Pub Date : 2025-01-06DOI: 10.1109/OJCOMS.2025.3526421
Vasileios Kouvakis;Stylianos E. Trevlakis;Alexandros-Apostolos A. Boulogeorgos;Hongwu Liu;Waqas Khalid;Theodoros A. Tsiftsis;Octavia A. Dobre
Demands for secure, ubiquitous, and always-available connectivity have been identified as the pillar design parameters of the next generation radio access networks (RANs). Motivated by this, the current contribution introduces a network architecture that leverages blockchain technologies to augment security in RANs, while enabling dynamic coverage expansion through the use of intermediate commercial or private wireless nodes. To assess the efficiency and limitations of the architecture, we employ Markov chain theory in order to extract a theoretical model with increased engineering insights. Building upon this model, we quantify the latency as well as the security capabilities in terms of probability of successful attack, for three scenarios, namely fixed topology fronthaul network, advanced coverage expansion and advanced mobile node connectivity, which reveal the scalability of the blockchain-RAN architecture.
{"title":"Hierarchical Blockchain Radio Access Networks: Architecture, Modelling, and Performance Assessment","authors":"Vasileios Kouvakis;Stylianos E. Trevlakis;Alexandros-Apostolos A. Boulogeorgos;Hongwu Liu;Waqas Khalid;Theodoros A. Tsiftsis;Octavia A. Dobre","doi":"10.1109/OJCOMS.2025.3526421","DOIUrl":"https://doi.org/10.1109/OJCOMS.2025.3526421","url":null,"abstract":"Demands for secure, ubiquitous, and always-available connectivity have been identified as the pillar design parameters of the next generation radio access networks (RANs). Motivated by this, the current contribution introduces a network architecture that leverages blockchain technologies to augment security in RANs, while enabling dynamic coverage expansion through the use of intermediate commercial or private wireless nodes. To assess the efficiency and limitations of the architecture, we employ Markov chain theory in order to extract a theoretical model with increased engineering insights. Building upon this model, we quantify the latency as well as the security capabilities in terms of probability of successful attack, for three scenarios, namely fixed topology fronthaul network, advanced coverage expansion and advanced mobile node connectivity, which reveal the scalability of the blockchain-RAN architecture.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"6 ","pages":"576-592"},"PeriodicalIF":6.3,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10829652","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142993671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this article, we design and implement a multiantenna configured secure multiuser discrete Fourier transform (DFT)-Spread orthogonal frequency division multiplexing (OFDM) system based on frequency-domain spectrum shaping (FDSS) for reconfigurable intelligent surfaces (RISs) and unmanned aerial vehicle (UAV)-assisted terahertz (THz) communications. Our proposed simulated system highlights more suitable performance matrices for a typical case of three users for color image transmission. We introduced a six-dimensional hyperchaotic system-based encryption algorithm to enhance the physical layer security (PLS) of a UAV-to-ground communication network. In addition, the block diagonalization (BD) precoding technique reduces multiuser interference (MUI). Furthermore, we included repeat and accumulate (RA) channel coding with Cholesky decomposition-based zero-forcing (CD-ZF) and minimum mean square error (MMSE) signal detection schemes to improve the bit error rate (BER). We adopted the FDSS scheme and considered null carriers to reduce the out-of-band (OOB) spectrum power. The simulation results demonstrate the effectiveness of the proposed system in terms of PLS enhancement for color image transmission, with a low image structural similarity index of 0.65%, 1.60%, and 0.70% for users 1, 2, and 3, respectively; an achievable OOB power emission of 337 dB; and estimated peak-to-average power ratios (PAPRs) ranging from 7.10 to 7.85 dB at a complementary cumulative distribution function (CCDF) of $1times 10^{-4}$ for different ground-transmitting channels. At signal-to-noise ratios of 13.7, 9.4, and 7.5 dB, users 1, 2, and 3 achieve a BER of $1times 10^{-3}$ under RA channel coding, MMSE, and binary phase shift keying (BPSK) digital modulation.
{"title":"Transceiver Design of a Secure Multiuser FDSS-Based DFT-Spread OFDM System for RIS- and UAV-Assisted THz Communications","authors":"Md. Najmul Hossain;Kottakkaran Sooppy Nisar;Tetsuya Shimamura;Md. Rakibul Islam;Sk. Tamanna Kamal;Shaikh Enayet Ullah","doi":"10.1109/OJCOMS.2025.3526889","DOIUrl":"https://doi.org/10.1109/OJCOMS.2025.3526889","url":null,"abstract":"In this article, we design and implement a multiantenna configured secure multiuser discrete Fourier transform (DFT)-Spread orthogonal frequency division multiplexing (OFDM) system based on frequency-domain spectrum shaping (FDSS) for reconfigurable intelligent surfaces (RISs) and unmanned aerial vehicle (UAV)-assisted terahertz (THz) communications. Our proposed simulated system highlights more suitable performance matrices for a typical case of three users for color image transmission. We introduced a six-dimensional hyperchaotic system-based encryption algorithm to enhance the physical layer security (PLS) of a UAV-to-ground communication network. In addition, the block diagonalization (BD) precoding technique reduces multiuser interference (MUI). Furthermore, we included repeat and accumulate (RA) channel coding with Cholesky decomposition-based zero-forcing (CD-ZF) and minimum mean square error (MMSE) signal detection schemes to improve the bit error rate (BER). We adopted the FDSS scheme and considered null carriers to reduce the out-of-band (OOB) spectrum power. The simulation results demonstrate the effectiveness of the proposed system in terms of PLS enhancement for color image transmission, with a low image structural similarity index of 0.65%, 1.60%, and 0.70% for users 1, 2, and 3, respectively; an achievable OOB power emission of 337 dB; and estimated peak-to-average power ratios (PAPRs) ranging from 7.10 to 7.85 dB at a complementary cumulative distribution function (CCDF) of <inline-formula> <tex-math>$1times 10^{-4}$ </tex-math></inline-formula> for different ground-transmitting channels. At signal-to-noise ratios of 13.7, 9.4, and 7.5 dB, users 1, 2, and 3 achieve a BER of <inline-formula> <tex-math>$1times 10^{-3}$ </tex-math></inline-formula> under RA channel coding, MMSE, and binary phase shift keying (BPSK) digital modulation.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"6 ","pages":"708-726"},"PeriodicalIF":6.3,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10829813","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142993775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Open Radio Access Network (Open RAN) framework, emerging as the cornerstone for Artificial Intelligence (AI)-enabled Sixth-Generation (6G) mobile networks, heralds a transformative shift in radio access network architecture. As the adoption of Open RAN accelerates, ensuring its security becomes critical. The RAN Intelligent Controller (RIC) plays a central role in Open RAN by improving network efficiency and flexibility. Nevertheless, it also brings about potential security risks that need careful scrutiny. Therefore, it is imperative to evaluate the current state of RIC security comprehensively. This assessment is essential to gain a profound understanding of the security considerations associated with RIC. This survey combines a comprehensive analysis of RAN security, tracing its evolution from 2G to 5G, with an in-depth exploration of RIC security, marking the first comprehensive examination of its kind in the literature. Real-world security incidents involving RIC are vividly illustrated, providing practical insights. The study evaluates the security implications of the RIC within the 6G Open RAN context, addressing security vulnerabilities, mitigation strategies, and potential enhancements. It aims to guide stakeholders in the telecom industry toward a secure and dependable telecommunications infrastructure. The article serves as a valuable reference, shedding light on the RIC’s crucial role within the broader network infrastructure and emphasizing security’s paramount importance. This survey also explores the promising security opportunities that the RIC presents for enhancing network security and resilience in the context of 6G mobile networks. It outlines open issues, lessons learned, and future research directions in the domain of intelligent control in 6G Open RAN, facilitating a comprehensive understanding of this dynamic landscape.
{"title":"Intelligent Control in 6G Open RAN: Security Risk or Opportunity?","authors":"Sanaz Soltani;Ali Amanloo;Mohammad Shojafar;Rahim Tafazolli","doi":"10.1109/OJCOMS.2025.3526215","DOIUrl":"https://doi.org/10.1109/OJCOMS.2025.3526215","url":null,"abstract":"The Open Radio Access Network (Open RAN) framework, emerging as the cornerstone for Artificial Intelligence (AI)-enabled Sixth-Generation (6G) mobile networks, heralds a transformative shift in radio access network architecture. As the adoption of Open RAN accelerates, ensuring its security becomes critical. The RAN Intelligent Controller (RIC) plays a central role in Open RAN by improving network efficiency and flexibility. Nevertheless, it also brings about potential security risks that need careful scrutiny. Therefore, it is imperative to evaluate the current state of RIC security comprehensively. This assessment is essential to gain a profound understanding of the security considerations associated with RIC. This survey combines a comprehensive analysis of RAN security, tracing its evolution from 2G to 5G, with an in-depth exploration of RIC security, marking the first comprehensive examination of its kind in the literature. Real-world security incidents involving RIC are vividly illustrated, providing practical insights. The study evaluates the security implications of the RIC within the 6G Open RAN context, addressing security vulnerabilities, mitigation strategies, and potential enhancements. It aims to guide stakeholders in the telecom industry toward a secure and dependable telecommunications infrastructure. The article serves as a valuable reference, shedding light on the RIC’s crucial role within the broader network infrastructure and emphasizing security’s paramount importance. This survey also explores the promising security opportunities that the RIC presents for enhancing network security and resilience in the context of 6G mobile networks. It outlines open issues, lessons learned, and future research directions in the domain of intelligent control in 6G Open RAN, facilitating a comprehensive understanding of this dynamic landscape.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"6 ","pages":"840-880"},"PeriodicalIF":6.3,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10829659","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143105747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-06DOI: 10.1109/OJCOMS.2025.3526759
Ghazal Asemian;Mohammadreza Amini;Burak Kantarci
The integration of Non-Orthogonal Multiple Access (NOMA) and Reconfigurable Intelligent Surfaces (RIS) significantly enhances 5G across a variety of technologies such as the Internet of Things (IoT), smart cities, and industrial automation. This work explores an active RIS-assisted NOMA uplink system aimed at mitigating jamming attacks while ensuring the reliability and latency requirements of ultra-reliable low-latency communication (URLLC) applications. We investigate the potential of RIS with active elements that adjust the phase and amplitude of the received signals for robust jamming mitigation. The study incorporates finite blocklength (FBL) and Automatic Repeat Request (ARQ) strategies to handle real-world complex configurations effectively. A thorough examination of various network parameters is conducted, including user transmit powers, active RIS elements amplitude, and the number of RIS elements. The paper utilizes the surrogate optimization technique, particularly the Radial Basis Function (RBF), to address the non-convex optimization problem minimizing the power consumption. The complexity of the optimization problem, involving numerous interacting variables, leads us to develop a deep regression model to predict optimal network configurations, providing a computationally efficient approach as well as reducing the signaling overhead. The findings emphasize the delicate balance required in optimizing network parameters. For instance, increasing the blocklength from 100 to 150 increases the reliability feasibility by 12.19%. The results demonstrate an optimal range for the amplitude value of active RIS elements $(2lt beta lt 15)$ . Exceeding this range results in over-amplification, high latency, and lower reliability, due to the interference related to NOMA cluster users. The deep regression model converges to a weighted mean square error (WMSE) of 10.6 for RIS with 25 elements and 15.8 for larger RIS size, highlighting the effectiveness of the deep regression model and RIS configuration’s importance.
{"title":"Active RIS-NOMA Uplink in URLLC, Jamming Mitigation via Surrogate and Deep Learning","authors":"Ghazal Asemian;Mohammadreza Amini;Burak Kantarci","doi":"10.1109/OJCOMS.2025.3526759","DOIUrl":"https://doi.org/10.1109/OJCOMS.2025.3526759","url":null,"abstract":"The integration of Non-Orthogonal Multiple Access (NOMA) and Reconfigurable Intelligent Surfaces (RIS) significantly enhances 5G across a variety of technologies such as the Internet of Things (IoT), smart cities, and industrial automation. This work explores an active RIS-assisted NOMA uplink system aimed at mitigating jamming attacks while ensuring the reliability and latency requirements of ultra-reliable low-latency communication (URLLC) applications. We investigate the potential of RIS with active elements that adjust the phase and amplitude of the received signals for robust jamming mitigation. The study incorporates finite blocklength (FBL) and Automatic Repeat Request (ARQ) strategies to handle real-world complex configurations effectively. A thorough examination of various network parameters is conducted, including user transmit powers, active RIS elements amplitude, and the number of RIS elements. The paper utilizes the surrogate optimization technique, particularly the Radial Basis Function (RBF), to address the non-convex optimization problem minimizing the power consumption. The complexity of the optimization problem, involving numerous interacting variables, leads us to develop a deep regression model to predict optimal network configurations, providing a computationally efficient approach as well as reducing the signaling overhead. The findings emphasize the delicate balance required in optimizing network parameters. For instance, increasing the blocklength from 100 to 150 increases the reliability feasibility by 12.19%. The results demonstrate an optimal range for the amplitude value of active RIS elements <inline-formula> <tex-math>$(2lt beta lt 15)$ </tex-math></inline-formula>. Exceeding this range results in over-amplification, high latency, and lower reliability, due to the interference related to NOMA cluster users. The deep regression model converges to a weighted mean square error (WMSE) of 10.6 for RIS with 25 elements and 15.8 for larger RIS size, highlighting the effectiveness of the deep regression model and RIS configuration’s importance.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"6 ","pages":"690-707"},"PeriodicalIF":6.3,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10829864","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142993774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-03DOI: 10.1109/OJCOMS.2025.3525468
Ferdaous Tarhouni;Ruibo Wang;Mohamed-Slim Alouini
Free space optical (FSO) communication, known for its high data rates and immunity to electromagnetic interference, encounters challenges such as weather dependency, misalignment issues, and line-of-sight (LoS) requirements. Mesh networks, with their inherent scalability and redundancy, can mitigate these limitations by providing multiple pathways for data transmission and robust network configurations. This paper investigates the key motivations for integrating FSO transmission within mesh structures. We review existing literature on both FSO and hybrid RF/FSO mesh networks, discussing technical studies aimed at maximizing network performance and minimizing delay and cost deployments. We equally explore some relaying approaches in FSO mesh networks and shed light on the advantages of some relaying solutions, mainly, flying platforms and reconfigurable intelligent surfaces (RIS). We discuss the use of FSO in satellite communication to establish two types of mesh networks: inter-satellite and satellite-aerial/ground mesh networks. Finally, some open issues and future research directions are explored.
{"title":"Free Space Optical Mesh Networks: A Survey","authors":"Ferdaous Tarhouni;Ruibo Wang;Mohamed-Slim Alouini","doi":"10.1109/OJCOMS.2025.3525468","DOIUrl":"https://doi.org/10.1109/OJCOMS.2025.3525468","url":null,"abstract":"Free space optical (FSO) communication, known for its high data rates and immunity to electromagnetic interference, encounters challenges such as weather dependency, misalignment issues, and line-of-sight (LoS) requirements. Mesh networks, with their inherent scalability and redundancy, can mitigate these limitations by providing multiple pathways for data transmission and robust network configurations. This paper investigates the key motivations for integrating FSO transmission within mesh structures. We review existing literature on both FSO and hybrid RF/FSO mesh networks, discussing technical studies aimed at maximizing network performance and minimizing delay and cost deployments. We equally explore some relaying approaches in FSO mesh networks and shed light on the advantages of some relaying solutions, mainly, flying platforms and reconfigurable intelligent surfaces (RIS). We discuss the use of FSO in satellite communication to establish two types of mesh networks: inter-satellite and satellite-aerial/ground mesh networks. Finally, some open issues and future research directions are explored.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"6 ","pages":"642-655"},"PeriodicalIF":6.3,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10821003","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142993773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-03DOI: 10.1109/OJCOMS.2025.3525954
Usman Ali;Luca De Nardis;Maria-Gabriella Di Benedetto
The performance of Space Division Multiple Access (SDMA) in Multiuser Multiple Input Single Output (MU-MISO) systems degrades significantly under imperfect Channel State Information at the Transmitter (CSIT). To address this, Rate-Splitting Multiple Access (RSMA) has been shown to outperform SDMA in scenarios where CSIT is imperfect, particularly in underloaded scenarios, where the number of potential users is lower than the number of antennas. This paper investigates the use of RSMA in a large-scale, overloaded system, where the number of users exceeds the number of antennas at the base station. We propose a novel approximation of the RSMA sum rate under limited feedback conditions and develop an optimal power allocation strategy that dynamically switches between RSMA and SDMA to maximize energy efficiency and system performance. Additionally, a robust Minimum Mean Square Error (MMSE) based precoding method is introduced to mitigate the effects of imperfect CSIT in private streams of RSMA. Numerical simulations validate our analytical derivations and show that RSMA offers superior performance over SDMA in large user regimes with low feedback loads, providing significant performance gains in realistic network conditions. These findings offer new insights into the design of energy-efficient and scalable downlink communication systems for future wireless networks.
{"title":"Energy Efficiency and Fairness in Large Scale Systems Using RSMA","authors":"Usman Ali;Luca De Nardis;Maria-Gabriella Di Benedetto","doi":"10.1109/OJCOMS.2025.3525954","DOIUrl":"https://doi.org/10.1109/OJCOMS.2025.3525954","url":null,"abstract":"The performance of Space Division Multiple Access (SDMA) in Multiuser Multiple Input Single Output (MU-MISO) systems degrades significantly under imperfect Channel State Information at the Transmitter (CSIT). To address this, Rate-Splitting Multiple Access (RSMA) has been shown to outperform SDMA in scenarios where CSIT is imperfect, particularly in underloaded scenarios, where the number of potential users is lower than the number of antennas. This paper investigates the use of RSMA in a large-scale, overloaded system, where the number of users exceeds the number of antennas at the base station. We propose a novel approximation of the RSMA sum rate under limited feedback conditions and develop an optimal power allocation strategy that dynamically switches between RSMA and SDMA to maximize energy efficiency and system performance. Additionally, a robust Minimum Mean Square Error (MMSE) based precoding method is introduced to mitigate the effects of imperfect CSIT in private streams of RSMA. Numerical simulations validate our analytical derivations and show that RSMA offers superior performance over SDMA in large user regimes with low feedback loads, providing significant performance gains in realistic network conditions. These findings offer new insights into the design of energy-efficient and scalable downlink communication systems for future wireless networks.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"6 ","pages":"611-628"},"PeriodicalIF":6.3,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10824841","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142993666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-03DOI: 10.1109/OJCOMS.2025.3525506
Chuan-Wei Cho;Meng-Shiuan Pan
The integrated access and backhaul (IAB) architecture utilizes wireless backhaul to facilitate the expansion of fifth-generation (5G) New Radio (NR) networks. In an IAB network, intermediate base stations (or say IAB nodes) can be connected in a multi-hop fashion. However, optimizing resource scheduling in such a network remains a critical challenge. In this work, we present a novel method that integrates multi-user multiple-input and multiple-output (MU-MIMO) and non-orthogonal multiple access (NOMA) technologies into IAB networks. The designed two-phase algorithm has the following features: 1) support for multi-path routing and efficient resource utilization through the combined use of MU-MIMO and NOMA, 2) a novel route decision phase that selects optimal paths by considering load balancing among IAB nodes, and 3) a dynamic link scheduling phase that allocates transmission power and schedules links to maximize network capacity. Simulation results demonstrate that the proposed solution achieves significant improvements in throughput, fairness, and latency compared to existing methods.
{"title":"Resource Scheduling in MU-MIMO and NOMA Enabled Integrated Access and Backhaul Networks","authors":"Chuan-Wei Cho;Meng-Shiuan Pan","doi":"10.1109/OJCOMS.2025.3525506","DOIUrl":"https://doi.org/10.1109/OJCOMS.2025.3525506","url":null,"abstract":"The integrated access and backhaul (IAB) architecture utilizes wireless backhaul to facilitate the expansion of fifth-generation (5G) New Radio (NR) networks. In an IAB network, intermediate base stations (or say IAB nodes) can be connected in a multi-hop fashion. However, optimizing resource scheduling in such a network remains a critical challenge. In this work, we present a novel method that integrates multi-user multiple-input and multiple-output (MU-MIMO) and non-orthogonal multiple access (NOMA) technologies into IAB networks. The designed two-phase algorithm has the following features: 1) support for multi-path routing and efficient resource utilization through the combined use of MU-MIMO and NOMA, 2) a novel route decision phase that selects optimal paths by considering load balancing among IAB nodes, and 3) a dynamic link scheduling phase that allocates transmission power and schedules links to maximize network capacity. Simulation results demonstrate that the proposed solution achieves significant improvements in throughput, fairness, and latency compared to existing methods.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"6 ","pages":"551-559"},"PeriodicalIF":6.3,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10820963","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142993776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A novel technology based on stacked intelligent metasurfaces (SIM) has recently emerged. This platform involves cascading multiple metasurfaces, each acting as a digitally programmable physical layer within a diffractive neural network. SIM enable the implementation of signal-processing transformations directly in the electromagnetic wave domain, eliminating the need for expensive, high-precision, and power-intensive digital platforms. However, existing studies employing SIM in wireless communication applications rely solely on nearly passive structures that control only the phase of the meta-atoms in each layer. In this study, we propose a SIM-aided downlink multiuser transmission scheme, where the SIM at the base station (BS) end is designed by combining nearly passive layers with phase-only reconfiguration capabilities and active layers integrated with amplifier chips to enable amplitude control. Our optimal design aims at maximizing the sum rate for the best group of users by jointly optimizing the transmit power allocation at the BS and the wave-based beamforming at the SIM. In addition to the standard sum-power constraint at the BS, our optimization framework includes two additional constraints: (i) a per-stream power preserving constraint to prevent propagation losses across the SIM, and (ii) an amplitude constraint to account for power limitations for each active layer. To further reduce the complexity of the optimal beamforming solution, we explore a simple yet suboptimal zero-forcing (ZF) beamforming design, where the wave-based transformation implemented by the SIM is selected to eliminate interference among user streams. Finally, extensive Monte Carlo simulations demonstrate that incorporating both nearly passive and active layers within the SIM significantly enhances capacity compared to previously reported phase-only coding SIM. Additionally, the numerical results reveal that low-complexity ZF beamforming approaches optimality in terms of maximum sum rate even for a relatively small number of users.
{"title":"Design of Stacked Intelligent Metasurfaces With Reconfigurable Amplitude and Phase for Multiuser Downlink Beamforming","authors":"Donatella Darsena;Francesco Verde;Ivan Iudice;Vincenzo Galdi","doi":"10.1109/OJCOMS.2025.3526126","DOIUrl":"https://doi.org/10.1109/OJCOMS.2025.3526126","url":null,"abstract":"A novel technology based on stacked intelligent metasurfaces (SIM) has recently emerged. This platform involves cascading multiple metasurfaces, each acting as a digitally programmable physical layer within a diffractive neural network. SIM enable the implementation of signal-processing transformations directly in the electromagnetic wave domain, eliminating the need for expensive, high-precision, and power-intensive digital platforms. However, existing studies employing SIM in wireless communication applications rely solely on nearly passive structures that control only the phase of the meta-atoms in each layer. In this study, we propose a SIM-aided downlink multiuser transmission scheme, where the SIM at the base station (BS) end is designed by combining nearly passive layers with phase-only reconfiguration capabilities and active layers integrated with amplifier chips to enable amplitude control. Our optimal design aims at maximizing the sum rate for the best group of users by jointly optimizing the transmit power allocation at the BS and the wave-based beamforming at the SIM. In addition to the standard sum-power constraint at the BS, our optimization framework includes two additional constraints: (i) a per-stream power preserving constraint to prevent propagation losses across the SIM, and (ii) an amplitude constraint to account for power limitations for each active layer. To further reduce the complexity of the optimal beamforming solution, we explore a simple yet suboptimal zero-forcing (ZF) beamforming design, where the wave-based transformation implemented by the SIM is selected to eliminate interference among user streams. Finally, extensive Monte Carlo simulations demonstrate that incorporating both nearly passive and active layers within the SIM significantly enhances capacity compared to previously reported phase-only coding SIM. Additionally, the numerical results reveal that low-complexity ZF beamforming approaches optimality in terms of maximum sum rate even for a relatively small number of users.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"6 ","pages":"531-550"},"PeriodicalIF":6.3,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10824842","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142993667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.1109/OJCOMS.2024.3523518
Mehmood Ul Hassan;Yawar Abbas Bangash;Waseem Iqbal;Abdellah Chehri;Javed Iqbal
The metaverse is a new virtual world that has the potential to significantly impact our interactions with digital content and with each other. It is a shared virtual environment where users can seamlessly and with immersive experiences create, interact, and enjoy digital assets. Nevertheless, the metaverse also poses fundamental challenges, particularly about security and privacy concerns, that require careful consideration. One of the most daunting aspects of securing the metaverse is authentication. Several solutions have been proposed, including deployment of blockchain technology and smart contracts, to address these authentication challenges. While these methods provide a secure and tamper-proof authentication mechanism, they fail to meet certain critical security and privacy requirements like interoperability and decentralization. This research proposes an enhanced privacy-preserving authentication scheme based on blockchain, elliptic curve cryptography, biohashing, and a physical unclonable function that guards against various attacks. The proposed scheme does not rely on a single central authority and consists of various phases, including user and avatar authentication, password change, and avatar generation phases. The proposed scheme underwent security assessment using the Burrows Abadi Needham (BAN) logic, ProVerif tool, and Scyther tool. The results demonstrate that it provides a better level of security against a wide range of attack vectors. The proposed scheme offers a swift and efficient authentication mechanism that adheres to the requirements of the metaverse environment, such as interoperability, decentralization, and privacy protection, and requires less computation cost as compared to state-of-the-art schemes.
{"title":"PRIDA-ME: A Privacy-Preserving, Interoperable and Decentralized Authentication Scheme for Metaverse Environment","authors":"Mehmood Ul Hassan;Yawar Abbas Bangash;Waseem Iqbal;Abdellah Chehri;Javed Iqbal","doi":"10.1109/OJCOMS.2024.3523518","DOIUrl":"https://doi.org/10.1109/OJCOMS.2024.3523518","url":null,"abstract":"The metaverse is a new virtual world that has the potential to significantly impact our interactions with digital content and with each other. It is a shared virtual environment where users can seamlessly and with immersive experiences create, interact, and enjoy digital assets. Nevertheless, the metaverse also poses fundamental challenges, particularly about security and privacy concerns, that require careful consideration. One of the most daunting aspects of securing the metaverse is authentication. Several solutions have been proposed, including deployment of blockchain technology and smart contracts, to address these authentication challenges. While these methods provide a secure and tamper-proof authentication mechanism, they fail to meet certain critical security and privacy requirements like interoperability and decentralization. This research proposes an enhanced privacy-preserving authentication scheme based on blockchain, elliptic curve cryptography, biohashing, and a physical unclonable function that guards against various attacks. The proposed scheme does not rely on a single central authority and consists of various phases, including user and avatar authentication, password change, and avatar generation phases. The proposed scheme underwent security assessment using the Burrows Abadi Needham (BAN) logic, ProVerif tool, and Scyther tool. The results demonstrate that it provides a better level of security against a wide range of attack vectors. The proposed scheme offers a swift and efficient authentication mechanism that adheres to the requirements of the metaverse environment, such as interoperability, decentralization, and privacy protection, and requires less computation cost as compared to state-of-the-art schemes.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"6 ","pages":"493-515"},"PeriodicalIF":6.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10819498","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142938456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-31DOI: 10.1109/OJCOMS.2024.3524497
Elmahedi Mahalal;Eslam Hasan;Muhammad Ismail;Zi-Yang Wu;Mostafa M. Fouda;Zubair Md Fadlullah;Nei Kato
This paper studies the generation of cryptographic keys from wireless channels in light-fidelity (LiFi) networks. Unlike existing studies, we account for several practical considerations (a) realistic indoor multi-user mobility scenarios, (b) non-ideal channel reciprocity given the unique characteristics of the downlink visible light (VL) and uplink infrared (IR) channels, (c) different room occupancy levels, (d) different room layouts, and (e) different receivers’ field-of-view (FoV). Since general channel models in dynamic LiFi networks are inaccurate, we propose a novel deep learning-based framework to generate secret keys with minimal key disagreement rate (KDR) and maximal key generation rate (KGR). However, we find that wireless channels in LiFi networks exhibit different statistical behaviors under various conditions, leading to concept drift in the deep learning model. As a result, key generation suffers from (a) a deterioration in KDR and KGR up to 29% and 38%, respectively, and (b) failing the NIST randomness test. To enable a concept drift aware framework, we propose an adaptive learning strategy using the similarity of channel probability density functions and the mix-of-experts ensemble method. Results show our adaptive learning strategy can achieve stable performance that passes the NIST randomness test and achieves 8% KDR and 89 bits/s KGR for a case of study with 60° FoV.
{"title":"Concept Drift Aware Wireless Key Generation in Dynamic LiFi Networks","authors":"Elmahedi Mahalal;Eslam Hasan;Muhammad Ismail;Zi-Yang Wu;Mostafa M. Fouda;Zubair Md Fadlullah;Nei Kato","doi":"10.1109/OJCOMS.2024.3524497","DOIUrl":"https://doi.org/10.1109/OJCOMS.2024.3524497","url":null,"abstract":"This paper studies the generation of cryptographic keys from wireless channels in light-fidelity (LiFi) networks. Unlike existing studies, we account for several practical considerations (a) realistic indoor multi-user mobility scenarios, (b) non-ideal channel reciprocity given the unique characteristics of the downlink visible light (VL) and uplink infrared (IR) channels, (c) different room occupancy levels, (d) different room layouts, and (e) different receivers’ field-of-view (FoV). Since general channel models in dynamic LiFi networks are inaccurate, we propose a novel deep learning-based framework to generate secret keys with minimal key disagreement rate (KDR) and maximal key generation rate (KGR). However, we find that wireless channels in LiFi networks exhibit different statistical behaviors under various conditions, leading to concept drift in the deep learning model. As a result, key generation suffers from (a) a deterioration in KDR and KGR up to 29% and 38%, respectively, and (b) failing the NIST randomness test. To enable a concept drift aware framework, we propose an adaptive learning strategy using the similarity of channel probability density functions and the mix-of-experts ensemble method. Results show our adaptive learning strategy can achieve stable performance that passes the NIST randomness test and achieves 8% KDR and 89 bits/s KGR for a case of study with 60° FoV.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"6 ","pages":"742-758"},"PeriodicalIF":6.3,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10818749","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143184269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}