Pub Date : 2024-09-06DOI: 10.1109/OJEMB.2024.3455011
Jose L. Agraz;Carlos Agraz;Andrew A. Chen;Charles Rice;Robert S. Pozos;Sven Aelterman;Amanda Tan;Angela N. Viaene;MacLean P. Nasrallah;Parth Sharma;Caleb M. Grenko;Tahsin Kurc;Joel Saltz;Michael D. Feldman;Hamed Akbari;Russell T. Shinohara;Spyridon Bakas;Parker Wilson
In the medical diagnostics domain, pathology and histology are pivotal for the precise identification of diseases. Digital histopathology, enhanced by automation, facilitates the efficient analysis of massive amount of biopsy images produced on a daily basis, streamlining the evaluation process. This study focuses in Stain Color Normalization (SCN) within a Whole-Slide Image (WSI) cohort, aiming to reduce batch biases. Building on published graphical method, this research demonstrates a mathematical population or data-driven method that optimizes the dependency on the number of reference WSIs and corresponding aggregate sums, thereby increasing SCN process efficiency. This method expedites the analysis of color convergence 50-fold by using stain vector Euclidean distance analysis, slashing the requirement for reference WSIs by more than half. The approach is validated through a tripartite methodology: 1) Stain vector euclidean distances analysis, 2) Distance computation timing, and 3) Qualitative and quantitative assessments of SCN across cancer tumors regions of interest. The results validate the performance of data-driven SCN method, thus potential to enhance the precision and reliability of computational pathology analyses. This advancement is poised to enhance diagnostic processes, therapeutic strategies, and patient prognosis.
在医疗诊断领域,病理学和组织学是精确鉴定疾病的关键。通过自动化增强的数字组织病理学有助于高效分析每天产生的大量活检图像,从而简化评估流程。本研究的重点是在全切片图像(WSI)群组中进行染色颜色归一化(SCN),旨在减少批次偏差。在已发表的图形方法基础上,本研究展示了一种数学群体或数据驱动方法,可优化对参考 WSI 数量和相应总和的依赖性,从而提高 SCN 流程的效率。该方法通过使用染色向量欧氏距离分析,将色彩收敛分析的速度提高了 50 倍,对参考 WSI 的要求降低了一半以上。该方法通过以下三方面的方法进行验证:1)染色矢量欧氏距离分析;2)距离计算计时;3)对癌症肿瘤相关区域的 SCN 进行定性和定量评估。结果验证了数据驱动 SCN 方法的性能,从而有望提高计算病理分析的精确度和可靠性。这一进步有望改善诊断过程、治疗策略和患者预后。
{"title":"Optimized Whole-Slide-Image H&E Stain Normalization: A Step Towards Big Data Integration in Digital Pathology","authors":"Jose L. Agraz;Carlos Agraz;Andrew A. Chen;Charles Rice;Robert S. Pozos;Sven Aelterman;Amanda Tan;Angela N. Viaene;MacLean P. Nasrallah;Parth Sharma;Caleb M. Grenko;Tahsin Kurc;Joel Saltz;Michael D. Feldman;Hamed Akbari;Russell T. Shinohara;Spyridon Bakas;Parker Wilson","doi":"10.1109/OJEMB.2024.3455011","DOIUrl":"10.1109/OJEMB.2024.3455011","url":null,"abstract":"In the medical diagnostics domain, pathology and histology are pivotal for the precise identification of diseases. Digital histopathology, enhanced by automation, facilitates the efficient analysis of massive amount of biopsy images produced on a daily basis, streamlining the evaluation process. This study focuses in Stain Color Normalization (SCN) within a Whole-Slide Image (WSI) cohort, aiming to reduce batch biases. Building on published graphical method, this research demonstrates a mathematical population or data-driven method that optimizes the dependency on the number of reference WSIs and corresponding aggregate sums, thereby increasing SCN process efficiency. This method expedites the analysis of color convergence 50-fold by using stain vector Euclidean distance analysis, slashing the requirement for reference WSIs by more than half. The approach is validated through a tripartite methodology: 1) Stain vector euclidean distances analysis, 2) Distance computation timing, and 3) Qualitative and quantitative assessments of SCN across cancer tumors regions of interest. The results validate the performance of data-driven SCN method, thus potential to enhance the precision and reliability of computational pathology analyses. This advancement is poised to enhance diagnostic processes, therapeutic strategies, and patient prognosis.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10669194","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142200296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-05DOI: 10.1109/ojemb.2024.3453049
Marissé Masís Solano, Remy Dumas, Mark R Lesk, Santiago Costantino
{"title":"Ocular Biomechanical Responses to Long-Duration Spaceflight","authors":"Marissé Masís Solano, Remy Dumas, Mark R Lesk, Santiago Costantino","doi":"10.1109/ojemb.2024.3453049","DOIUrl":"https://doi.org/10.1109/ojemb.2024.3453049","url":null,"abstract":"","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142200298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-05DOI: 10.1109/OJEMB.2024.3454970
Simone Ranaldi;Leonardo Gizzi;Giacomo Severini;Cristiano De Marchis
The characterization, through the concept of muscle synergies, of clinical functional tests is a valid tool that has been widely adopted in the research field. While this theory has been exploited for a description of the motor control strategies underlying the biomechanical task, the biomechanical correlate of the synergistic activity is yet to be fully described. In this paper, the relationship between the activity of different synergies and the center of mass kinematic patterns has been investigated; in particular, a group of healthy subjects has been recruited to perform simple sit-to-stand tasks, and the electromyographic data has been recorded for the extraction of muscle synergies. An optimal model selection criterion has been adopted for dividing the participants by the number of synergies characterizing their own control schema. Synergistic activity has then been mapped onto the phase-space description of the center of mass kinematics, investigating whether a different number of synergies implies the exploration of different region of the phase-space itself. Results show how using an additional motor module allow for a wider trajectory in the phase-space, paving the way for the use of kinematic feedback to stimulate the activity of different synergies, with the aim of defining synergy-based rehabilitation or training protocols.
{"title":"Synergy-Dependent Center-of-Mass Control Strategies During Sit-to-Stand Movements","authors":"Simone Ranaldi;Leonardo Gizzi;Giacomo Severini;Cristiano De Marchis","doi":"10.1109/OJEMB.2024.3454970","DOIUrl":"10.1109/OJEMB.2024.3454970","url":null,"abstract":"The characterization, through the concept of muscle synergies, of clinical functional tests is a valid tool that has been widely adopted in the research field. While this theory has been exploited for a description of the motor control strategies underlying the biomechanical task, the biomechanical correlate of the synergistic activity is yet to be fully described. In this paper, the relationship between the activity of different synergies and the center of mass kinematic patterns has been investigated; in particular, a group of healthy subjects has been recruited to perform simple sit-to-stand tasks, and the electromyographic data has been recorded for the extraction of muscle synergies. An optimal model selection criterion has been adopted for dividing the participants by the number of synergies characterizing their own control schema. Synergistic activity has then been mapped onto the phase-space description of the center of mass kinematics, investigating whether a different number of synergies implies the exploration of different region of the phase-space itself. Results show how using an additional motor module allow for a wider trajectory in the phase-space, paving the way for the use of kinematic feedback to stimulate the activity of different synergies, with the aim of defining synergy-based rehabilitation or training protocols.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10666157","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142200301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-05DOI: 10.1109/ojemb.2024.3454958
Ting-Ruen Wei, Michele Hell, Aren Vierra, Ran Pang, Young Kang, Mahesh Patel, Yuling Yan
{"title":"Breast Cancer Detection on Dual-View Sonography via Data-Centric Deep Learning","authors":"Ting-Ruen Wei, Michele Hell, Aren Vierra, Ran Pang, Young Kang, Mahesh Patel, Yuling Yan","doi":"10.1109/ojemb.2024.3454958","DOIUrl":"https://doi.org/10.1109/ojemb.2024.3454958","url":null,"abstract":"","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142200299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}