Pub Date : 2025-04-01Epub Date: 2025-01-19DOI: 10.1016/j.ijbiomac.2025.140070
Yao Zheng, Pengcheng Xue, Rong Guo, Jianyu Gong, Guangfu Qian, Changzhou Chen, Douyong Min, Yan Tong, Minsheng Lu
The efficient isolation and lignin stabilization are critical to the fractionation process of lignocellulosic biomass, enabling the subsequent valorization of both carbohydrates and lignin. In this study, a ternary deep eutectic solvent pretreatment system with outstanding reusability has been developed. Under optimal conditions (ChCl: MT: p-TsOH = 1:1:0.5, 120 °C, 60 min), the system efficiently removed 94.66 % of hemicellulose and 95.74 % of lignin while retaining 84.50 % of cellulose. Glucose was obtained from the cellulose-rich solid residue via enzymatic hydrolysis, achieving an 87.12 % yield. This DES system inhibits lignin condensation through a dual mechanism of α-etherification and intermolecular forces (π-π stacking and hydrophobic interaction). The recovered lignin exhibits a low molecular weight (922-1049 g/mol), high phenolic hydroxyl content (2.57-3.37 mmol/g), low polydispersity (1.54-1.61), and high purity (93.02 %). Combined with its superior antioxidant activity and UV shielding properties, this lignin represents a promising new resource with potential applications.
{"title":"A ternary deep eutectic solvent for efficient biomass fractionation and lignin stabilization.","authors":"Yao Zheng, Pengcheng Xue, Rong Guo, Jianyu Gong, Guangfu Qian, Changzhou Chen, Douyong Min, Yan Tong, Minsheng Lu","doi":"10.1016/j.ijbiomac.2025.140070","DOIUrl":"10.1016/j.ijbiomac.2025.140070","url":null,"abstract":"<p><p>The efficient isolation and lignin stabilization are critical to the fractionation process of lignocellulosic biomass, enabling the subsequent valorization of both carbohydrates and lignin. In this study, a ternary deep eutectic solvent pretreatment system with outstanding reusability has been developed. Under optimal conditions (ChCl: MT: p-TsOH = 1:1:0.5, 120 °C, 60 min), the system efficiently removed 94.66 % of hemicellulose and 95.74 % of lignin while retaining 84.50 % of cellulose. Glucose was obtained from the cellulose-rich solid residue via enzymatic hydrolysis, achieving an 87.12 % yield. This DES system inhibits lignin condensation through a dual mechanism of α-etherification and intermolecular forces (π-π stacking and hydrophobic interaction). The recovered lignin exhibits a low molecular weight (922-1049 g/mol), high phenolic hydroxyl content (2.57-3.37 mmol/g), low polydispersity (1.54-1.61), and high purity (93.02 %). Combined with its superior antioxidant activity and UV shielding properties, this lignin represents a promising new resource with potential applications.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"140070"},"PeriodicalIF":7.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142997455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tyrosinase is a rate-limiting enzyme for melanogenesis and abnormal melanin production can be controlled by utilizing tyrosinase inhibitory substances. To develop potent and safe inhibitors of tyrosinase, complex tannins a narrowly distributed plant polyphenols were prepared from the fruit peel of Euryale ferox (EPTs) and then structurally characterized, as well as investigated for their inhibitory effects and the involved mechanisms against tyrosinase activity and melanogenesis. The structures of EPTs were established to consist of 63.49% hydrolyzable tannins and 36.51% flavan-3-ol units. EPTs inhibited both the monophenolase and diphenolase activities of tyrosinase efficiently. This outstanding inhibition was presumably ascribed to the strong copper-ion chelating ability of EPTs and the microenvironment modification and secondary structure rearrangement of tyrosinase caused by the formation of EPTs-tyrosinase complexes. Treatment of EPTs to B16F10 cells also decreased the intracellular tyrosinase activity, induced apoptosis and G2/M cell cycle arrest, suppressed melanoma cell proliferation and downregulated the mRNA expression of tyrosinase, TRP-1 and MITF, consequently leading to a distinct reduction in melanin content. Furthermore, EPTs exhibited powerful antioxidant properties, which maybe contributed to impeding the initial steps of melanin formation. This study offered theoretical guidance for the potential applications of EPTs in cosmetic, functional food and medical industries.
{"title":"Structural characterization of complex tannins from Euryale ferox fruit peels and their inhibitory mechanisms against tyrosinase activity and melanogenesis.","authors":"Lang Wu, Wei Song, Yu Jiang, Ying Dai, Zeya Qin, Lulu Liu, Shudong Wei, Hui Chen","doi":"10.1016/j.ijbiomac.2025.139909","DOIUrl":"10.1016/j.ijbiomac.2025.139909","url":null,"abstract":"<p><p>Tyrosinase is a rate-limiting enzyme for melanogenesis and abnormal melanin production can be controlled by utilizing tyrosinase inhibitory substances. To develop potent and safe inhibitors of tyrosinase, complex tannins a narrowly distributed plant polyphenols were prepared from the fruit peel of Euryale ferox (EPTs) and then structurally characterized, as well as investigated for their inhibitory effects and the involved mechanisms against tyrosinase activity and melanogenesis. The structures of EPTs were established to consist of 63.49% hydrolyzable tannins and 36.51% flavan-3-ol units. EPTs inhibited both the monophenolase and diphenolase activities of tyrosinase efficiently. This outstanding inhibition was presumably ascribed to the strong copper-ion chelating ability of EPTs and the microenvironment modification and secondary structure rearrangement of tyrosinase caused by the formation of EPTs-tyrosinase complexes. Treatment of EPTs to B16F10 cells also decreased the intracellular tyrosinase activity, induced apoptosis and G2/M cell cycle arrest, suppressed melanoma cell proliferation and downregulated the mRNA expression of tyrosinase, TRP-1 and MITF, consequently leading to a distinct reduction in melanin content. Furthermore, EPTs exhibited powerful antioxidant properties, which maybe contributed to impeding the initial steps of melanin formation. This study offered theoretical guidance for the potential applications of EPTs in cosmetic, functional food and medical industries.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":"298 ","pages":"139909"},"PeriodicalIF":7.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142997560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-01Epub Date: 2025-01-29DOI: 10.1016/j.ijbiomac.2025.140482
Carlos Murguiondo, Jorge Barriuso, Alicia Prieto
Polylactide (PLA) occupies the first position in the global production market of bioplastics, generating a large amount of waste. Cutinases have high potential to depolymerize plastic polyesters like PLA, since cutin, their natural substrate, is structurally similar. Here, the cutinase secreted by Fusarium solani (FsC) was heterologously produced in high yields, and its hydrolytic efficiency on PLA polymers of different stereochemistry, crystallinity, and polymerization degree was evaluated. Under the conditions tested, FsC proved to be enantioselective, with poly(D,L-lactic acid) (PDLLA) as its best substrate and no activity on poly(L-lactic acid) (PLLA). The hydrolysis of PDLLA was optimized by Response Surface Methodology (p-value <0.0001). After optimization, over 8 g/L of lactic acid were recovered from 10 g/L PDLLA in 15 h at 50 °C. This outstanding performance highlights the potential of FsC for its further improvement through computational design, with a focus on broadening its activity range or substrate versatility.
{"title":"Optimized enzymatic PLA hydrolysis by a recombinant fungal cutinase: A step towards a closed PLA cycle.","authors":"Carlos Murguiondo, Jorge Barriuso, Alicia Prieto","doi":"10.1016/j.ijbiomac.2025.140482","DOIUrl":"10.1016/j.ijbiomac.2025.140482","url":null,"abstract":"<p><p>Polylactide (PLA) occupies the first position in the global production market of bioplastics, generating a large amount of waste. Cutinases have high potential to depolymerize plastic polyesters like PLA, since cutin, their natural substrate, is structurally similar. Here, the cutinase secreted by Fusarium solani (FsC) was heterologously produced in high yields, and its hydrolytic efficiency on PLA polymers of different stereochemistry, crystallinity, and polymerization degree was evaluated. Under the conditions tested, FsC proved to be enantioselective, with poly(D,L-lactic acid) (PDLLA) as its best substrate and no activity on poly(L-lactic acid) (PLLA). The hydrolysis of PDLLA was optimized by Response Surface Methodology (p-value <0.0001). After optimization, over 8 g/L of lactic acid were recovered from 10 g/L PDLLA in 15 h at 50 °C. This outstanding performance highlights the potential of FsC for its further improvement through computational design, with a focus on broadening its activity range or substrate versatility.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"140482"},"PeriodicalIF":7.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143072989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-01Epub Date: 2025-02-24DOI: 10.1016/j.ijbiomac.2025.141448
Saleh Ghahramani, Sahab Hedjazi, Soheila Izadyar, Steffen Fischer, Ali Abdulkhani
The influence of different pulping processes-soda, monoethanolamine, and Formacell-along with cold caustic extraction (CCE) and a bleaching sequence (DEpD) as post-treatments on the properties of lignocellulosic nanocrystals (LCNCs) was evaluated. LCNCs were produced through acid hydrolysis from the pulps. SEM and AFM analyses confirmed the successful production of LCNCs with dimensions under 100 nm. FT-IR analysis indicated the presence of lignin in the nanocrystals. X-ray diffraction demonstrated that acid hydrolysis and CCE significantly impacted the crystallinity of the LCNCs; however, the bleaching effect was minimal. Thermal analysis revealed that LCNCs derived from post-treated pulps exhibited greater thermal stability than those from untreated pulps. LCNCs were utilized to create films using the solution-casting method. The produced films from various pulps and post-treatments displayed excellent and diverse mechanical and aesthetic properties. The results indicated that the pulping processes, post-treatments, and chemical composition of the pulps influenced the characteristics of both LCNCs and LCNC films. The findings suggest that CCE can be a cost-effective and eco-friendly alternative to bleaching in the production of LCNCs. Furthermore, an increase in lignin content within the pulps was found to reduce the efficiency of acid hydrolysis and crystallinity while increasing the dimensions of the LCNCs.
{"title":"Influence of different pulping processes, cold caustic extraction, and bleaching as common post-treatments on properties of produced lignocellulose nanocrystals (LCNCs) from bagasse.","authors":"Saleh Ghahramani, Sahab Hedjazi, Soheila Izadyar, Steffen Fischer, Ali Abdulkhani","doi":"10.1016/j.ijbiomac.2025.141448","DOIUrl":"10.1016/j.ijbiomac.2025.141448","url":null,"abstract":"<p><p>The influence of different pulping processes-soda, monoethanolamine, and Formacell-along with cold caustic extraction (CCE) and a bleaching sequence (DEpD) as post-treatments on the properties of lignocellulosic nanocrystals (LCNCs) was evaluated. LCNCs were produced through acid hydrolysis from the pulps. SEM and AFM analyses confirmed the successful production of LCNCs with dimensions under 100 nm. FT-IR analysis indicated the presence of lignin in the nanocrystals. X-ray diffraction demonstrated that acid hydrolysis and CCE significantly impacted the crystallinity of the LCNCs; however, the bleaching effect was minimal. Thermal analysis revealed that LCNCs derived from post-treated pulps exhibited greater thermal stability than those from untreated pulps. LCNCs were utilized to create films using the solution-casting method. The produced films from various pulps and post-treatments displayed excellent and diverse mechanical and aesthetic properties. The results indicated that the pulping processes, post-treatments, and chemical composition of the pulps influenced the characteristics of both LCNCs and LCNC films. The findings suggest that CCE can be a cost-effective and eco-friendly alternative to bleaching in the production of LCNCs. Furthermore, an increase in lignin content within the pulps was found to reduce the efficiency of acid hydrolysis and crystallinity while increasing the dimensions of the LCNCs.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"141448"},"PeriodicalIF":7.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143514279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hyaluronic acid (HA)-derived hydrogels demonstrate a significant development in the biomedical uses, especially in cancer treatment and wound repair. Cancer continues to be one of the leading causes of death worldwide, with current therapies frequently impeded by lack of specificity, side effects, and the emergence of resistance. HA hydrogels, characterized by their distinctive three-dimensional structure, hydrophilic nature, and biocompatibility, develop an advanced platform for precise drug delivery, improving therapeutic results while minimizing systemic toxicity. These hydrogels facilitate the controlled release of drugs, genes, and various therapeutic substances, enhancing the effectiveness of chemotherapy, radiotherapy, and immunotherapy. Additionally, they can be designed to react to stimuli such as pH, light, and magnetic fields, enhancing their therapeutic capabilities. In the process of wound healing, the hydrophilic and porous characteristics of HA hydrogels establish a moist environment encouraging cell growth and contributes to the tissue recovery. By imitating the extracellular matrix, they promote tissue regeneration, improve angiogenesis, and influence immune reactions. This review examines the various functions of HA-based hydrogels in cancer treatment and wound healing, highlighting their advancement, applications, and ability to change existing therapeutic methods in these important health sectors.
{"title":"Emerging roles of hyaluronic acid hydrogels in cancer treatment and wound healing: A review.","authors":"Gang Wu, Chunyan Zhong, Xiaohui Tian, Lisha Zha, Lingmi Hou, Xiaoqiang Feng","doi":"10.1016/j.ijbiomac.2025.140442","DOIUrl":"10.1016/j.ijbiomac.2025.140442","url":null,"abstract":"<p><p>Hyaluronic acid (HA)-derived hydrogels demonstrate a significant development in the biomedical uses, especially in cancer treatment and wound repair. Cancer continues to be one of the leading causes of death worldwide, with current therapies frequently impeded by lack of specificity, side effects, and the emergence of resistance. HA hydrogels, characterized by their distinctive three-dimensional structure, hydrophilic nature, and biocompatibility, develop an advanced platform for precise drug delivery, improving therapeutic results while minimizing systemic toxicity. These hydrogels facilitate the controlled release of drugs, genes, and various therapeutic substances, enhancing the effectiveness of chemotherapy, radiotherapy, and immunotherapy. Additionally, they can be designed to react to stimuli such as pH, light, and magnetic fields, enhancing their therapeutic capabilities. In the process of wound healing, the hydrophilic and porous characteristics of HA hydrogels establish a moist environment encouraging cell growth and contributes to the tissue recovery. By imitating the extracellular matrix, they promote tissue regeneration, improve angiogenesis, and influence immune reactions. This review examines the various functions of HA-based hydrogels in cancer treatment and wound healing, highlighting their advancement, applications, and ability to change existing therapeutic methods in these important health sectors.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"140442"},"PeriodicalIF":7.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143062381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-01Epub Date: 2025-02-03DOI: 10.1016/j.ijbiomac.2025.140649
Noor Ul Ain, Muhammad Haseeb Akhlaq, Kehan Zhu, Wen Ji, Lin Yi, Duxin Li, Zhenqing Zhang
Ultraviolet (UV) radiation is a primary factor contributing to photoaging, a form of premature skin aging characterized by the appearance of wrinkles, fine lines, uneven pigmentation, and reduced skin elasticity. Plant-derived polysaccharides exhibit notable antioxidant and anti-inflammatory properties, making them promising candidates for the management of skin photoaging. Nevertheless, the hydrophilic nature and large molecular size of polysaccharides make them less effective for topical application. This study aimed to develop a method to increase polysaccharide transdermal absorption, using Crataegus pinnatifida polysaccharide (CPP) as a model. Acetylation was employed to modify the CPP, yielding three derivatives with varying degrees of substitution (DS): 0.16 (Ace-CPP1), 0.43 (Ace-CPP2), and 0.56 (Ace-CPP3). The in vitro antioxidant activity increased with increasing degree of substitution. A nanoemulgel formulation was developed, achieving approximately 72 % permeation of the native CPP. Furthermore, the acetylated CPP derivatives demonstrated enhanced permeation, exceeding 92 % within 4 h. In vivo studies revealed that the Ace-CPP3-based nanoemulgel significantly outperformed the native CPP in alleviating UVB-induced photoaging. This was evidenced by reduced oxidative stress, suppression of tissue inflammation, and promotion of collagen deposition. These findings underscore the potential of nanoemulgel formulation of acetylated CPP derivatives to advance applications in dermatology and cosmeceuticals.
{"title":"A nanoemulgel formulation of acetylated Crataegus pinnatifida polysaccharide for the treatment of skin photoaging in mice.","authors":"Noor Ul Ain, Muhammad Haseeb Akhlaq, Kehan Zhu, Wen Ji, Lin Yi, Duxin Li, Zhenqing Zhang","doi":"10.1016/j.ijbiomac.2025.140649","DOIUrl":"10.1016/j.ijbiomac.2025.140649","url":null,"abstract":"<p><p>Ultraviolet (UV) radiation is a primary factor contributing to photoaging, a form of premature skin aging characterized by the appearance of wrinkles, fine lines, uneven pigmentation, and reduced skin elasticity. Plant-derived polysaccharides exhibit notable antioxidant and anti-inflammatory properties, making them promising candidates for the management of skin photoaging. Nevertheless, the hydrophilic nature and large molecular size of polysaccharides make them less effective for topical application. This study aimed to develop a method to increase polysaccharide transdermal absorption, using Crataegus pinnatifida polysaccharide (CPP) as a model. Acetylation was employed to modify the CPP, yielding three derivatives with varying degrees of substitution (DS): 0.16 (Ace-CPP<sub>1</sub>), 0.43 (Ace-CPP<sub>2</sub>), and 0.56 (Ace-CPP<sub>3</sub>). The in vitro antioxidant activity increased with increasing degree of substitution. A nanoemulgel formulation was developed, achieving approximately 72 % permeation of the native CPP. Furthermore, the acetylated CPP derivatives demonstrated enhanced permeation, exceeding 92 % within 4 h. In vivo studies revealed that the Ace-CPP<sub>3</sub>-based nanoemulgel significantly outperformed the native CPP in alleviating UVB-induced photoaging. This was evidenced by reduced oxidative stress, suppression of tissue inflammation, and promotion of collagen deposition. These findings underscore the potential of nanoemulgel formulation of acetylated CPP derivatives to advance applications in dermatology and cosmeceuticals.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"140649"},"PeriodicalIF":7.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143254203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-01Epub Date: 2025-02-06DOI: 10.1016/j.ijbiomac.2025.140716
Pruetsakorn Saosamniang, Kazuaki Matsumura, Maiko K Okajima, Tatsuo Kaneko
Effective cancer therapy faces significant challenges, including non-selective toxicity, limited structural stability, inconsistent nanoparticle (NP) morphology, and instability under varying biological conditions. These issues hindering targeted delivery and therapeutic efficacy. Previous approaches using polysaccharide-based nanomaterials have shown promise; however, problems such as inconsistent NP sizes and shapes, poor mechanical stability, and limited pH resilience restrict their clinical potential. This study hypothesized that sacran, a cyanobacterial liquid crystalline (LC) polysaccharide, can stabilize ZnO NPs, allowing for controlled mineralization, enhanced stability, and selective cytotoxicity. We developed ZnO nanocomposite xerogels in an LC sacran matrix, yielding block-like ZnO NPs (25-70 nm) with high surface-area-to-volume ratios that improve cellular uptake in tumor environments. Incorporating these NPs into chemically crosslinked sacran matrices resulted in a 3-fold increase in mechanical strength and a 10-fold improvement in swelling capacity compared to physically crosslinked systems. Additionally, the sacran-ZnO nanocomposites demonstrated robust stability under various pH conditions, indicating their resilience in diverse biological environments. Cytotoxicity assays revealed that higher concentrations of ZnO NP selectively increased toxicity toward human lung cancer cells (A549), with less impact on human dermal fibroblasts (HDFa). Moreover, HDFa successfully attached to and proliferated on the smooth surfaces of the xerogels, emphasizing their compatibility with normal cells. This highlights the potential of sacran-ZnO nanocomposite xerogels as cancer-selective therapeutic materials, offering stability and effectiveness even under varying biological conditions, while addressing key challenges associated with earlier NP-based therapies.
{"title":"Directing mineralization of ZnO nanoparticles in cyanobacterial liquid crystalline polysaccharides for cancer therapies.","authors":"Pruetsakorn Saosamniang, Kazuaki Matsumura, Maiko K Okajima, Tatsuo Kaneko","doi":"10.1016/j.ijbiomac.2025.140716","DOIUrl":"10.1016/j.ijbiomac.2025.140716","url":null,"abstract":"<p><p>Effective cancer therapy faces significant challenges, including non-selective toxicity, limited structural stability, inconsistent nanoparticle (NP) morphology, and instability under varying biological conditions. These issues hindering targeted delivery and therapeutic efficacy. Previous approaches using polysaccharide-based nanomaterials have shown promise; however, problems such as inconsistent NP sizes and shapes, poor mechanical stability, and limited pH resilience restrict their clinical potential. This study hypothesized that sacran, a cyanobacterial liquid crystalline (LC) polysaccharide, can stabilize ZnO NPs, allowing for controlled mineralization, enhanced stability, and selective cytotoxicity. We developed ZnO nanocomposite xerogels in an LC sacran matrix, yielding block-like ZnO NPs (25-70 nm) with high surface-area-to-volume ratios that improve cellular uptake in tumor environments. Incorporating these NPs into chemically crosslinked sacran matrices resulted in a 3-fold increase in mechanical strength and a 10-fold improvement in swelling capacity compared to physically crosslinked systems. Additionally, the sacran-ZnO nanocomposites demonstrated robust stability under various pH conditions, indicating their resilience in diverse biological environments. Cytotoxicity assays revealed that higher concentrations of ZnO NP selectively increased toxicity toward human lung cancer cells (A549), with less impact on human dermal fibroblasts (HDFa). Moreover, HDFa successfully attached to and proliferated on the smooth surfaces of the xerogels, emphasizing their compatibility with normal cells. This highlights the potential of sacran-ZnO nanocomposite xerogels as cancer-selective therapeutic materials, offering stability and effectiveness even under varying biological conditions, while addressing key challenges associated with earlier NP-based therapies.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"140716"},"PeriodicalIF":7.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143373448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-01DOI: 10.1016/j.ijbiomac.2025.142767
Yuanyuan Zhang , Jing Cheng , Wenxiao Liu , Linyi Zhou , Chun Yang , Yongqing Li , Enqi Du
Bovine viral diarrhea virus (BVDV) is a major pathogen in cattle herds, widely distributed across the globe and causing significant economic losses to the cattle industry. The nonstructural protein NS3 is highly conserved across BVDV subtypes. Identifying and screening epitopes on BVDV NS3 is crucial for developing sensitive, specific diagnostic tools. In this study, we obtained three monoclonal antibodies (mAbs) against the NS3 protein: 2F7, 3E8, and 4D6. Three novel linear B-cell epitope 100EYG102, 384FLDIA388, and 100EYGVK104 were identified through reactions of these mAbs with a series of continuous-truncated peptides and one of which a rare three-amino-acid B-cell epitope 100EYG102. Critical amino acid residues were further characterized through alanine (A)-scanning mutagenesis. Sequence alignment revealed that 100EYG102 and 100EYGVK104 were highly conserved allowing mAbs 2F7 and 4D6 to recognize all BVDV subtypes. In contrast, 384FLDIA388 was specifically conserved in BVDV-1 and BVDV-3 enabling 3E8 mAb to differential diagnosis BVDV-2 from other BVDV subtypes. Additionally, preliminary diagnostic assays for BVDV were established by western blotting and peptide-based blocking ELISA. Moreover, we observed that these mAbs could inhibit the replication of BVDV. These findings provide a theoretical foundation for developing of therapeutic strategies for nonstructural protein and accurate diagnostic procedures.
{"title":"Identification of three novel B cell epitopes targeting the bovine viral diarrhea virus NS3 protein for use in diagnostics and vaccine development","authors":"Yuanyuan Zhang , Jing Cheng , Wenxiao Liu , Linyi Zhou , Chun Yang , Yongqing Li , Enqi Du","doi":"10.1016/j.ijbiomac.2025.142767","DOIUrl":"10.1016/j.ijbiomac.2025.142767","url":null,"abstract":"<div><div>Bovine viral diarrhea virus (BVDV) is a major pathogen in cattle herds, widely distributed across the globe and causing significant economic losses to the cattle industry. The nonstructural protein NS3 is highly conserved across BVDV subtypes. Identifying and screening epitopes on BVDV NS3 is crucial for developing sensitive, specific diagnostic tools. In this study, we obtained three monoclonal antibodies (mAbs) against the NS3 protein: 2F7, 3E8, and 4D6. Three novel linear B-cell epitope <sup>100</sup>EYG<sup>102</sup>, <sup>384</sup>FLDIA<sup>388</sup>, and <sup>100</sup>EYGVK<sup>104</sup> were identified through reactions of these mAbs with a series of continuous-truncated peptides and one of which a rare three-amino-acid B-cell epitope <sup>100</sup>EYG<sup>102</sup>. Critical amino acid residues were further characterized through alanine (A)-scanning mutagenesis. Sequence alignment revealed that <sup>100</sup>EYG<sup>102</sup> and <sup>100</sup>EYGVK<sup>104</sup> were highly conserved allowing mAbs 2F7 and 4D6 to recognize all BVDV subtypes. In contrast, <sup>384</sup>FLDIA<sup>388</sup> was specifically conserved in BVDV-1 and BVDV-3 enabling 3E8 mAb to differential diagnosis BVDV-2 from other BVDV subtypes. Additionally, preliminary diagnostic assays for BVDV were established by western blotting and peptide-based blocking ELISA. Moreover, we observed that these mAbs could inhibit the replication of BVDV. These findings provide a theoretical foundation for developing of therapeutic strategies for nonstructural protein and accurate diagnostic procedures.</div></div>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":"308 ","pages":"Article 142767"},"PeriodicalIF":7.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143759841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-01Epub Date: 2025-01-23DOI: 10.1016/j.ijbiomac.2025.140264
Yongcheng Chen, Huan Liu, Lang Zhang, Huifang Zeng, LiHe Jiang, Qinghong Qin, Dequan Li, Guanming Lu
The aim of this study was to investigate the inhibitory effect of glutamate molecular structure and protein on breast cancer cell metastasis and the potential inhibitory mechanism of cell-derived exosomes via MAPK signaling pathway. Breast cancer cell lines with high metastatic potential were selected by in vitro cell culture technique. The effects of specific inhibitors of glutamic acid on the proliferation and metastasis of breast cancer cells were studied. Changes in protein expression profiles were analyzed by proteomics techniques to identify key proteins associated with breast cancer metastasis. Breast cancer cells were treated with inhibitors of the MAPK signaling pathway to evaluate their effect on cell metastasis and compare with exosome treatment. The results showed that the specific inhibitors of glutamate molecular structure could significantly inhibit the proliferation and metastasis of breast cancer cells. Proteomic analysis revealed several down-regulated proteins that are closely related to breast cancer metastasis.
{"title":"Glutamate molecular structure and protein affect the inhibition of breast cancer cell metastasis: Cell-derived exosomes inhibitory effects through the MAPK signaling pathway.","authors":"Yongcheng Chen, Huan Liu, Lang Zhang, Huifang Zeng, LiHe Jiang, Qinghong Qin, Dequan Li, Guanming Lu","doi":"10.1016/j.ijbiomac.2025.140264","DOIUrl":"10.1016/j.ijbiomac.2025.140264","url":null,"abstract":"<p><p>The aim of this study was to investigate the inhibitory effect of glutamate molecular structure and protein on breast cancer cell metastasis and the potential inhibitory mechanism of cell-derived exosomes via MAPK signaling pathway. Breast cancer cell lines with high metastatic potential were selected by in vitro cell culture technique. The effects of specific inhibitors of glutamic acid on the proliferation and metastasis of breast cancer cells were studied. Changes in protein expression profiles were analyzed by proteomics techniques to identify key proteins associated with breast cancer metastasis. Breast cancer cells were treated with inhibitors of the MAPK signaling pathway to evaluate their effect on cell metastasis and compare with exosome treatment. The results showed that the specific inhibitors of glutamate molecular structure could significantly inhibit the proliferation and metastasis of breast cancer cells. Proteomic analysis revealed several down-regulated proteins that are closely related to breast cancer metastasis.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"140264"},"PeriodicalIF":7.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143035530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
As one of the most commonly used chemotherapeutic agents in clinical practice, cisplatin is unable to selectively accumulate in tumor tissue due to its lack of targeting ability, leading to increased systemic toxicities. Additionally, the effectiveness of monotherapy is greatly limited. Therefore, the development of new cisplatin-based drug delivery systems is essential to improve the effectiveness of tumor treatment. In this study, an iron-based metal-organic framework (MOF) was synthesized to encapsulate cisplatin, and then coated with hyaluronic acid (HA) to create a MOF-based nanoplatform called MPt@HA NPs. This novel nanoplatform achieved the combination of chemodynamic therapy (CDT) with targeted chemotherapy for the treatment of lung cancer. The results showed that MPt@HA NPs have stronger cytotoxicity compared to conventional doses of cisplatin due to the generation of reactive oxygen species (ROS) through the Fenton reaction and DNA damage caused by cisplatin. Therefore, MPt@HA NPs effectively inhibit the tumor growth and prolong the median survival of tumor-bearing mice. Therefore, the MOF-based nanoplatform MPt@HA NPs may present a new option for multi-modal therapy of solid tumors.
{"title":"Hyaluronic acid modified metal-organic frameworks loading cisplatin achieve combined chemodynamic therapy and chemotherapy for lung cancer.","authors":"Qian Wen, Jianmei Li, Hongjun Deng, Biqiong Wang, Jingrong Huang, Jie Dai, Yun Lu, Fancai Zeng, Yue Chen, Ling Zhao, Shaozhi Fu","doi":"10.1016/j.ijbiomac.2025.140238","DOIUrl":"10.1016/j.ijbiomac.2025.140238","url":null,"abstract":"<p><p>As one of the most commonly used chemotherapeutic agents in clinical practice, cisplatin is unable to selectively accumulate in tumor tissue due to its lack of targeting ability, leading to increased systemic toxicities. Additionally, the effectiveness of monotherapy is greatly limited. Therefore, the development of new cisplatin-based drug delivery systems is essential to improve the effectiveness of tumor treatment. In this study, an iron-based metal-organic framework (MOF) was synthesized to encapsulate cisplatin, and then coated with hyaluronic acid (HA) to create a MOF-based nanoplatform called MPt@HA NPs. This novel nanoplatform achieved the combination of chemodynamic therapy (CDT) with targeted chemotherapy for the treatment of lung cancer. The results showed that MPt@HA NPs have stronger cytotoxicity compared to conventional doses of cisplatin due to the generation of reactive oxygen species (ROS) through the Fenton reaction and DNA damage caused by cisplatin. Therefore, MPt@HA NPs effectively inhibit the tumor growth and prolong the median survival of tumor-bearing mice. Therefore, the MOF-based nanoplatform MPt@HA NPs may present a new option for multi-modal therapy of solid tumors.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"140238"},"PeriodicalIF":7.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143035560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}