporating GO into the composite matrix is a significant accomplishment of this study, as demonstrated by the noticeable changes observed in the FTIR spectra, indicating consequent structural changes. Morphological analyses conducted by SEM reveal changes in the surface characteristics of the ST/KL films, providing essential information about the structural details of the bio-nanocomposite. The utilization of precision-coated TSP fertilizers leads to a significant enhancement in mechanical strength, as demonstrated by the improved crush resistance. Furthermore, these formulations guarantee a gradual release of phosphorus, showcasing their potential for efficient nutrient management in agricultural settings. The study examines the practical application of coated TSP fertilizers in agriculture and their positive effects on various growth parameters of Maize (Zea mays L.) plants. Using these fertilizers promotes sustainable and efficient agricultural practices, contributing to developing innovative agrochemical solutions.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":null,"pages":null},"PeriodicalIF":7.7,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-03DOI: 10.1016/j.ijbiomac.2024.137115
Junjie Zhou, Wenhua Gao, Jinglin Wu, Zhouyang Xiang, Jinsong Zeng, Bin Wang, Jun Xu
Cellulose nanofibrils (CNFs) can serve as an efficient surface enhanced Raman scattering (SERS) platform for in situ detection of trace targets. In this study, a highly reproducible SERS platform based on TEMPO-oxidized CNFs (T-CNFs) was fabricated by the ion-exchange. Self-assembly of silver nanoparticles (AgNPs) was accomplished in only 120 s. The abundant carboxylate groups and good hydrophilicity of T-CNFs facilitated uniform and dense loading of AgNPs over the surface area. The obtained SERS substrate greatly enhanced the Raman signal of different pesticides, and the detection limits of thiram and thiabendazole were 5.81 × 10-8 M and 9.63 × 10-8 M, respectively. SERS substrate could produce homogeneous Raman-enhanced signals (relative standard deviation (RSD) = 6.59 %). In addition, due to the good flexibility, SERS substrate could collect and detect pesticide residues from the surface of apples. The intensities of Raman characteristic peak at 1384 cm-1 showed a good linear relationship with the analyte concentrations (0.96 ng/cm2-9600 ng/cm2). The constructed SERS substrate provided a theoretical basis for the preliminary rapid screening of hazardous chemical residues in food, which was of great value for the SERS technique to become a routine on-site analysis method for pesticide residues.
{"title":"Fabrication of high performance 2D flexible SERS substrate based on cellulose nanofibrils and its application for pesticide residue detection.","authors":"Junjie Zhou, Wenhua Gao, Jinglin Wu, Zhouyang Xiang, Jinsong Zeng, Bin Wang, Jun Xu","doi":"10.1016/j.ijbiomac.2024.137115","DOIUrl":"10.1016/j.ijbiomac.2024.137115","url":null,"abstract":"<p><p>Cellulose nanofibrils (CNFs) can serve as an efficient surface enhanced Raman scattering (SERS) platform for in situ detection of trace targets. In this study, a highly reproducible SERS platform based on TEMPO-oxidized CNFs (T-CNFs) was fabricated by the ion-exchange. Self-assembly of silver nanoparticles (AgNPs) was accomplished in only 120 s. The abundant carboxylate groups and good hydrophilicity of T-CNFs facilitated uniform and dense loading of AgNPs over the surface area. The obtained SERS substrate greatly enhanced the Raman signal of different pesticides, and the detection limits of thiram and thiabendazole were 5.81 × 10<sup>-8</sup> M and 9.63 × 10<sup>-8</sup> M, respectively. SERS substrate could produce homogeneous Raman-enhanced signals (relative standard deviation (RSD) = 6.59 %). In addition, due to the good flexibility, SERS substrate could collect and detect pesticide residues from the surface of apples. The intensities of Raman characteristic peak at 1384 cm<sup>-1</sup> showed a good linear relationship with the analyte concentrations (0.96 ng/cm<sup>2</sup>-9600 ng/cm<sup>2</sup>). The constructed SERS substrate provided a theoretical basis for the preliminary rapid screening of hazardous chemical residues in food, which was of great value for the SERS technique to become a routine on-site analysis method for pesticide residues.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":null,"pages":null},"PeriodicalIF":7.7,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-03DOI: 10.1016/j.ijbiomac.2024.137161
Julia Rabelo Vaz Matheus, Carollyne Maragoni-Santos, Thalita Ferreira de Freitas, Emily Farias Costa Hackbart, Regiane Ribeiro-Santos, Daniel Perrone, Ana Maria Furtado de Sousa, Cláudia Leites Luchese, Cristiano José de Andrade, Ana Elizabeth Cavalcante Fai
Smart films of starch/pectin and purple carrot peel (PCP) containing anthocyanins were developed, characterized, and used as pH-responsive tags to monitor plant-based chicken analogous. This study innovates by incorporating PCP in the film solution both as an extract and as a powder, and the resulting tags were applied to a plant-based food. PCP powder <100-mesh was directly incorporated into the film-forming suspension. For powder >100-mesh, two extracts were tested: an aqueous solution and a 1 % NADES solution added to the film-forming suspension. Quantification of PCP anthocyanins by HPLC showed a higher extraction under acidic conditions (1664 mg C3G equivalents 100 g-1). Films with PCP presented greater light protection. Films with 15 % and 25 % PCP and those with added extract showed better tensile strength (3.0-3.6 MPa), elongation at break (16-20 %) and a water contact angle of 52°. All films responded to pH variations (1 to 14) and ammonia vapor and showed ΔE* values >5. After 3 days, films used as smart tags monitoring chicken analogous presented noticeable color differences for PCPNADES (55 ± 8) and 15%PCP (40 ± 1). PCP showed strong potential as a pigmenting agent in films, especially as an aqueous extract with NADES for use as pH-responsive tags in chicken analogous.
{"title":"Starch-pectin smart tag containing purple carrot peel anthocyanins as a potential indicator of analogous meat freshness.","authors":"Julia Rabelo Vaz Matheus, Carollyne Maragoni-Santos, Thalita Ferreira de Freitas, Emily Farias Costa Hackbart, Regiane Ribeiro-Santos, Daniel Perrone, Ana Maria Furtado de Sousa, Cláudia Leites Luchese, Cristiano José de Andrade, Ana Elizabeth Cavalcante Fai","doi":"10.1016/j.ijbiomac.2024.137161","DOIUrl":"https://doi.org/10.1016/j.ijbiomac.2024.137161","url":null,"abstract":"<p><p>Smart films of starch/pectin and purple carrot peel (PCP) containing anthocyanins were developed, characterized, and used as pH-responsive tags to monitor plant-based chicken analogous. This study innovates by incorporating PCP in the film solution both as an extract and as a powder, and the resulting tags were applied to a plant-based food. PCP powder <100-mesh was directly incorporated into the film-forming suspension. For powder >100-mesh, two extracts were tested: an aqueous solution and a 1 % NADES solution added to the film-forming suspension. Quantification of PCP anthocyanins by HPLC showed a higher extraction under acidic conditions (1664 mg C3G equivalents 100 g<sup>-1</sup>). Films with PCP presented greater light protection. Films with 15 % and 25 % PCP and those with added extract showed better tensile strength (3.0-3.6 MPa), elongation at break (16-20 %) and a water contact angle of 52°. All films responded to pH variations (1 to 14) and ammonia vapor and showed ΔE* values >5. After 3 days, films used as smart tags monitoring chicken analogous presented noticeable color differences for PCP<sub>NADES</sub> (55 ± 8) and 15%PCP (40 ± 1). PCP showed strong potential as a pigmenting agent in films, especially as an aqueous extract with NADES for use as pH-responsive tags in chicken analogous.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":null,"pages":null},"PeriodicalIF":7.7,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-02DOI: 10.1016/j.ijbiomac.2024.137207
Siliang Jiang, Yongsheng Cui, Bo Wang, Zheng Fu, Caixia Dong
Three purified polysaccharides, CDAP-1, CDAP-2, and CDAP-3, were prepared from the rhizome of Cistanche deserticola and characterized. Structural analysis revealed that CDAP-1 and CDAP-2 are highly branched RG-I-type polysaccharides with side chains, including arabinans, galactans, and/or AGs, whereas CDAP-3 is a typical HG-type polysaccharide. In vivo tests revealed that treatment with the crude polysaccharide fraction (CDCP) significantly prolonged the survival of H22 tumor-bearing mice and exhibited antitumor effects. In vitro experiments demonstrated that all three polysaccharides could polarize M2-like TAMs toward the M1 phenotype. As a major component of CDCP, CDAP-2 could act on M2 macrophages through the TLR4 receptor-mediated NF-κB signaling pathway. An in vitro cell model verified that CDAP-2 could inhibit cell proliferation by reversing the polarization of M2-like TAMs to the cytotoxic M1 phenotype. Overall, we found that CDCP showed a clear antitumor effect and that its major component, CDAP-2, could reverse the suppressive TAM phenotype in the microenvironment, providing a scientific basis for the clinical application and development of C. deserticola.
{"title":"Acidic polysaccharides from Cistanche deserticola and their effects on the polarization of tumor-associated macrophages.","authors":"Siliang Jiang, Yongsheng Cui, Bo Wang, Zheng Fu, Caixia Dong","doi":"10.1016/j.ijbiomac.2024.137207","DOIUrl":"https://doi.org/10.1016/j.ijbiomac.2024.137207","url":null,"abstract":"<p><p>Three purified polysaccharides, CDAP-1, CDAP-2, and CDAP-3, were prepared from the rhizome of Cistanche deserticola and characterized. Structural analysis revealed that CDAP-1 and CDAP-2 are highly branched RG-I-type polysaccharides with side chains, including arabinans, galactans, and/or AGs, whereas CDAP-3 is a typical HG-type polysaccharide. In vivo tests revealed that treatment with the crude polysaccharide fraction (CDCP) significantly prolonged the survival of H22 tumor-bearing mice and exhibited antitumor effects. In vitro experiments demonstrated that all three polysaccharides could polarize M2-like TAMs toward the M1 phenotype. As a major component of CDCP, CDAP-2 could act on M2 macrophages through the TLR4 receptor-mediated NF-κB signaling pathway. An in vitro cell model verified that CDAP-2 could inhibit cell proliferation by reversing the polarization of M2-like TAMs to the cytotoxic M1 phenotype. Overall, we found that CDCP showed a clear antitumor effect and that its major component, CDAP-2, could reverse the suppressive TAM phenotype in the microenvironment, providing a scientific basis for the clinical application and development of C. deserticola.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":null,"pages":null},"PeriodicalIF":7.7,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-02DOI: 10.1016/j.ijbiomac.2024.137122
Dimulati Maimaiti, Xiaoyang Ge, Chengyue Wang, Jinuo Liu, Guanyu Yang, Dachuan Zhang, Yong Xu, Fan He, Xi Chen
Volumetric muscle loss (VML) significantly impairs the inherent regenerative ability of skeletal muscle and results in chronic functional impairment. Polysaccharides in the muscle extracellular matrix are crucial for regulating cell proliferation and differentiation. Recent studies indicate that fucoidan has beneficial effects on musculoskeletal conditions. However, the impact of fucoidan on skeletal muscle regeneration remains poorly understood. In this study, methacrylated fucoidan (FuMA) was synthesized through chemical grafting of the methacryloyl group onto fucoidan. In vitro experiments demonstrated that treatment with FuMA significantly up-regulated the expression of myogenic markers and promoted the formation of myotubes in C2C12 myoblast cells. Importantly, FuMA treatment led to a significant enhancement in mitochondrial energy metabolism of myoblasts via activation of the NRF2 antioxidant signaling pathway. To further investigate the regenerative properties in repairing skeletal muscle defects, we fabricated a dual crosslinked cryogel consisting of FuMA and methacrylated gelatin (GelMA) with a porous and interconnected structure. In a rat tibialis anterior muscle VML model, implantation of the FuMA/GelMA cryogel effectively promoted the regeneration of muscle fibers, reduced collagen deposition, and facilitated the formation of new blood vessels. Hence, polysaccharide-based cryogels represent a promising implantable biomimetic scaffold for facilitating skeletal muscle regeneration following severe injuries.
{"title":"Extracellular matrix-mimicking cryogels composed of methacrylated fucoidan enhance vascularized skeletal muscle regeneration following volumetric muscle loss.","authors":"Dimulati Maimaiti, Xiaoyang Ge, Chengyue Wang, Jinuo Liu, Guanyu Yang, Dachuan Zhang, Yong Xu, Fan He, Xi Chen","doi":"10.1016/j.ijbiomac.2024.137122","DOIUrl":"https://doi.org/10.1016/j.ijbiomac.2024.137122","url":null,"abstract":"<p><p>Volumetric muscle loss (VML) significantly impairs the inherent regenerative ability of skeletal muscle and results in chronic functional impairment. Polysaccharides in the muscle extracellular matrix are crucial for regulating cell proliferation and differentiation. Recent studies indicate that fucoidan has beneficial effects on musculoskeletal conditions. However, the impact of fucoidan on skeletal muscle regeneration remains poorly understood. In this study, methacrylated fucoidan (FuMA) was synthesized through chemical grafting of the methacryloyl group onto fucoidan. In vitro experiments demonstrated that treatment with FuMA significantly up-regulated the expression of myogenic markers and promoted the formation of myotubes in C2C12 myoblast cells. Importantly, FuMA treatment led to a significant enhancement in mitochondrial energy metabolism of myoblasts via activation of the NRF2 antioxidant signaling pathway. To further investigate the regenerative properties in repairing skeletal muscle defects, we fabricated a dual crosslinked cryogel consisting of FuMA and methacrylated gelatin (GelMA) with a porous and interconnected structure. In a rat tibialis anterior muscle VML model, implantation of the FuMA/GelMA cryogel effectively promoted the regeneration of muscle fibers, reduced collagen deposition, and facilitated the formation of new blood vessels. Hence, polysaccharide-based cryogels represent a promising implantable biomimetic scaffold for facilitating skeletal muscle regeneration following severe injuries.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":null,"pages":null},"PeriodicalIF":7.7,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-02DOI: 10.1016/j.ijbiomac.2024.137222
Different from human non-alcoholic fatty liver disease (NAFLD), goose fatty liver is physiological with no inflammation. Consistently, mitochondrial dysfunction, oxidative stress and apoptosis are rarely seen in goose fatty liver. Hexokinase domain-containing protein 1 (HKDC1) is involved in maintaining systemic glucose homeostasis, and its absence causes mitochondrial dysfunction. Here, we demonstrated that mitochondrial outer membrane-bound HKDC1 (mHKDC1) had an expression pattern different from that of whole-cell HKDC1 (wHKDC1). Data indicated that the protein level of whole-cell HKDC1 (wHKDC1) was increased but mHKDC1 was decreased in mouse fatty liver. Interestingly, both the protein levels of wHKDC1 and mHKDC1 were significantly increased in goose fatty liver. Treatment of goose or mouse hepatocytes with fatty liver-related factors could influence the expression of wHKDC1 and mHKDC1, but the influence on wHKDC1 was not identical to mHKDC1. HKDC1 overexpression in goose hepatocytes increased wHKDC1 and mHKDC1 expression, mitochondrial membrane potential (MMP), mitochondrial respiratory chain activity, and suppressed reactive oxygen species (ROS) generation, apoptosis and cytokine-cytokine receptor signaling pathway. In addition, mutations in mitochondrial signal peptide or activation domain of HKDC1 altered MMP or ROS levels. In conclusion, HKDC1, particularly mHKDC1, may protect goose fatty liver by regulating mitochondrial function, ROS generation, apoptosis, and inflammation-related pathways.
{"title":"Mitochondrial HKDC1 suppresses oxidative stress and apoptosis by regulating mitochondrial function in goose fatty liver","authors":"","doi":"10.1016/j.ijbiomac.2024.137222","DOIUrl":"10.1016/j.ijbiomac.2024.137222","url":null,"abstract":"<div><div>Different from human non-alcoholic fatty liver disease (NAFLD), goose fatty liver is physiological with no inflammation. Consistently, mitochondrial dysfunction, oxidative stress and apoptosis are rarely seen in goose fatty liver. Hexokinase domain-containing protein 1 (HKDC1) is involved in maintaining systemic glucose homeostasis, and its absence causes mitochondrial dysfunction. Here, we demonstrated that mitochondrial outer membrane-bound HKDC1 (mHKDC1) had an expression pattern different from that of whole-cell HKDC1 (wHKDC1). Data indicated that the protein level of whole-cell HKDC1 (wHKDC1) was increased but mHKDC1 was decreased in mouse fatty liver. Interestingly, both the protein levels of wHKDC1 and mHKDC1 were significantly increased in goose fatty liver. Treatment of goose or mouse hepatocytes with fatty liver-related factors could influence the expression of wHKDC1 and mHKDC1, but the influence on wHKDC1 was not identical to mHKDC1. HKDC1 overexpression in goose hepatocytes increased wHKDC1 and mHKDC1 expression, mitochondrial membrane potential (MMP), mitochondrial respiratory chain activity, and suppressed reactive oxygen species (ROS) generation, apoptosis and cytokine-cytokine receptor signaling pathway. In addition, mutations in mitochondrial signal peptide or activation domain of HKDC1 altered MMP or ROS levels. In conclusion, HKDC1, particularly mHKDC1, may protect goose fatty liver by regulating mitochondrial function, ROS generation, apoptosis, and inflammation-related pathways.</div></div>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":null,"pages":null},"PeriodicalIF":7.7,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}