首页 > 最新文献

International Journal of Biological Macromolecules最新文献

英文 中文
A ternary deep eutectic solvent for efficient biomass fractionation and lignin stabilization. 一种用于高效生物质分馏和木质素稳定的三元深共熔溶剂。
IF 7.7 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-04-01 Epub Date: 2025-01-19 DOI: 10.1016/j.ijbiomac.2025.140070
Yao Zheng, Pengcheng Xue, Rong Guo, Jianyu Gong, Guangfu Qian, Changzhou Chen, Douyong Min, Yan Tong, Minsheng Lu

The efficient isolation and lignin stabilization are critical to the fractionation process of lignocellulosic biomass, enabling the subsequent valorization of both carbohydrates and lignin. In this study, a ternary deep eutectic solvent pretreatment system with outstanding reusability has been developed. Under optimal conditions (ChCl: MT: p-TsOH = 1:1:0.5, 120 °C, 60 min), the system efficiently removed 94.66 % of hemicellulose and 95.74 % of lignin while retaining 84.50 % of cellulose. Glucose was obtained from the cellulose-rich solid residue via enzymatic hydrolysis, achieving an 87.12 % yield. This DES system inhibits lignin condensation through a dual mechanism of α-etherification and intermolecular forces (π-π stacking and hydrophobic interaction). The recovered lignin exhibits a low molecular weight (922-1049 g/mol), high phenolic hydroxyl content (2.57-3.37 mmol/g), low polydispersity (1.54-1.61), and high purity (93.02 %). Combined with its superior antioxidant activity and UV shielding properties, this lignin represents a promising new resource with potential applications.

有效的分离和木质素稳定对木质纤维素生物质的分馏过程至关重要,使碳水化合物和木质素的后续增值成为可能。本研究开发了一种可重复使用的三元深共晶溶剂预处理体系。在最佳条件下(ChCl: MT: p-TsOH = 1:1:0.5,120 °C, 60 min),体系有效脱除94.66 %半纤维素和95.74 %木质素,保留84.50 %纤维素。通过酶解从富含纤维素的固体残渣中得到葡萄糖,产率达到87.12 %。该DES体系通过α-醚化和分子间作用力(π-π堆积和疏水相互作用)的双重机制抑制木质素缩聚。所得木质素具有低分子量(922 ~ 1049 g/mol)、高酚羟基含量(2.57 ~ 3.37 mmol/g)、低多分散性(1.54 ~ 1.61)和高纯度(93.02 %)的特点。该木质素具有良好的抗氧化活性和紫外线屏蔽性能,是一种具有潜在应用前景的新资源。
{"title":"A ternary deep eutectic solvent for efficient biomass fractionation and lignin stabilization.","authors":"Yao Zheng, Pengcheng Xue, Rong Guo, Jianyu Gong, Guangfu Qian, Changzhou Chen, Douyong Min, Yan Tong, Minsheng Lu","doi":"10.1016/j.ijbiomac.2025.140070","DOIUrl":"10.1016/j.ijbiomac.2025.140070","url":null,"abstract":"<p><p>The efficient isolation and lignin stabilization are critical to the fractionation process of lignocellulosic biomass, enabling the subsequent valorization of both carbohydrates and lignin. In this study, a ternary deep eutectic solvent pretreatment system with outstanding reusability has been developed. Under optimal conditions (ChCl: MT: p-TsOH = 1:1:0.5, 120 °C, 60 min), the system efficiently removed 94.66 % of hemicellulose and 95.74 % of lignin while retaining 84.50 % of cellulose. Glucose was obtained from the cellulose-rich solid residue via enzymatic hydrolysis, achieving an 87.12 % yield. This DES system inhibits lignin condensation through a dual mechanism of α-etherification and intermolecular forces (π-π stacking and hydrophobic interaction). The recovered lignin exhibits a low molecular weight (922-1049 g/mol), high phenolic hydroxyl content (2.57-3.37 mmol/g), low polydispersity (1.54-1.61), and high purity (93.02 %). Combined with its superior antioxidant activity and UV shielding properties, this lignin represents a promising new resource with potential applications.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"140070"},"PeriodicalIF":7.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142997455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural characterization of complex tannins from Euryale ferox fruit peels and their inhibitory mechanisms against tyrosinase activity and melanogenesis. 芡实果皮复合单宁的结构特征及其对酪氨酸酶活性和黑素生成的抑制机制。
IF 7.7 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-04-01 Epub Date: 2025-01-14 DOI: 10.1016/j.ijbiomac.2025.139909
Lang Wu, Wei Song, Yu Jiang, Ying Dai, Zeya Qin, Lulu Liu, Shudong Wei, Hui Chen

Tyrosinase is a rate-limiting enzyme for melanogenesis and abnormal melanin production can be controlled by utilizing tyrosinase inhibitory substances. To develop potent and safe inhibitors of tyrosinase, complex tannins a narrowly distributed plant polyphenols were prepared from the fruit peel of Euryale ferox (EPTs) and then structurally characterized, as well as investigated for their inhibitory effects and the involved mechanisms against tyrosinase activity and melanogenesis. The structures of EPTs were established to consist of 63.49% hydrolyzable tannins and 36.51% flavan-3-ol units. EPTs inhibited both the monophenolase and diphenolase activities of tyrosinase efficiently. This outstanding inhibition was presumably ascribed to the strong copper-ion chelating ability of EPTs and the microenvironment modification and secondary structure rearrangement of tyrosinase caused by the formation of EPTs-tyrosinase complexes. Treatment of EPTs to B16F10 cells also decreased the intracellular tyrosinase activity, induced apoptosis and G2/M cell cycle arrest, suppressed melanoma cell proliferation and downregulated the mRNA expression of tyrosinase, TRP-1 and MITF, consequently leading to a distinct reduction in melanin content. Furthermore, EPTs exhibited powerful antioxidant properties, which maybe contributed to impeding the initial steps of melanin formation. This study offered theoretical guidance for the potential applications of EPTs in cosmetic, functional food and medical industries.

酪氨酸酶是黑色素生成的限速酶,利用酪氨酸酶抑制物质可以控制异常的黑色素生成。为了开发高效、安全的酪氨酸酶抑制剂,从芡实果皮中提取了分布较窄的植物多酚类化合物——复合单宁,对其进行了结构表征,并对其抑制酪氨酸酶活性和黑素生成的作用机制进行了研究。ept的结构由63.49%的可水解单宁和36.51%的黄烷-3-醇组成。EPTs能有效抑制酪氨酸酶的单酚酶和二酚酶活性。这种显著的抑制作用可能与EPTs具有较强的铜离子螯合能力以及EPTs-酪氨酸酶复合物的形成引起酪氨酸酶的微环境修饰和二级结构重排有关。EPTs对B16F10细胞的处理也降低了细胞内酪氨酸酶活性,诱导细胞凋亡和G2/M细胞周期阻滞,抑制黑色素瘤细胞增殖,下调酪氨酸酶、TRP-1和MITF mRNA的表达,导致黑色素含量明显降低。此外,EPTs表现出强大的抗氧化特性,这可能有助于阻止黑色素形成的初始步骤。本研究为EPTs在化妆品、功能食品和医疗等行业的潜在应用提供了理论指导。
{"title":"Structural characterization of complex tannins from Euryale ferox fruit peels and their inhibitory mechanisms against tyrosinase activity and melanogenesis.","authors":"Lang Wu, Wei Song, Yu Jiang, Ying Dai, Zeya Qin, Lulu Liu, Shudong Wei, Hui Chen","doi":"10.1016/j.ijbiomac.2025.139909","DOIUrl":"10.1016/j.ijbiomac.2025.139909","url":null,"abstract":"<p><p>Tyrosinase is a rate-limiting enzyme for melanogenesis and abnormal melanin production can be controlled by utilizing tyrosinase inhibitory substances. To develop potent and safe inhibitors of tyrosinase, complex tannins a narrowly distributed plant polyphenols were prepared from the fruit peel of Euryale ferox (EPTs) and then structurally characterized, as well as investigated for their inhibitory effects and the involved mechanisms against tyrosinase activity and melanogenesis. The structures of EPTs were established to consist of 63.49% hydrolyzable tannins and 36.51% flavan-3-ol units. EPTs inhibited both the monophenolase and diphenolase activities of tyrosinase efficiently. This outstanding inhibition was presumably ascribed to the strong copper-ion chelating ability of EPTs and the microenvironment modification and secondary structure rearrangement of tyrosinase caused by the formation of EPTs-tyrosinase complexes. Treatment of EPTs to B16F10 cells also decreased the intracellular tyrosinase activity, induced apoptosis and G2/M cell cycle arrest, suppressed melanoma cell proliferation and downregulated the mRNA expression of tyrosinase, TRP-1 and MITF, consequently leading to a distinct reduction in melanin content. Furthermore, EPTs exhibited powerful antioxidant properties, which maybe contributed to impeding the initial steps of melanin formation. This study offered theoretical guidance for the potential applications of EPTs in cosmetic, functional food and medical industries.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":"298 ","pages":"139909"},"PeriodicalIF":7.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142997560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimized enzymatic PLA hydrolysis by a recombinant fungal cutinase: A step towards a closed PLA cycle.
IF 7.7 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-04-01 Epub Date: 2025-01-29 DOI: 10.1016/j.ijbiomac.2025.140482
Carlos Murguiondo, Jorge Barriuso, Alicia Prieto

Polylactide (PLA) occupies the first position in the global production market of bioplastics, generating a large amount of waste. Cutinases have high potential to depolymerize plastic polyesters like PLA, since cutin, their natural substrate, is structurally similar. Here, the cutinase secreted by Fusarium solani (FsC) was heterologously produced in high yields, and its hydrolytic efficiency on PLA polymers of different stereochemistry, crystallinity, and polymerization degree was evaluated. Under the conditions tested, FsC proved to be enantioselective, with poly(D,L-lactic acid) (PDLLA) as its best substrate and no activity on poly(L-lactic acid) (PLLA). The hydrolysis of PDLLA was optimized by Response Surface Methodology (p-value <0.0001). After optimization, over 8 g/L of lactic acid were recovered from 10 g/L PDLLA in 15 h at 50 °C. This outstanding performance highlights the potential of FsC for its further improvement through computational design, with a focus on broadening its activity range or substrate versatility.

{"title":"Optimized enzymatic PLA hydrolysis by a recombinant fungal cutinase: A step towards a closed PLA cycle.","authors":"Carlos Murguiondo, Jorge Barriuso, Alicia Prieto","doi":"10.1016/j.ijbiomac.2025.140482","DOIUrl":"10.1016/j.ijbiomac.2025.140482","url":null,"abstract":"<p><p>Polylactide (PLA) occupies the first position in the global production market of bioplastics, generating a large amount of waste. Cutinases have high potential to depolymerize plastic polyesters like PLA, since cutin, their natural substrate, is structurally similar. Here, the cutinase secreted by Fusarium solani (FsC) was heterologously produced in high yields, and its hydrolytic efficiency on PLA polymers of different stereochemistry, crystallinity, and polymerization degree was evaluated. Under the conditions tested, FsC proved to be enantioselective, with poly(D,L-lactic acid) (PDLLA) as its best substrate and no activity on poly(L-lactic acid) (PLLA). The hydrolysis of PDLLA was optimized by Response Surface Methodology (p-value <0.0001). After optimization, over 8 g/L of lactic acid were recovered from 10 g/L PDLLA in 15 h at 50 °C. This outstanding performance highlights the potential of FsC for its further improvement through computational design, with a focus on broadening its activity range or substrate versatility.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"140482"},"PeriodicalIF":7.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143072989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of different pulping processes, cold caustic extraction, and bleaching as common post-treatments on properties of produced lignocellulose nanocrystals (LCNCs) from bagasse.
IF 7.7 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-04-01 Epub Date: 2025-02-24 DOI: 10.1016/j.ijbiomac.2025.141448
Saleh Ghahramani, Sahab Hedjazi, Soheila Izadyar, Steffen Fischer, Ali Abdulkhani

The influence of different pulping processes-soda, monoethanolamine, and Formacell-along with cold caustic extraction (CCE) and a bleaching sequence (DEpD) as post-treatments on the properties of lignocellulosic nanocrystals (LCNCs) was evaluated. LCNCs were produced through acid hydrolysis from the pulps. SEM and AFM analyses confirmed the successful production of LCNCs with dimensions under 100 nm. FT-IR analysis indicated the presence of lignin in the nanocrystals. X-ray diffraction demonstrated that acid hydrolysis and CCE significantly impacted the crystallinity of the LCNCs; however, the bleaching effect was minimal. Thermal analysis revealed that LCNCs derived from post-treated pulps exhibited greater thermal stability than those from untreated pulps. LCNCs were utilized to create films using the solution-casting method. The produced films from various pulps and post-treatments displayed excellent and diverse mechanical and aesthetic properties. The results indicated that the pulping processes, post-treatments, and chemical composition of the pulps influenced the characteristics of both LCNCs and LCNC films. The findings suggest that CCE can be a cost-effective and eco-friendly alternative to bleaching in the production of LCNCs. Furthermore, an increase in lignin content within the pulps was found to reduce the efficiency of acid hydrolysis and crystallinity while increasing the dimensions of the LCNCs.

{"title":"Influence of different pulping processes, cold caustic extraction, and bleaching as common post-treatments on properties of produced lignocellulose nanocrystals (LCNCs) from bagasse.","authors":"Saleh Ghahramani, Sahab Hedjazi, Soheila Izadyar, Steffen Fischer, Ali Abdulkhani","doi":"10.1016/j.ijbiomac.2025.141448","DOIUrl":"10.1016/j.ijbiomac.2025.141448","url":null,"abstract":"<p><p>The influence of different pulping processes-soda, monoethanolamine, and Formacell-along with cold caustic extraction (CCE) and a bleaching sequence (DEpD) as post-treatments on the properties of lignocellulosic nanocrystals (LCNCs) was evaluated. LCNCs were produced through acid hydrolysis from the pulps. SEM and AFM analyses confirmed the successful production of LCNCs with dimensions under 100 nm. FT-IR analysis indicated the presence of lignin in the nanocrystals. X-ray diffraction demonstrated that acid hydrolysis and CCE significantly impacted the crystallinity of the LCNCs; however, the bleaching effect was minimal. Thermal analysis revealed that LCNCs derived from post-treated pulps exhibited greater thermal stability than those from untreated pulps. LCNCs were utilized to create films using the solution-casting method. The produced films from various pulps and post-treatments displayed excellent and diverse mechanical and aesthetic properties. The results indicated that the pulping processes, post-treatments, and chemical composition of the pulps influenced the characteristics of both LCNCs and LCNC films. The findings suggest that CCE can be a cost-effective and eco-friendly alternative to bleaching in the production of LCNCs. Furthermore, an increase in lignin content within the pulps was found to reduce the efficiency of acid hydrolysis and crystallinity while increasing the dimensions of the LCNCs.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"141448"},"PeriodicalIF":7.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143514279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emerging roles of hyaluronic acid hydrogels in cancer treatment and wound healing: A review.
IF 7.7 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-04-01 Epub Date: 2025-01-27 DOI: 10.1016/j.ijbiomac.2025.140442
Gang Wu, Chunyan Zhong, Xiaohui Tian, Lisha Zha, Lingmi Hou, Xiaoqiang Feng

Hyaluronic acid (HA)-derived hydrogels demonstrate a significant development in the biomedical uses, especially in cancer treatment and wound repair. Cancer continues to be one of the leading causes of death worldwide, with current therapies frequently impeded by lack of specificity, side effects, and the emergence of resistance. HA hydrogels, characterized by their distinctive three-dimensional structure, hydrophilic nature, and biocompatibility, develop an advanced platform for precise drug delivery, improving therapeutic results while minimizing systemic toxicity. These hydrogels facilitate the controlled release of drugs, genes, and various therapeutic substances, enhancing the effectiveness of chemotherapy, radiotherapy, and immunotherapy. Additionally, they can be designed to react to stimuli such as pH, light, and magnetic fields, enhancing their therapeutic capabilities. In the process of wound healing, the hydrophilic and porous characteristics of HA hydrogels establish a moist environment encouraging cell growth and contributes to the tissue recovery. By imitating the extracellular matrix, they promote tissue regeneration, improve angiogenesis, and influence immune reactions. This review examines the various functions of HA-based hydrogels in cancer treatment and wound healing, highlighting their advancement, applications, and ability to change existing therapeutic methods in these important health sectors.

{"title":"Emerging roles of hyaluronic acid hydrogels in cancer treatment and wound healing: A review.","authors":"Gang Wu, Chunyan Zhong, Xiaohui Tian, Lisha Zha, Lingmi Hou, Xiaoqiang Feng","doi":"10.1016/j.ijbiomac.2025.140442","DOIUrl":"10.1016/j.ijbiomac.2025.140442","url":null,"abstract":"<p><p>Hyaluronic acid (HA)-derived hydrogels demonstrate a significant development in the biomedical uses, especially in cancer treatment and wound repair. Cancer continues to be one of the leading causes of death worldwide, with current therapies frequently impeded by lack of specificity, side effects, and the emergence of resistance. HA hydrogels, characterized by their distinctive three-dimensional structure, hydrophilic nature, and biocompatibility, develop an advanced platform for precise drug delivery, improving therapeutic results while minimizing systemic toxicity. These hydrogels facilitate the controlled release of drugs, genes, and various therapeutic substances, enhancing the effectiveness of chemotherapy, radiotherapy, and immunotherapy. Additionally, they can be designed to react to stimuli such as pH, light, and magnetic fields, enhancing their therapeutic capabilities. In the process of wound healing, the hydrophilic and porous characteristics of HA hydrogels establish a moist environment encouraging cell growth and contributes to the tissue recovery. By imitating the extracellular matrix, they promote tissue regeneration, improve angiogenesis, and influence immune reactions. This review examines the various functions of HA-based hydrogels in cancer treatment and wound healing, highlighting their advancement, applications, and ability to change existing therapeutic methods in these important health sectors.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"140442"},"PeriodicalIF":7.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143062381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A nanoemulgel formulation of acetylated Crataegus pinnatifida polysaccharide for the treatment of skin photoaging in mice.
IF 7.7 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-04-01 Epub Date: 2025-02-03 DOI: 10.1016/j.ijbiomac.2025.140649
Noor Ul Ain, Muhammad Haseeb Akhlaq, Kehan Zhu, Wen Ji, Lin Yi, Duxin Li, Zhenqing Zhang

Ultraviolet (UV) radiation is a primary factor contributing to photoaging, a form of premature skin aging characterized by the appearance of wrinkles, fine lines, uneven pigmentation, and reduced skin elasticity. Plant-derived polysaccharides exhibit notable antioxidant and anti-inflammatory properties, making them promising candidates for the management of skin photoaging. Nevertheless, the hydrophilic nature and large molecular size of polysaccharides make them less effective for topical application. This study aimed to develop a method to increase polysaccharide transdermal absorption, using Crataegus pinnatifida polysaccharide (CPP) as a model. Acetylation was employed to modify the CPP, yielding three derivatives with varying degrees of substitution (DS): 0.16 (Ace-CPP1), 0.43 (Ace-CPP2), and 0.56 (Ace-CPP3). The in vitro antioxidant activity increased with increasing degree of substitution. A nanoemulgel formulation was developed, achieving approximately 72 % permeation of the native CPP. Furthermore, the acetylated CPP derivatives demonstrated enhanced permeation, exceeding 92 % within 4 h. In vivo studies revealed that the Ace-CPP3-based nanoemulgel significantly outperformed the native CPP in alleviating UVB-induced photoaging. This was evidenced by reduced oxidative stress, suppression of tissue inflammation, and promotion of collagen deposition. These findings underscore the potential of nanoemulgel formulation of acetylated CPP derivatives to advance applications in dermatology and cosmeceuticals.

{"title":"A nanoemulgel formulation of acetylated Crataegus pinnatifida polysaccharide for the treatment of skin photoaging in mice.","authors":"Noor Ul Ain, Muhammad Haseeb Akhlaq, Kehan Zhu, Wen Ji, Lin Yi, Duxin Li, Zhenqing Zhang","doi":"10.1016/j.ijbiomac.2025.140649","DOIUrl":"10.1016/j.ijbiomac.2025.140649","url":null,"abstract":"<p><p>Ultraviolet (UV) radiation is a primary factor contributing to photoaging, a form of premature skin aging characterized by the appearance of wrinkles, fine lines, uneven pigmentation, and reduced skin elasticity. Plant-derived polysaccharides exhibit notable antioxidant and anti-inflammatory properties, making them promising candidates for the management of skin photoaging. Nevertheless, the hydrophilic nature and large molecular size of polysaccharides make them less effective for topical application. This study aimed to develop a method to increase polysaccharide transdermal absorption, using Crataegus pinnatifida polysaccharide (CPP) as a model. Acetylation was employed to modify the CPP, yielding three derivatives with varying degrees of substitution (DS): 0.16 (Ace-CPP<sub>1</sub>), 0.43 (Ace-CPP<sub>2</sub>), and 0.56 (Ace-CPP<sub>3</sub>). The in vitro antioxidant activity increased with increasing degree of substitution. A nanoemulgel formulation was developed, achieving approximately 72 % permeation of the native CPP. Furthermore, the acetylated CPP derivatives demonstrated enhanced permeation, exceeding 92 % within 4 h. In vivo studies revealed that the Ace-CPP<sub>3</sub>-based nanoemulgel significantly outperformed the native CPP in alleviating UVB-induced photoaging. This was evidenced by reduced oxidative stress, suppression of tissue inflammation, and promotion of collagen deposition. These findings underscore the potential of nanoemulgel formulation of acetylated CPP derivatives to advance applications in dermatology and cosmeceuticals.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"140649"},"PeriodicalIF":7.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143254203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Directing mineralization of ZnO nanoparticles in cyanobacterial liquid crystalline polysaccharides for cancer therapies.
IF 7.7 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-04-01 Epub Date: 2025-02-06 DOI: 10.1016/j.ijbiomac.2025.140716
Pruetsakorn Saosamniang, Kazuaki Matsumura, Maiko K Okajima, Tatsuo Kaneko

Effective cancer therapy faces significant challenges, including non-selective toxicity, limited structural stability, inconsistent nanoparticle (NP) morphology, and instability under varying biological conditions. These issues hindering targeted delivery and therapeutic efficacy. Previous approaches using polysaccharide-based nanomaterials have shown promise; however, problems such as inconsistent NP sizes and shapes, poor mechanical stability, and limited pH resilience restrict their clinical potential. This study hypothesized that sacran, a cyanobacterial liquid crystalline (LC) polysaccharide, can stabilize ZnO NPs, allowing for controlled mineralization, enhanced stability, and selective cytotoxicity. We developed ZnO nanocomposite xerogels in an LC sacran matrix, yielding block-like ZnO NPs (25-70 nm) with high surface-area-to-volume ratios that improve cellular uptake in tumor environments. Incorporating these NPs into chemically crosslinked sacran matrices resulted in a 3-fold increase in mechanical strength and a 10-fold improvement in swelling capacity compared to physically crosslinked systems. Additionally, the sacran-ZnO nanocomposites demonstrated robust stability under various pH conditions, indicating their resilience in diverse biological environments. Cytotoxicity assays revealed that higher concentrations of ZnO NP selectively increased toxicity toward human lung cancer cells (A549), with less impact on human dermal fibroblasts (HDFa). Moreover, HDFa successfully attached to and proliferated on the smooth surfaces of the xerogels, emphasizing their compatibility with normal cells. This highlights the potential of sacran-ZnO nanocomposite xerogels as cancer-selective therapeutic materials, offering stability and effectiveness even under varying biological conditions, while addressing key challenges associated with earlier NP-based therapies.

{"title":"Directing mineralization of ZnO nanoparticles in cyanobacterial liquid crystalline polysaccharides for cancer therapies.","authors":"Pruetsakorn Saosamniang, Kazuaki Matsumura, Maiko K Okajima, Tatsuo Kaneko","doi":"10.1016/j.ijbiomac.2025.140716","DOIUrl":"10.1016/j.ijbiomac.2025.140716","url":null,"abstract":"<p><p>Effective cancer therapy faces significant challenges, including non-selective toxicity, limited structural stability, inconsistent nanoparticle (NP) morphology, and instability under varying biological conditions. These issues hindering targeted delivery and therapeutic efficacy. Previous approaches using polysaccharide-based nanomaterials have shown promise; however, problems such as inconsistent NP sizes and shapes, poor mechanical stability, and limited pH resilience restrict their clinical potential. This study hypothesized that sacran, a cyanobacterial liquid crystalline (LC) polysaccharide, can stabilize ZnO NPs, allowing for controlled mineralization, enhanced stability, and selective cytotoxicity. We developed ZnO nanocomposite xerogels in an LC sacran matrix, yielding block-like ZnO NPs (25-70 nm) with high surface-area-to-volume ratios that improve cellular uptake in tumor environments. Incorporating these NPs into chemically crosslinked sacran matrices resulted in a 3-fold increase in mechanical strength and a 10-fold improvement in swelling capacity compared to physically crosslinked systems. Additionally, the sacran-ZnO nanocomposites demonstrated robust stability under various pH conditions, indicating their resilience in diverse biological environments. Cytotoxicity assays revealed that higher concentrations of ZnO NP selectively increased toxicity toward human lung cancer cells (A549), with less impact on human dermal fibroblasts (HDFa). Moreover, HDFa successfully attached to and proliferated on the smooth surfaces of the xerogels, emphasizing their compatibility with normal cells. This highlights the potential of sacran-ZnO nanocomposite xerogels as cancer-selective therapeutic materials, offering stability and effectiveness even under varying biological conditions, while addressing key challenges associated with earlier NP-based therapies.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"140716"},"PeriodicalIF":7.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143373448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of three novel B cell epitopes targeting the bovine viral diarrhea virus NS3 protein for use in diagnostics and vaccine development
IF 7.7 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-04-01 DOI: 10.1016/j.ijbiomac.2025.142767
Yuanyuan Zhang , Jing Cheng , Wenxiao Liu , Linyi Zhou , Chun Yang , Yongqing Li , Enqi Du
Bovine viral diarrhea virus (BVDV) is a major pathogen in cattle herds, widely distributed across the globe and causing significant economic losses to the cattle industry. The nonstructural protein NS3 is highly conserved across BVDV subtypes. Identifying and screening epitopes on BVDV NS3 is crucial for developing sensitive, specific diagnostic tools. In this study, we obtained three monoclonal antibodies (mAbs) against the NS3 protein: 2F7, 3E8, and 4D6. Three novel linear B-cell epitope 100EYG102, 384FLDIA388, and 100EYGVK104 were identified through reactions of these mAbs with a series of continuous-truncated peptides and one of which a rare three-amino-acid B-cell epitope 100EYG102. Critical amino acid residues were further characterized through alanine (A)-scanning mutagenesis. Sequence alignment revealed that 100EYG102 and 100EYGVK104 were highly conserved allowing mAbs 2F7 and 4D6 to recognize all BVDV subtypes. In contrast, 384FLDIA388 was specifically conserved in BVDV-1 and BVDV-3 enabling 3E8 mAb to differential diagnosis BVDV-2 from other BVDV subtypes. Additionally, preliminary diagnostic assays for BVDV were established by western blotting and peptide-based blocking ELISA. Moreover, we observed that these mAbs could inhibit the replication of BVDV. These findings provide a theoretical foundation for developing of therapeutic strategies for nonstructural protein and accurate diagnostic procedures.
牛病毒性腹泻病毒(BVDV)是牛群中的主要病原体,广泛分布于全球各地,给养牛业造成了巨大的经济损失。非结构蛋白 NS3 在 BVDV 亚型中高度保守。鉴定和筛选 BVDV NS3 上的表位对于开发灵敏、特异的诊断工具至关重要。在这项研究中,我们获得了三种针对 NS3 蛋白的单克隆抗体(mAbs):2F7、3E8 和 4D6。通过这些 mAbs 与一系列连续截短的肽和其中一个罕见的三氨基酸 B 细胞表位 100EYG102 反应,确定了三个新的线性 B 细胞表位 100EYG102、384FLDIA388 和 100EYGVK104。通过丙氨酸(A)扫描诱变进一步确定了关键氨基酸残基的特征。序列比对显示,100EYG102 和 100EYGVK104 高度保守,使得 mAbs 2F7 和 4D6 能够识别所有 BVDV 亚型。相比之下,384FLDIA388在BVDV-1和BVDV-3中具有特异性保守性,使3E8 mAb能够将BVDV-2与其他BVDV亚型进行鉴别诊断。此外,我们还通过 Western 印迹和基于肽的阻断 ELISA 建立了 BVDV 的初步诊断方法。此外,我们还观察到这些 mAbs 可以抑制 BVDV 的复制。这些发现为开发非结构蛋白治疗策略和准确诊断程序提供了理论基础。
{"title":"Identification of three novel B cell epitopes targeting the bovine viral diarrhea virus NS3 protein for use in diagnostics and vaccine development","authors":"Yuanyuan Zhang ,&nbsp;Jing Cheng ,&nbsp;Wenxiao Liu ,&nbsp;Linyi Zhou ,&nbsp;Chun Yang ,&nbsp;Yongqing Li ,&nbsp;Enqi Du","doi":"10.1016/j.ijbiomac.2025.142767","DOIUrl":"10.1016/j.ijbiomac.2025.142767","url":null,"abstract":"<div><div>Bovine viral diarrhea virus (BVDV) is a major pathogen in cattle herds, widely distributed across the globe and causing significant economic losses to the cattle industry. The nonstructural protein NS3 is highly conserved across BVDV subtypes. Identifying and screening epitopes on BVDV NS3 is crucial for developing sensitive, specific diagnostic tools. In this study, we obtained three monoclonal antibodies (mAbs) against the NS3 protein: 2F7, 3E8, and 4D6. Three novel linear B-cell epitope <sup>100</sup>EYG<sup>102</sup>, <sup>384</sup>FLDIA<sup>388</sup>, and <sup>100</sup>EYGVK<sup>104</sup> were identified through reactions of these mAbs with a series of continuous-truncated peptides and one of which a rare three-amino-acid B-cell epitope <sup>100</sup>EYG<sup>102</sup>. Critical amino acid residues were further characterized through alanine (A)-scanning mutagenesis. Sequence alignment revealed that <sup>100</sup>EYG<sup>102</sup> and <sup>100</sup>EYGVK<sup>104</sup> were highly conserved allowing mAbs 2F7 and 4D6 to recognize all BVDV subtypes. In contrast, <sup>384</sup>FLDIA<sup>388</sup> was specifically conserved in BVDV-1 and BVDV-3 enabling 3E8 mAb to differential diagnosis BVDV-2 from other BVDV subtypes. Additionally, preliminary diagnostic assays for BVDV were established by western blotting and peptide-based blocking ELISA. Moreover, we observed that these mAbs could inhibit the replication of BVDV. These findings provide a theoretical foundation for developing of therapeutic strategies for nonstructural protein and accurate diagnostic procedures.</div></div>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":"308 ","pages":"Article 142767"},"PeriodicalIF":7.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143759841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Glutamate molecular structure and protein affect the inhibition of breast cancer cell metastasis: Cell-derived exosomes inhibitory effects through the MAPK signaling pathway.
IF 7.7 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-04-01 Epub Date: 2025-01-23 DOI: 10.1016/j.ijbiomac.2025.140264
Yongcheng Chen, Huan Liu, Lang Zhang, Huifang Zeng, LiHe Jiang, Qinghong Qin, Dequan Li, Guanming Lu

The aim of this study was to investigate the inhibitory effect of glutamate molecular structure and protein on breast cancer cell metastasis and the potential inhibitory mechanism of cell-derived exosomes via MAPK signaling pathway. Breast cancer cell lines with high metastatic potential were selected by in vitro cell culture technique. The effects of specific inhibitors of glutamic acid on the proliferation and metastasis of breast cancer cells were studied. Changes in protein expression profiles were analyzed by proteomics techniques to identify key proteins associated with breast cancer metastasis. Breast cancer cells were treated with inhibitors of the MAPK signaling pathway to evaluate their effect on cell metastasis and compare with exosome treatment. The results showed that the specific inhibitors of glutamate molecular structure could significantly inhibit the proliferation and metastasis of breast cancer cells. Proteomic analysis revealed several down-regulated proteins that are closely related to breast cancer metastasis.

{"title":"Glutamate molecular structure and protein affect the inhibition of breast cancer cell metastasis: Cell-derived exosomes inhibitory effects through the MAPK signaling pathway.","authors":"Yongcheng Chen, Huan Liu, Lang Zhang, Huifang Zeng, LiHe Jiang, Qinghong Qin, Dequan Li, Guanming Lu","doi":"10.1016/j.ijbiomac.2025.140264","DOIUrl":"10.1016/j.ijbiomac.2025.140264","url":null,"abstract":"<p><p>The aim of this study was to investigate the inhibitory effect of glutamate molecular structure and protein on breast cancer cell metastasis and the potential inhibitory mechanism of cell-derived exosomes via MAPK signaling pathway. Breast cancer cell lines with high metastatic potential were selected by in vitro cell culture technique. The effects of specific inhibitors of glutamic acid on the proliferation and metastasis of breast cancer cells were studied. Changes in protein expression profiles were analyzed by proteomics techniques to identify key proteins associated with breast cancer metastasis. Breast cancer cells were treated with inhibitors of the MAPK signaling pathway to evaluate their effect on cell metastasis and compare with exosome treatment. The results showed that the specific inhibitors of glutamate molecular structure could significantly inhibit the proliferation and metastasis of breast cancer cells. Proteomic analysis revealed several down-regulated proteins that are closely related to breast cancer metastasis.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"140264"},"PeriodicalIF":7.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143035530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hyaluronic acid modified metal-organic frameworks loading cisplatin achieve combined chemodynamic therapy and chemotherapy for lung cancer.
IF 7.7 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-04-01 Epub Date: 2025-01-23 DOI: 10.1016/j.ijbiomac.2025.140238
Qian Wen, Jianmei Li, Hongjun Deng, Biqiong Wang, Jingrong Huang, Jie Dai, Yun Lu, Fancai Zeng, Yue Chen, Ling Zhao, Shaozhi Fu

As one of the most commonly used chemotherapeutic agents in clinical practice, cisplatin is unable to selectively accumulate in tumor tissue due to its lack of targeting ability, leading to increased systemic toxicities. Additionally, the effectiveness of monotherapy is greatly limited. Therefore, the development of new cisplatin-based drug delivery systems is essential to improve the effectiveness of tumor treatment. In this study, an iron-based metal-organic framework (MOF) was synthesized to encapsulate cisplatin, and then coated with hyaluronic acid (HA) to create a MOF-based nanoplatform called MPt@HA NPs. This novel nanoplatform achieved the combination of chemodynamic therapy (CDT) with targeted chemotherapy for the treatment of lung cancer. The results showed that MPt@HA NPs have stronger cytotoxicity compared to conventional doses of cisplatin due to the generation of reactive oxygen species (ROS) through the Fenton reaction and DNA damage caused by cisplatin. Therefore, MPt@HA NPs effectively inhibit the tumor growth and prolong the median survival of tumor-bearing mice. Therefore, the MOF-based nanoplatform MPt@HA NPs may present a new option for multi-modal therapy of solid tumors.

{"title":"Hyaluronic acid modified metal-organic frameworks loading cisplatin achieve combined chemodynamic therapy and chemotherapy for lung cancer.","authors":"Qian Wen, Jianmei Li, Hongjun Deng, Biqiong Wang, Jingrong Huang, Jie Dai, Yun Lu, Fancai Zeng, Yue Chen, Ling Zhao, Shaozhi Fu","doi":"10.1016/j.ijbiomac.2025.140238","DOIUrl":"10.1016/j.ijbiomac.2025.140238","url":null,"abstract":"<p><p>As one of the most commonly used chemotherapeutic agents in clinical practice, cisplatin is unable to selectively accumulate in tumor tissue due to its lack of targeting ability, leading to increased systemic toxicities. Additionally, the effectiveness of monotherapy is greatly limited. Therefore, the development of new cisplatin-based drug delivery systems is essential to improve the effectiveness of tumor treatment. In this study, an iron-based metal-organic framework (MOF) was synthesized to encapsulate cisplatin, and then coated with hyaluronic acid (HA) to create a MOF-based nanoplatform called MPt@HA NPs. This novel nanoplatform achieved the combination of chemodynamic therapy (CDT) with targeted chemotherapy for the treatment of lung cancer. The results showed that MPt@HA NPs have stronger cytotoxicity compared to conventional doses of cisplatin due to the generation of reactive oxygen species (ROS) through the Fenton reaction and DNA damage caused by cisplatin. Therefore, MPt@HA NPs effectively inhibit the tumor growth and prolong the median survival of tumor-bearing mice. Therefore, the MOF-based nanoplatform MPt@HA NPs may present a new option for multi-modal therapy of solid tumors.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"140238"},"PeriodicalIF":7.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143035560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Biological Macromolecules
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1