In urban environments, efficiently decrypting CP-ABE in VANETs is a significant challenge due to the dynamic and resource-constrained nature of these networks. VANETs are critical for ITS that improve traffic management, safety, and infotainment through V2V and V2I communication. However, managing computational resources for CP-ABE decryption remains difficult. To address this, we propose a hybrid RL-DE algorithm. The RL agent dynamically adjusts the DE parameters using real-time vehicular data, employing Q-learning and policy gradient methods to learn optimal policies. This integration improves task distribution and decryption efficiency. The DE algorithm, enhanced with RL-adjusted parameters, performs mutation, crossover, and fitness evaluation, ensuring continuous adaptation and optimization. Experiments in a simulated urban VANET environment show that our algorithm significantly reduces decryption time, improves resource utilization, and enhances overall efficiency compared to traditional methods, providing a robust solution for dynamic urban settings.
{"title":"Optimizing CP-ABE Decryption in Urban VANETs: A Hybrid Reinforcement Learning and Differential Evolution Approach","authors":"Muhsen Alkhalidy;Mohammad Bany Taha;Rasel Chowdhury;Chamseddine Talhi;Hakima Ould-Slimane;Azzam Mourad","doi":"10.1109/OJCOMS.2024.3479069","DOIUrl":"https://doi.org/10.1109/OJCOMS.2024.3479069","url":null,"abstract":"In urban environments, efficiently decrypting CP-ABE in VANETs is a significant challenge due to the dynamic and resource-constrained nature of these networks. VANETs are critical for ITS that improve traffic management, safety, and infotainment through V2V and V2I communication. However, managing computational resources for CP-ABE decryption remains difficult. To address this, we propose a hybrid RL-DE algorithm. The RL agent dynamically adjusts the DE parameters using real-time vehicular data, employing Q-learning and policy gradient methods to learn optimal policies. This integration improves task distribution and decryption efficiency. The DE algorithm, enhanced with RL-adjusted parameters, performs mutation, crossover, and fitness evaluation, ensuring continuous adaptation and optimization. Experiments in a simulated urban VANET environment show that our algorithm significantly reduces decryption time, improves resource utilization, and enhances overall efficiency compared to traditional methods, providing a robust solution for dynamic urban settings.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":null,"pages":null},"PeriodicalIF":6.3,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10714404","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142518135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-10DOI: 10.1109/OJCOMS.2024.3477725
Thomas Stüber;Lukas Osswald;Michael Menth
Time-Sensitive Networking (TSN) extends Ethernet bridging with features for deterministic transmission. Periodic streams may be scheduled such that their frames hardly interfere in bridges. Additionally, the Time-Aware Shaper (TAS) can keep egress ports free from other traffic when scheduled traffic arrives. TAS scheduling determines transmission starts of scheduled streams at end stations and configures the TAS in bridges. Most TAS scheduling algorithms disregard jitter and synchronization errors at end stations and bridges, race conditions from simultaneously arriving frames with same egress ports, and hardware-based configuration limits of the TAS. We call the resulting schedules tight schedules (TS). However, all these challenges apply to real hardware bridges. Therefore, we present an algorithm using event times with uncertainty to compute efficient robust schedules (ERS) that respect these constraints. We also propose a repair for existing scheduling approaches and call their output naïve robust schedules (NRS). We evaluate and compare their bandwidth usage and stream admission with those of TS. ERS are more efficient than NRS, and the performance gap between ERS and TS quantifies the price for robust schedules. Moreover, the presented algorithm for ERS computes significantly faster than four well-known methods for TS, and it can solve larger problem instances.
时间敏感网络(TSN)通过确定性传输功能扩展了以太网桥接功能。可对周期性数据流进行调度,使其帧几乎不会干扰网桥。此外,时间感知整形器(TAS)还能在预定流量到达时保持出口端口无其他流量。TAS 调度可确定终端站的计划流传输起始点,并在网桥中配置 TAS。大多数 TAS 调度算法都会忽略终端站和网桥的抖动和同步错误、同一出口端口同时到达的帧所产生的竞赛条件以及 TAS 基于硬件的配置限制。我们将由此产生的调度称为紧密调度(TS)。然而,所有这些挑战都适用于真实的硬件网桥。因此,我们提出了一种算法,利用具有不确定性的事件时间来计算尊重这些约束条件的高效稳健调度(ERS)。我们还提出了一种修复现有调度方法的方法,并将其输出称为天真鲁棒调度(NRS)。我们评估并比较了它们与 TS 的带宽使用和流接纳情况。ERS 比 NRS 更有效,ERS 和 TS 之间的性能差距量化了稳健调度的价格。此外,所介绍的 ERS 算法的计算速度明显快于四种著名的 TS 方法,而且可以解决更大的问题实例。
{"title":"Efficient Robust Schedules (ERS) for Time-Aware Shaping in Time-Sensitive Networking","authors":"Thomas Stüber;Lukas Osswald;Michael Menth","doi":"10.1109/OJCOMS.2024.3477725","DOIUrl":"https://doi.org/10.1109/OJCOMS.2024.3477725","url":null,"abstract":"Time-Sensitive Networking (TSN) extends Ethernet bridging with features for deterministic transmission. Periodic streams may be scheduled such that their frames hardly interfere in bridges. Additionally, the Time-Aware Shaper (TAS) can keep egress ports free from other traffic when scheduled traffic arrives. TAS scheduling determines transmission starts of scheduled streams at end stations and configures the TAS in bridges. Most TAS scheduling algorithms disregard jitter and synchronization errors at end stations and bridges, race conditions from simultaneously arriving frames with same egress ports, and hardware-based configuration limits of the TAS. We call the resulting schedules tight schedules (TS). However, all these challenges apply to real hardware bridges. Therefore, we present an algorithm using event times with uncertainty to compute efficient robust schedules (ERS) that respect these constraints. We also propose a repair for existing scheduling approaches and call their output naïve robust schedules (NRS). We evaluate and compare their bandwidth usage and stream admission with those of TS. ERS are more efficient than NRS, and the performance gap between ERS and TS quantifies the price for robust schedules. Moreover, the presented algorithm for ERS computes significantly faster than four well-known methods for TS, and it can solve larger problem instances.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":null,"pages":null},"PeriodicalIF":6.3,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10713245","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142517968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-10DOI: 10.1109/OJCOMS.2024.3477930
Ziyi Zhou;Oluwakayode Onireti;Xinyi Lin;Lei Zhang;Muhammad Ali Imran
Blockchain has shown significant potential as a key enabler in privacy and security in the forthcoming 6G wireless network, due to its distributed and decentralized characteristics. Practical Byzantine fault tolerance (PBFT) emerges as a prominent technology for deployment in wireless networks due to its attributes of low latency, high throughput, and minimal computational requirements. However, the high complexity of communication is the bottleneck of PBFT for achieving high scalability. To tackle this problem, this paper proposes a novel framework of PBFT, where the inter-node communication during the normal case operation is completed through base stations. The uplink and downlink communication between the base station and nodes are modelled based on the signal-to-interference-plus-noise ratio (SINR) threshold. A novel ‘timeout’ mechanism is incorporated to reduce the communication complexity. The performance is evaluated by metrics including consensus success probability, communication complexity, view change delay, view change occurrence probability, consensus delay, consensus throughput and energy consumption. The numerical results show that the proposed scheme achieves higher consensus success probability and throughput, lower communication complexity and consensus delay compared to the conventional PBFT. The results of view change delay and view change occurrence probability and the optimal configuration provide analytical guidance for the deployment of wireless PBFT networks.
{"title":"Implementing Practical Byzantine Fault Tolerance Over Cellular Networks","authors":"Ziyi Zhou;Oluwakayode Onireti;Xinyi Lin;Lei Zhang;Muhammad Ali Imran","doi":"10.1109/OJCOMS.2024.3477930","DOIUrl":"https://doi.org/10.1109/OJCOMS.2024.3477930","url":null,"abstract":"Blockchain has shown significant potential as a key enabler in privacy and security in the forthcoming 6G wireless network, due to its distributed and decentralized characteristics. Practical Byzantine fault tolerance (PBFT) emerges as a prominent technology for deployment in wireless networks due to its attributes of low latency, high throughput, and minimal computational requirements. However, the high complexity of communication is the bottleneck of PBFT for achieving high scalability. To tackle this problem, this paper proposes a novel framework of PBFT, where the inter-node communication during the normal case operation is completed through base stations. The uplink and downlink communication between the base station and nodes are modelled based on the signal-to-interference-plus-noise ratio (SINR) threshold. A novel ‘timeout’ mechanism is incorporated to reduce the communication complexity. The performance is evaluated by metrics including consensus success probability, communication complexity, view change delay, view change occurrence probability, consensus delay, consensus throughput and energy consumption. The numerical results show that the proposed scheme achieves higher consensus success probability and throughput, lower communication complexity and consensus delay compared to the conventional PBFT. The results of view change delay and view change occurrence probability and the optimal configuration provide analytical guidance for the deployment of wireless PBFT networks.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":null,"pages":null},"PeriodicalIF":6.3,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10713236","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142518030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-09DOI: 10.1109/OJCOMS.2024.3476454
Litao Yan;Xiaohu Ge
The relationship between energy dissipation and information has been extensively studied in the emerging field of stochastic thermodynamics, where entropy production plays a core role in measuring the energy loss of irreversible processes. To analyze and optimize the energy efficiency of wireless communication systems from a fundamental and unified perspective, an entropy production model of a binary wireless communication systems is proposed in this paper for the first time. The proposed model serves as a minimal yet comprehensive model incorporating two key nonequilibrium processes in a wireless communication system: wireless information transmission and information processing. The entropy production of wireless information transmission is derived using tools from stochastic thermodynamics, and it is found that there is a specified transmission rate that minimizes the entropy production. For the information processing, the influence of error rate and parallel number of information processing on entropy production is analyzed, and a serial or parallel processing selection criterion is proposed to minimizes the entropy production. To minimize the total entropy production of wireless communication systems, we propose an optimal channel number algorithm and an optimal time allocation scheme. Simulation results show that the entropy production of the wireless communication system using the optimal time allocation scheme can be reduced by up to 20.2% compared to the traditional approach where the time allocated for wireless information transmission and information processing is equal. The proposed model and optimization method provide a novel perspective on analyzing and enhancing energy efficiency in wireless communication systems.
{"title":"Entropy Production-Based Energy Efficiency Optimization for Wireless Communication Systems","authors":"Litao Yan;Xiaohu Ge","doi":"10.1109/OJCOMS.2024.3476454","DOIUrl":"https://doi.org/10.1109/OJCOMS.2024.3476454","url":null,"abstract":"The relationship between energy dissipation and information has been extensively studied in the emerging field of stochastic thermodynamics, where entropy production plays a core role in measuring the energy loss of irreversible processes. To analyze and optimize the energy efficiency of wireless communication systems from a fundamental and unified perspective, an entropy production model of a binary wireless communication systems is proposed in this paper for the first time. The proposed model serves as a minimal yet comprehensive model incorporating two key nonequilibrium processes in a wireless communication system: wireless information transmission and information processing. The entropy production of wireless information transmission is derived using tools from stochastic thermodynamics, and it is found that there is a specified transmission rate that minimizes the entropy production. For the information processing, the influence of error rate and parallel number of information processing on entropy production is analyzed, and a serial or parallel processing selection criterion is proposed to minimizes the entropy production. To minimize the total entropy production of wireless communication systems, we propose an optimal channel number algorithm and an optimal time allocation scheme. Simulation results show that the entropy production of the wireless communication system using the optimal time allocation scheme can be reduced by up to 20.2% compared to the traditional approach where the time allocated for wireless information transmission and information processing is equal. The proposed model and optimization method provide a novel perspective on analyzing and enhancing energy efficiency in wireless communication systems.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":null,"pages":null},"PeriodicalIF":6.3,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10711877","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142517784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-07DOI: 10.1109/OJCOMS.2024.3474772
Tien Hoa Nguyen;Kieu Ha Phung
This paper proposes the performance of a novel ambient-backscatter communication (AmBC)-assisted mobility vehicle system with partial non-orthogonal multiple access (NOMA) systems, where a jointly composite signal of NOMA and orthogonal multiple access (OMA) transmission is investigated to enhance the performance of the vehicle with high mobility and weak channel conditions in light of imperfect channel state information (CSI) and imperfect successive interference cancellation (SIC). Following that, we first derive exact closed-form expressions for the outage probability (OP) and ergodic capacity (EC) of vehicles and then conduct an asymptotic analysis in case of high signal-to-noise (SNR), gaining value information related to diversity order, modulation and coding gains, and ergodic slope. Through these mathematical frameworks, we clarify trade-offs in channel estimation procedure and vehicle performance, the advantages of partial NOMA in speeding up transmission rate operation area of weak vehicles compared to conventional NOMA, and the impact of imperfect SIC on the system outage performance. Monte-Carlo simulation examples validate the theoretical frameworks, along with several performance comparisons of the proposed partial NOMA and conventional NOMA. Moreover, it also shows that increasing the exploited portion bandwidth coefficient for individually serving vehicles with a weak channel condition enhances the operating target significantly without an outage event. Furthermore, exploiting partial NOMA for vehicles with a weak channel condition can save the transmit SNR of over 5 dB compared to using conventional NOMA while ensuring the performance of the rest vehicle.
{"title":"AmBC-Assisted Mobility Vehicle System With Partial NOMA Transmission","authors":"Tien Hoa Nguyen;Kieu Ha Phung","doi":"10.1109/OJCOMS.2024.3474772","DOIUrl":"https://doi.org/10.1109/OJCOMS.2024.3474772","url":null,"abstract":"This paper proposes the performance of a novel ambient-backscatter communication (AmBC)-assisted mobility vehicle system with partial non-orthogonal multiple access (NOMA) systems, where a jointly composite signal of NOMA and orthogonal multiple access (OMA) transmission is investigated to enhance the performance of the vehicle with high mobility and weak channel conditions in light of imperfect channel state information (CSI) and imperfect successive interference cancellation (SIC). Following that, we first derive exact closed-form expressions for the outage probability (OP) and ergodic capacity (EC) of vehicles and then conduct an asymptotic analysis in case of high signal-to-noise (SNR), gaining value information related to diversity order, modulation and coding gains, and ergodic slope. Through these mathematical frameworks, we clarify trade-offs in channel estimation procedure and vehicle performance, the advantages of partial NOMA in speeding up transmission rate operation area of weak vehicles compared to conventional NOMA, and the impact of imperfect SIC on the system outage performance. Monte-Carlo simulation examples validate the theoretical frameworks, along with several performance comparisons of the proposed partial NOMA and conventional NOMA. Moreover, it also shows that increasing the exploited portion bandwidth coefficient for individually serving vehicles with a weak channel condition enhances the operating target significantly without an outage event. Furthermore, exploiting partial NOMA for vehicles with a weak channel condition can save the transmit SNR of over 5 dB compared to using conventional NOMA while ensuring the performance of the rest vehicle.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":null,"pages":null},"PeriodicalIF":6.3,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10706110","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142555071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The ubiquitous availability of wireless networks and devices provides a unique opportunity to leverage the corresponding communication signals to enable wireless sensing applications. In this article, we develop a new framework for environment sensing by opportunistic use of the mmWave communication signals. The proposed framework is based on a mixture of the conventional and Neural Network (NN) signal processing techniques for simultaneous counting and localization of multiple targets in the environment in a bi-static setting. In this framework, multi-modal delay, Doppler, angular features are first derived from the Channel State Information (CSI) estimated at the receiver, and then a transformer-based NN architecture exploiting attention mechanisms, called CSIformer, is designed to extract the most effective features for sensing. We also develop a novel post-processing technique based on Kullback-Leibler (KL) minimization to transfer knowledge between the counting and localization tasks, thereby simplifying the NN architecture. Our numerical results show accurate counting and localization capabilities that significantly outperform the existing works based on pure conventional signal processing techniques, as well as NN-based approaches. The simulation codes are available at: https://github.com/University-of-Surrey-Mahdi/Attention-on-the-Preambles-Sensing-with-mmWave-CSI