Pub Date : 2024-05-22DOI: 10.1016/j.ijggc.2024.104161
Hossein Asgharian , Daniel Lemos Marques , Florin Iov , Vincenzo Liso , Mads Pagh Nielsen , Jakob Zinck Thellufsen , Henrik Lund
Utilizing CO2 capture technologies is an essential part of achieving a future carbon-neutral Society. So far, amine-based technologies, which are the most mature post-combustion CO2 capture technologies, have been predominantly applied in large-scale CO2 capture applications. However, the cryogenic process has also been proven to be a potential CO2 capture technology suitable for large-scale applications. Cryogenic carbon capture offers two potential advantages over amine-based technology. First, the efficiency is higher and thus the energy penalty is lower. Next, the flexibility of system integration is also higher, and thus the technology carries the potential of better balancing variable renewable electricity productions. By using the software tool EnergyPLAN and dedicated scenarios of achieving a carbon-neutral Denmark, this paper quantitatively estimates these benefits. It is observed that, from a system perspective, utilizing cryogenic technologies to capture 90 % of CO2 emissions in 2045 can reduce the demand for wind power by approximately 47 %, leading to a decrease in annual system costs by nearly 45 %.
{"title":"The role of cryogenic carbon capture in future carbon-neutral societies","authors":"Hossein Asgharian , Daniel Lemos Marques , Florin Iov , Vincenzo Liso , Mads Pagh Nielsen , Jakob Zinck Thellufsen , Henrik Lund","doi":"10.1016/j.ijggc.2024.104161","DOIUrl":"https://doi.org/10.1016/j.ijggc.2024.104161","url":null,"abstract":"<div><p>Utilizing CO<sub>2</sub> capture technologies is an essential part of achieving a future carbon-neutral Society. So far, amine-based technologies, which are the most mature post-combustion CO<sub>2</sub> capture technologies, have been predominantly applied in large-scale CO<sub>2</sub> capture applications. However, the cryogenic process has also been proven to be a potential CO<sub>2</sub> capture technology suitable for large-scale applications. Cryogenic carbon capture offers two potential advantages over amine-based technology. First, the efficiency is higher and thus the energy penalty is lower. Next, the flexibility of system integration is also higher, and thus the technology carries the potential of better balancing variable renewable electricity productions. By using the software tool EnergyPLAN and dedicated scenarios of achieving a carbon-neutral Denmark, this paper quantitatively estimates these benefits. It is observed that, from a system perspective, utilizing cryogenic technologies to capture 90 % of CO<sub>2</sub> emissions in 2045 can reduce the demand for wind power by approximately 47 %, leading to a decrease in annual system costs by nearly 45 %.</p></div>","PeriodicalId":334,"journal":{"name":"International Journal of Greenhouse Gas Control","volume":"135 ","pages":"Article 104161"},"PeriodicalIF":3.9,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S175058362400104X/pdfft?md5=c917eaf2333463d2373389849b7a28d5&pid=1-s2.0-S175058362400104X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141078597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-21DOI: 10.1016/j.ijggc.2024.104138
Catherine Callas , J. Steve Davis , Sarah D. Saltzer , Sam S. Hashemi , Gege Wen , Peter O. Gold , Mark D. Zoback , Sally M. Benson , Anthony R. Kovscek
Carbon capture and storage (CCS) is an essential greenhouse gas mitigation strategy. Consolidating CO2 sources and sinks can enable the widespread adoption of CCS, and the success of hub-scale projects depends on finding an appropriate sequestration complex. This work developed a criteria-driven framework to assess the potential suitability of saline formations for carbon storage. The workflow uses a three-stage process that screens, ranks, and characterizes potential saline storage formations based on three categories: (1) capacity and injectivity optimization, (2) retention and geomechanical risk minimization, and (3) siting and economic constraints. In this framework, data confidence has been incorporated into site ranking, which provides the user with information about the degree of uncertainty associated with the evaluation. The methodology can be applied to sites in various geological and geographical environments and incorporates general and project-specific criteria. This quantitative, criteria-driven approach was applied to two areas of interest in the Gulf of Mexico, and one site was identified for further assessment. In addition, this workflow was applied to four existing CCS projects— Sleipner, IBDP, In Salah, and Snøhvit—to see how they would have scored and ranked pre-development.
碳捕集与封存(CCS)是一项重要的温室气体减排战略。整合二氧化碳源和汇可以促进 CCS 的广泛采用,而中心规模项目的成功取决于找到合适的封存综合体。这项工作开发了一个标准驱动框架,用于评估盐碱地层用于碳封存的潜在适宜性。该工作流程采用三阶段流程,根据三个类别对潜在的盐类封存地层进行筛选、排序和特征描述:(1)容量和注入率优化;(2)保留和地质力学风险最小化;(3)选址和经济限制。在这一框架中,数据置信度被纳入选址排名,为用户提供了与评估相关的不确定性程度的信息。该方法可应用于各种地质和地理环境中的地点,并包含一般标准和特定项目标准。这种以标准为导向的定量方法被应用于墨西哥湾的两个相关区域,其中一个地点被确定为需要进一步评估的地点。此外,该工作流程还应用于四个现有的 CCS 项目--Sleipner、IBDP、In Salah 和 Snøhvit,以了解它们在开发前的评分和排名情况。
{"title":"Criteria and workflow for selecting saline formations for carbon storage","authors":"Catherine Callas , J. Steve Davis , Sarah D. Saltzer , Sam S. Hashemi , Gege Wen , Peter O. Gold , Mark D. Zoback , Sally M. Benson , Anthony R. Kovscek","doi":"10.1016/j.ijggc.2024.104138","DOIUrl":"https://doi.org/10.1016/j.ijggc.2024.104138","url":null,"abstract":"<div><p>Carbon capture and storage (CCS) is an essential greenhouse gas mitigation strategy. Consolidating CO<sub>2</sub> sources and sinks can enable the widespread adoption of CCS, and the success of hub-scale projects depends on finding an appropriate sequestration complex. This work developed a criteria-driven framework to assess the potential suitability of saline formations for carbon storage. The workflow uses a three-stage process that screens, ranks, and characterizes potential saline storage formations based on three categories: (1) capacity and injectivity optimization, (2) retention and geomechanical risk minimization, and (3) siting and economic constraints. In this framework, data confidence has been incorporated into site ranking, which provides the user with information about the degree of uncertainty associated with the evaluation. The methodology can be applied to sites in various geological and geographical environments and incorporates general and project-specific criteria. This quantitative, criteria-driven approach was applied to two areas of interest in the Gulf of Mexico, and one site was identified for further assessment. In addition, this workflow was applied to four existing CCS projects— Sleipner, IBDP, In Salah, and Snøhvit—to see how they would have scored and ranked pre-development.</p></div>","PeriodicalId":334,"journal":{"name":"International Journal of Greenhouse Gas Control","volume":"135 ","pages":"Article 104138"},"PeriodicalIF":3.9,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141078599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-17DOI: 10.1016/j.ijggc.2024.104147
G. Reza Vakili-Nezhaad, Reza Yousefzadeh, Alireza Kazemi, Ahmed Al Shaaili, Adel Al Ajmi
Capillary/residual CO2 trapping is one of the main mechanisms of CO2 storage in underground formations. Therefore, it is required to estimate the brine/CO2 interfacial tension under different conditions. Although many methods have been proposed so far, the error of estimation is still high. This paper proposes a novel deep learning method to estimate the brine/CO2 interfacial tension at various temperatures, pressures, and salinities. The proposed method is a neural network with the Group Method of Data Handling (GMDH) learning method. The GMDH has the advantage of handling the structural and parametric optimization of the network automatically. The proposed method is tested on an experimental dataset of brine/CO2 interfacial tension with CalCl2 and MgCl2 salts. The results of the proposed method were compared with four of the best performing methods in the literature. The Average Absolute Percentage Error (AAPE) of the method on the training, testing and all data was 1.3 %, 2.95 %, 1.73 %, respectively, while the best method from the literature could reach an AAPE of 8.16 % on all data. Therefore, the proposed method performs far better than the existing methods. Also, a sensitivity analysis was done to determine the most influential inputs to estimate the output. The contribution of this work is to show the applicability of the GMDH method to construct more optimal data-driven models to estimate the brine/CO2 interfacial tension. Also, the utilized dataset is collected under a wide range of pressure, temperature and salinity conditions that increases the generality of the model.
{"title":"Application of deep learning through group method of data handling for interfacial tension prediction in brine/CO2 systems: MgCl2 and CaCl2 aqueous solutions","authors":"G. Reza Vakili-Nezhaad, Reza Yousefzadeh, Alireza Kazemi, Ahmed Al Shaaili, Adel Al Ajmi","doi":"10.1016/j.ijggc.2024.104147","DOIUrl":"https://doi.org/10.1016/j.ijggc.2024.104147","url":null,"abstract":"<div><p>Capillary/residual CO<sub>2</sub> trapping is one of the main mechanisms of CO<sub>2</sub> storage in underground formations. Therefore, it is required to estimate the brine/CO<sub>2</sub> interfacial tension under different conditions. Although many methods have been proposed so far, the error of estimation is still high. This paper proposes a novel deep learning method to estimate the brine/CO<sub>2</sub> interfacial tension at various temperatures, pressures, and salinities. The proposed method is a neural network with the Group Method of Data Handling (GMDH) learning method. The GMDH has the advantage of handling the structural and parametric optimization of the network automatically. The proposed method is tested on an experimental dataset of brine/CO<sub>2</sub> interfacial tension with CalCl<sub>2</sub> and MgCl<sub>2</sub> salts. The results of the proposed method were compared with four of the best performing methods in the literature. The Average Absolute Percentage Error (AAPE) of the method on the training, testing and all data was 1.3 %, 2.95 %, 1.73 %, respectively, while the best method from the literature could reach an AAPE of 8.16 % on all data. Therefore, the proposed method performs far better than the existing methods. Also, a sensitivity analysis was done to determine the most influential inputs to estimate the output. The contribution of this work is to show the applicability of the GMDH method to construct more optimal data-driven models to estimate the brine/CO<sub>2</sub> interfacial tension. Also, the utilized dataset is collected under a wide range of pressure, temperature and salinity conditions that increases the generality of the model.</p></div>","PeriodicalId":334,"journal":{"name":"International Journal of Greenhouse Gas Control","volume":"135 ","pages":"Article 104147"},"PeriodicalIF":3.9,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141067091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-16DOI: 10.1016/j.ijggc.2024.104146
Lijin Ma , Yawei Du , Xiaojun Guo , Wuao Zhou , Huining Deng , Shaofeng Zhang
The CO2 compression and purification units (CO2CPU) is an effective process to capture CO2 from oxygen-rich combustion flue gas. However, the quality of CO2 products needs to be improved for high-value-added utilization. In this study, the CO2CPU with high concentration of impurities (SOX, NOX, H2O) was optimized by Aspen Plus and Matlab with genetic algorithm. The model is validated with similar experiment from reference. The results showed that under the compressor pressure of 30 bar and condensation temperature of −36 °C, the liquid CO2 product with a high purity of 99.9991 % with the total cost of 26.98 $/tCO2 could be obtained. Sensitivity analysis was utilized to investigate the influences of key parameters on the system performance, including the number of plates of towers, pressure, reflux ratio, and gasification fraction. The required cooling capacity and performance of compressor are closely related to the ambient temperature. One impurities removal tower with sideline extraction was used to further improve the process performance. Energy consumption and total cost are reduced by 140.55 kW and 0.23 $/t CO2, respectively. Methanol is introduced as the hydrate inhibitor for icing protection. Despite the additional three towers, the total cost is reduced by 1.86 % with heat coupling.
二氧化碳压缩和净化装置(CO2CPU)是从富氧燃烧烟气中捕获二氧化碳的有效工艺。然而,为了实现高附加值利用,需要提高二氧化碳产品的质量。在本研究中,Aspen Plus 和 Matlab 利用遗传算法对高浓度杂质(SOX、NOX、H2O)的 CO2CPU 进行了优化。该模型与参考文献中的类似实验进行了验证。结果表明,在压缩机压力为 30 巴、冷凝温度为 -36 °C 的条件下,可以获得纯度为 99.9991 % 的液态 CO2 产品,总成本为 26.98 美元/tCO2。利用敏感性分析研究了关键参数对系统性能的影响,包括塔板数、压力、回流比和气化分数。压缩机所需的冷却能力和性能与环境温度密切相关。为了进一步提高工艺性能,使用了一个带侧线提取的杂质去除塔。能耗和总成本分别降低了 140.55 千瓦和 0.23 美元/吨 CO2。甲醇作为水合物抑制剂用于结冰保护。尽管增加了三个塔,但通过热耦合,总成本降低了 1.86%。
{"title":"Process optimization of high purity CO2 compression and purification system from oxygen-rich combustion flue gas","authors":"Lijin Ma , Yawei Du , Xiaojun Guo , Wuao Zhou , Huining Deng , Shaofeng Zhang","doi":"10.1016/j.ijggc.2024.104146","DOIUrl":"https://doi.org/10.1016/j.ijggc.2024.104146","url":null,"abstract":"<div><p>The CO<sub>2</sub> compression and purification units (CO2CPU) is an effective process to capture CO<sub>2</sub> from oxygen-rich combustion flue gas. However, the quality of CO<sub>2</sub> products needs to be improved for high-value-added utilization. In this study, the CO2CPU with high concentration of impurities (SO<sub>X</sub>, NO<sub>X</sub>, H<sub>2</sub>O) was optimized by Aspen Plus and Matlab with genetic algorithm. The model is validated with similar experiment from reference. The results showed that under the compressor pressure of 30 bar and condensation temperature of −36 °C, the liquid CO<sub>2</sub> product with a high purity of 99.9991 % with the total cost of 26.98 $/tCO<sub>2</sub> could be obtained. Sensitivity analysis was utilized to investigate the influences of key parameters on the system performance, including the number of plates of towers, pressure, reflux ratio, and gasification fraction. The required cooling capacity and performance of compressor are closely related to the ambient temperature. One impurities removal tower with sideline extraction was used to further improve the process performance. Energy consumption and total cost are reduced by 140.55 kW and 0.23 $/t CO<sub>2</sub>, respectively. Methanol is introduced as the hydrate inhibitor for icing protection. Despite the additional three towers, the total cost is reduced by 1.86 % with heat coupling.</p></div>","PeriodicalId":334,"journal":{"name":"International Journal of Greenhouse Gas Control","volume":"135 ","pages":"Article 104146"},"PeriodicalIF":3.9,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140951501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-16DOI: 10.1016/j.ijggc.2024.104155
Khaled Enab, Ian Lopez, Youssef Elmasry
The dual challenge of enhancing oil recovery while sequestering carbon dioxide (CO2) in oil reservoirs is a pivotal concern in the energy sector. CO2 injection is recognized for its ability to decrease oil density and viscosity, thereby improving oil mobility and recovery rates. Traditionally, efforts have been concentrated either on enhancing oil recovery (EOR) or carbon storage, but not many efforts spent to couple EOR and CO2 sequestration. Hence, novel techniques to optimize engineering designs to synergize EOR with CO2 sequestration is the best approach to maximize the opportunities of storing emission gas and contribute to the global world decarbonization goals.
This study introduces an innovative dual lateral horizontal well design, aimed at simultaneously boosting oil recovery from shale reservoirs and enhancing CO2 retention. By integrating a conceptual understanding of oil recovery mechanisms with empirical data from the field, this research contrasts the proposed dual lateral design with the conventional Huff-n-Puff gas injection technique, commonly employed in shale oil formations.
Our findings demonstrate that the dual lateral horizontal wells significantly outperform other injection methods in both oil recovery and CO2 storage. Upon optimization, the dual lateral injection design continues to surpass the Huff-n-Puff method in terms of CO2 storage, oil recovery, and net present value (NPV). This investigation not only presents innovative gas injection strategies in shale reservoirs but also provides insights into optimizing gas injection methods to enhance production efficiency and contribute to climate change mitigation through improved carbon capture and storage capacities.
Through comprehensive numerical simulations and empirical data analysis, the study explores the optimization of well spacing, revealing that a dual lateral well with optimized spacing between 20 and 30 feet achieves the best outcomes in terms of oil recovery, CO2 retention, and net present value (NPV). The research presents a unique coupling of economic and environmental benefits, supported by economic analysis that includes the potential impact of CO2 tax credits.
The novelty of this research is underscored by its integrated approach to CO2-EOR, the development of a dual lateral well design, and the optimization of well spacings for maximized efficiency. By providing a scalable solution that is both economically viable and environmentally sustainable, this research contributes a significant paradigm shift in the field of EOR and CO2 sequestration, with implications for policy and investment strategies in the energy sector. The findings propose a new direction for shale reservoir exploitation, promising to enhance production efficiency while contributing to global efforts in greenhouse gas reduction.
{"title":"Synergizing shale enhanced oil recovery and carbon sequestration: A novel approach with dual lateral horizontal wells","authors":"Khaled Enab, Ian Lopez, Youssef Elmasry","doi":"10.1016/j.ijggc.2024.104155","DOIUrl":"https://doi.org/10.1016/j.ijggc.2024.104155","url":null,"abstract":"<div><p>The dual challenge of enhancing oil recovery while sequestering carbon dioxide (CO<sub>2</sub>) in oil reservoirs is a pivotal concern in the energy sector. CO<sub>2</sub> injection is recognized for its ability to decrease oil density and viscosity, thereby improving oil mobility and recovery rates. Traditionally, efforts have been concentrated either on enhancing oil recovery (EOR) or carbon storage, but not many efforts spent to couple EOR and CO<sub>2</sub> sequestration. Hence, novel techniques to optimize engineering designs to synergize EOR with CO<sub>2</sub> sequestration is the best approach to maximize the opportunities of storing emission gas and contribute to the global world decarbonization goals.</p><p>This study introduces an innovative dual lateral horizontal well design, aimed at simultaneously boosting oil recovery from shale reservoirs and enhancing CO<sub>2</sub> retention. By integrating a conceptual understanding of oil recovery mechanisms with empirical data from the field, this research contrasts the proposed dual lateral design with the conventional Huff-n-Puff gas injection technique, commonly employed in shale oil formations.</p><p>Our findings demonstrate that the dual lateral horizontal wells significantly outperform other injection methods in both oil recovery and CO<sub>2</sub> storage. Upon optimization, the dual lateral injection design continues to surpass the Huff-n-Puff method in terms of CO<sub>2</sub> storage, oil recovery, and net present value (NPV). This investigation not only presents innovative gas injection strategies in shale reservoirs but also provides insights into optimizing gas injection methods to enhance production efficiency and contribute to climate change mitigation through improved carbon capture and storage capacities.</p><p>Through comprehensive numerical simulations and empirical data analysis, the study explores the optimization of well spacing, revealing that a dual lateral well with optimized spacing between 20 and 30 feet achieves the best outcomes in terms of oil recovery, CO<sub>2</sub> retention, and net present value (NPV). The research presents a unique coupling of economic and environmental benefits, supported by economic analysis that includes the potential impact of CO<sub>2</sub> tax credits.</p><p>The novelty of this research is underscored by its integrated approach to CO<sub>2</sub>-EOR, the development of a dual lateral well design, and the optimization of well spacings for maximized efficiency. By providing a scalable solution that is both economically viable and environmentally sustainable, this research contributes a significant paradigm shift in the field of EOR and CO<sub>2</sub> sequestration, with implications for policy and investment strategies in the energy sector. The findings propose a new direction for shale reservoir exploitation, promising to enhance production efficiency while contributing to global efforts in greenhouse gas reduction.</p></div>","PeriodicalId":334,"journal":{"name":"International Journal of Greenhouse Gas Control","volume":"135 ","pages":"Article 104155"},"PeriodicalIF":3.9,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1750583624000987/pdfft?md5=7f7581da8d98bf3773f6376473c856b9&pid=1-s2.0-S1750583624000987-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140951502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-14DOI: 10.1016/j.ijggc.2024.104159
A. Haghi, R. Chalaturnyk
This study delves into the intrinsic and multiphase flow properties, specifically steady-state drainage relative permeability, of a subsurface Deadwood sandstone from the Aquistore CO2 storage site in Canada. Consecutive core-flooding experiments were conducted utilizing N2- and scCO2-brine pairs across a broad range of temperatures (20–70 °C) and isotropic effective stress (0–30 MPa). Moreover, we monitored crack initiation and propagation of the sandstone during uniaxial loading at an elevated temperature using an integrated approach that combines microCT scanning with an in-situ heating/loading test. Our findings reveal a 54 % decrease and a 3 % increase in the absolute permeability of the sandstone through isothermal compaction followed by thermal expansion processes, respectively. Elevating the temperature from 20 °C to 70 °C results in a systematic 24 % increase in irreducible brine saturation and nearly doubles the end-point N2 mobility, indicating an increased tendency of the rock surface towards the brine phase with temperature. Substituting N2 with scCO2 demonstrates a leftward shift in relative permeability and a decrease in irreducible brine saturation (from 0.36 to 0.31), consistent with low interfacial tension and the de-wetting effect during cyclic scCO2-brine injections. Micro-CT image analysis reveals micro-crack initiation at 10 MPa stress and 70 °C temperature, suggesting that a mixed impact of induced cracks, dynamic wettability, and thermo-mechanical deformation is responsible for the substantial increase in well injectivity over time in Aquistore. This novel experimental program provides indispensable insight into thermo-poromechanical and wettability controls on multiphase flow at the Aquistore injection site in Canada, with potential applicability to similar scenarios globally.
{"title":"Relative permeability evolution with thermo-poromechanical process during N2 and scCO2 injection in brine saturated Deadwood sandstone from Aquistore","authors":"A. Haghi, R. Chalaturnyk","doi":"10.1016/j.ijggc.2024.104159","DOIUrl":"https://doi.org/10.1016/j.ijggc.2024.104159","url":null,"abstract":"<div><p>This study delves into the intrinsic and multiphase flow properties, specifically steady-state drainage relative permeability, of a subsurface Deadwood sandstone from the Aquistore CO<sub>2</sub> storage site in Canada. Consecutive core-flooding experiments were conducted utilizing N<sub>2</sub>- and scCO<sub>2</sub>-brine pairs across a broad range of temperatures (20–70 °C) and isotropic effective stress (0–30 MPa). Moreover, we monitored crack initiation and propagation of the sandstone during uniaxial loading at an elevated temperature using an integrated approach that combines microCT scanning with an in-situ heating/loading test. Our findings reveal a 54 % decrease and a 3 % increase in the absolute permeability of the sandstone through isothermal compaction followed by thermal expansion processes, respectively. Elevating the temperature from 20 °C to 70 °C results in a systematic 24 % increase in irreducible brine saturation and nearly doubles the end-point N<sub>2</sub> mobility, indicating an increased tendency of the rock surface towards the brine phase with temperature. Substituting N<sub>2</sub> with scCO<sub>2</sub> demonstrates a leftward shift in relative permeability and a decrease in irreducible brine saturation (from 0.36 to 0.31), consistent with low interfacial tension and the de-wetting effect during cyclic scCO<sub>2</sub>-brine injections. Micro-CT image analysis reveals micro-crack initiation at 10 MPa stress and 70 °C temperature, suggesting that a mixed impact of induced cracks, dynamic wettability, and thermo-mechanical deformation is responsible for the substantial increase in well injectivity over time in Aquistore. This novel experimental program provides indispensable insight into thermo-poromechanical and wettability controls on multiphase flow at the Aquistore injection site in Canada, with potential applicability to similar scenarios globally.</p></div>","PeriodicalId":334,"journal":{"name":"International Journal of Greenhouse Gas Control","volume":"135 ","pages":"Article 104159"},"PeriodicalIF":3.9,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1750583624001026/pdfft?md5=eb186c64966fb4e7df6a2f462e7e8ddb&pid=1-s2.0-S1750583624001026-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140917853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-14DOI: 10.1016/j.ijggc.2024.104127
Samantha J. Fuchs , Dustin Crandall , Johnathan E. Moore , Mayandi Sivaguru , Bruce W. Fouke , D. Nicolas Espinoza , Ange-Therese Akono , Charles J. Werth
The efficacy of geological carbon sequestration is reliant on the integrity of the caprock and its resistance to physical and chemical alteration. Caprocks with high abundance of reactive carbonates like calcite are susceptible to acid-promoted dissolution and can result in structural weakening. This work investigates the effect of acidified brine flow through an artificially fractured, high-carbonate (30 % by XRD) shale under differential compressive stress. Cylindrical samples were cut in half vertically and milled to create an artificial fracture with interlocking asperities and open channels. Samples were sheared with a single applied stress in a custom flow cell housed within an industrial CT scanner. Either acidic (pH 4) or reservoir-simulated (pH 9.5) brine was flowed through the artificial fracture for 7–8 days under reservoir pressure and room temperature. Model simulations indicate flow mainly occurred in open channels, with limited flow between overlapping asperities. Analysis of fracture surfaces by optical and scanning electron microscopy show increased surface alteration and roughness after exposure to pH 4 versus pH 9.5 brine indicating mineral dissolution/loss, and this effect is greater in areas that receive the highest brine flows. Similarly, surface analysis by scratch testing shows fracture toughness decreases more after exposure to acidic versus reservoir-simulated brine, with the greatest alteration in areas of highest acidic brine flows. Despite weakening, no shear slip occurred. Overall, the results indicate that acidified brine can result in significant physical and geomechanical alteration of irregular fracture surfaces in shale caprock, with greatest effects in preferential flow regions.
{"title":"Impacts of irregularly-distributed acidified brine flow on geo-chemo-mechanical alteration in an artificial shale fracture under differential stress","authors":"Samantha J. Fuchs , Dustin Crandall , Johnathan E. Moore , Mayandi Sivaguru , Bruce W. Fouke , D. Nicolas Espinoza , Ange-Therese Akono , Charles J. Werth","doi":"10.1016/j.ijggc.2024.104127","DOIUrl":"https://doi.org/10.1016/j.ijggc.2024.104127","url":null,"abstract":"<div><p>The efficacy of geological carbon sequestration is reliant on the integrity of the caprock and its resistance to physical and chemical alteration. Caprocks with high abundance of reactive carbonates like calcite are susceptible to acid-promoted dissolution and can result in structural weakening. This work investigates the effect of acidified brine flow through an artificially fractured, high-carbonate (30 % by XRD) shale under differential compressive stress. Cylindrical samples were cut in half vertically and milled to create an artificial fracture with interlocking asperities and open channels. Samples were sheared with a single applied stress in a custom flow cell housed within an industrial CT scanner. Either acidic (pH 4) or reservoir-simulated (pH 9.5) brine was flowed through the artificial fracture for 7–8 days under reservoir pressure and room temperature. Model simulations indicate flow mainly occurred in open channels, with limited flow between overlapping asperities. Analysis of fracture surfaces by optical and scanning electron microscopy show increased surface alteration and roughness after exposure to pH 4 versus pH 9.5 brine indicating mineral dissolution/loss, and this effect is greater in areas that receive the highest brine flows. Similarly, surface analysis by scratch testing shows fracture toughness decreases more after exposure to acidic versus reservoir-simulated brine, with the greatest alteration in areas of highest acidic brine flows. Despite weakening, no shear slip occurred. Overall, the results indicate that acidified brine can result in significant physical and geomechanical alteration of irregular fracture surfaces in shale caprock, with greatest effects in preferential flow regions.</p></div>","PeriodicalId":334,"journal":{"name":"International Journal of Greenhouse Gas Control","volume":"135 ","pages":"Article 104127"},"PeriodicalIF":3.9,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140917852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-13DOI: 10.1016/j.ijggc.2024.104143
Kaiyuan Mei , Liwei Zhang , Yuna Cai , Ting Xiao , Quan Xue , Yan Wang , Qiang Sun , Brian McPherson
In geological CO2 storage conditions, wellbore cement can be exposed to both supercritical CO2 (ScCO2) with water vapor, and CO2 dissolved in water. There is a lack of studies that investigate the effects of reaction environments on the extent of CO2-induced cement carbonation and leaching. In this study, four CO2 exposure experiments were designed with wellbore cement samples exposed to both ScCO2 and CO2 dissolved in water to investigate the impacts of evaporation, capillarity, diffusion, and salt deposition on cement carbonation. Severe cement carbonation after 14 and 28 days of CO2 exposure was observed in a wet ScCO2 phase. When water evaporation into ScCO2 phase was minimized by a steel plate between the brine phase and the ScCO2 phase, a strong cement carbonation in ScCO2 phase was still visible. The reason was that imbibition and diffusion drove water to migrate from the lower section to the upper section of the cement sample to participate in the carbonation reaction. The level of cement carbonation in different CO2 exposure environments was ranked as: wet ScCO2 > CO2 dissolved in water > Pure-ScCO2. The corresponding maximum carbonation area ratios were 90 % and 38 % for the wet ScCO2 scenario and the brine scenario, respectively, compared with a maximum carbonation area ratio of 20 % for the Pure-ScCO2 scenario. This study implies that the most altered region in wellbore cement is at the ScCO2—water interface, and the expansion rate of the altered region is the key to evaluate the potential for CO2 leakage through wellbore cement.
{"title":"Investigation of chemical processes in cement exposed to wet ScCO2 and CO2-saturated brine in geological CO2 storage conditions","authors":"Kaiyuan Mei , Liwei Zhang , Yuna Cai , Ting Xiao , Quan Xue , Yan Wang , Qiang Sun , Brian McPherson","doi":"10.1016/j.ijggc.2024.104143","DOIUrl":"https://doi.org/10.1016/j.ijggc.2024.104143","url":null,"abstract":"<div><p>In geological CO<sub>2</sub> storage conditions, wellbore cement can be exposed to both supercritical CO<sub>2</sub> (ScCO<sub>2</sub>) with water vapor, and CO<sub>2</sub> dissolved in water. There is a lack of studies that investigate the effects of reaction environments on the extent of CO<sub>2</sub>-induced cement carbonation and leaching. In this study, four CO<sub>2</sub> exposure experiments were designed with wellbore cement samples exposed to both ScCO<sub>2</sub> and CO<sub>2</sub> dissolved in water to investigate the impacts of evaporation, capillarity, diffusion, and salt deposition on cement carbonation. Severe cement carbonation after 14 and 28 days of CO<sub>2</sub> exposure was observed in a wet ScCO<sub>2</sub> phase. When water evaporation into ScCO<sub>2</sub> phase was minimized by a steel plate between the brine phase and the ScCO<sub>2</sub> phase, a strong cement carbonation in ScCO<sub>2</sub> phase was still visible. The reason was that imbibition and diffusion drove water to migrate from the lower section to the upper section of the cement sample to participate in the carbonation reaction. The level of cement carbonation in different CO<sub>2</sub> exposure environments was ranked as: wet ScCO<sub>2</sub> > CO<sub>2</sub> dissolved in water > Pure-ScCO<sub>2</sub>. The corresponding maximum carbonation area ratios were 90 % and 38 % for the wet ScCO<sub>2</sub> scenario and the brine scenario, respectively, compared with a maximum carbonation area ratio of 20 % for the Pure-ScCO<sub>2</sub> scenario. This study implies that the most altered region in wellbore cement is at the ScCO<sub>2</sub>—water interface, and the expansion rate of the altered region is the key to evaluate the potential for CO<sub>2</sub> leakage through wellbore cement.</p></div>","PeriodicalId":334,"journal":{"name":"International Journal of Greenhouse Gas Control","volume":"135 ","pages":"Article 104143"},"PeriodicalIF":3.9,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140917851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-12DOI: 10.1016/j.ijggc.2024.104145
Dalal Alalaiwat , Ezzat Khan
Post-combustion carbon capture appears to be a promising solution to reduce the emission of carbon dioxide (CO2) from power plants that generate electricity using either coal or natural gas. In addition, carbon capture process efficiency, capacity, and energy consumption have become challenging against the performance of the capture process. However, synergistic effect due to solvents blend has gained attention to reduce the process energy consumption and enhance process efficiency. In this study, blends of methyldiethanolamine (MDEA) and piperazine (PZ) at different concentrations were investigated using a validated post-combustion capture process model using Aspen HYSYS. Results were compared with 30 wt% monoethanolamine (MEA) as reference case. The effective process variables are concentration of solvents, the amount of water and solvent in the makeup section, viscosity of solvent, energy consumed in different process stages, and the amount of lean solvent flow rate. These variables were studied against fixed process variables using rate-based model. The study shows that using (43 wt% MDEA/7 wt% PZ) for post-combustion carbon capture needs 2.53 MJ/kgCO2 regeneration energy for 88.5% process efficiency compared to 4.003 MJ/kgco2 for 30 wt% MEA without the need for any process modifications. In addition, it was found that solvents synergistic effect contributes to resolving the drawbacks of post-combustion capture that will enable the high utilization of the process and contribution to reduce the consequences effect of climate change. Therefore, the study will help policymakers, industries and encourage researchers towards the large-scale commissioning of blended solvent -based post-combustion capture process.
{"title":"Post-combustion carbon capture process modeling, simulation, and assessment of synergistic effect of solvents","authors":"Dalal Alalaiwat , Ezzat Khan","doi":"10.1016/j.ijggc.2024.104145","DOIUrl":"https://doi.org/10.1016/j.ijggc.2024.104145","url":null,"abstract":"<div><p>Post-combustion carbon capture appears to be a promising solution to reduce the emission of carbon dioxide (CO<sub>2</sub>) from power plants that generate electricity using either coal or natural gas. In addition, carbon capture process efficiency, capacity, and energy consumption have become challenging against the performance of the capture process. However, synergistic effect due to solvents blend has gained attention to reduce the process energy consumption and enhance process efficiency. In this study, blends of methyldiethanolamine (MDEA) and piperazine (PZ) at different concentrations were investigated using a validated post-combustion capture process model using Aspen HYSYS. Results were compared with 30 wt% monoethanolamine (MEA) as reference case. The effective process variables are concentration of solvents, the amount of water and solvent in the makeup section, viscosity of solvent, energy consumed in different process stages, and the amount of lean solvent flow rate. These variables were studied against fixed process variables using rate-based model. The study shows that using (43 wt% MDEA/7 wt% PZ) for post-combustion carbon capture needs 2.53 MJ/kg<sub>CO2</sub> regeneration energy for 88.5% process efficiency compared to 4.003 MJ/kgco<sub>2</sub> for 30 wt% MEA without the need for any process modifications. In addition, it was found that solvents synergistic effect contributes to resolving the drawbacks of post-combustion capture that will enable the high utilization of the process and contribution to reduce the consequences effect of climate change. Therefore, the study will help policymakers, industries and encourage researchers towards the large-scale commissioning of blended solvent -based post-combustion capture process.</p></div>","PeriodicalId":334,"journal":{"name":"International Journal of Greenhouse Gas Control","volume":"135 ","pages":"Article 104145"},"PeriodicalIF":3.9,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140910300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study focuses on optimizing the energy requirement in the post-combustion CO2 capture system using pressure swing regeneration through a model-based design (MBD). The simulation results highlight the significant impact of CO2 recovery, inlet gas and liquid flow rate, and CO2 concentration in the flue gas on the overall energy demand of the system. Moreover, an investigation into the de-sublimation chamber was undertaken, revealing a relationship between dry ice formation and the heat transfer between the LNG stream and CO2 in the heat exchanger. The parametric analysis study reveals that the sensible heat of the lean solvent is significantly influenced by the CO2 concentration in the liquid, consequently affecting the overall system energy. According to the results, the utilization of cold energy from LNG could save 80 % of the total energy requirement. The optimization results found the best working condition, which consumes energy of 0.190 GJ/ton CO2, 31 % lower than the basic scenario.
{"title":"Energy optimization of a non-aqueous solvent CO2 absorption system with pressure swing regeneration","authors":"Chairunnisa , Yingxin Zhou , Yitong Wu , Cheng You , Kyaw Thu , Takahiko Miyazaki , Yusuke Uehara , Hiroshi Machida , Koyo Norinaga","doi":"10.1016/j.ijggc.2024.104154","DOIUrl":"https://doi.org/10.1016/j.ijggc.2024.104154","url":null,"abstract":"<div><p>This study focuses on optimizing the energy requirement in the post-combustion CO<sub>2</sub> capture system using pressure swing regeneration through a model-based design (MBD). The simulation results highlight the significant impact of CO<sub>2</sub> recovery, inlet gas and liquid flow rate, and CO<sub>2</sub> concentration in the flue gas on the overall energy demand of the system. Moreover, an investigation into the de-sublimation chamber was undertaken, revealing a relationship between dry ice formation and the heat transfer between the LNG stream and CO<sub>2</sub> in the heat exchanger. The parametric analysis study reveals that the sensible heat of the lean solvent is significantly influenced by the CO<sub>2</sub> concentration in the liquid, consequently affecting the overall system energy. According to the results, the utilization of cold energy from LNG could save 80 % of the total energy requirement. The optimization results found the best working condition, which consumes energy of 0.190 GJ/ton CO<sub>2</sub>, 31 % lower than the basic scenario.</p></div>","PeriodicalId":334,"journal":{"name":"International Journal of Greenhouse Gas Control","volume":"135 ","pages":"Article 104154"},"PeriodicalIF":3.9,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140901684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}