首页 > 最新文献

IEEE Open Journal of Engineering in Medicine and Biology最新文献

英文 中文
Computer-Aided Intra-Operatory Positioning of an MRgHIFU Applicator Dedicated to Abdominal Thermal Therapy Using Particle Swarm Optimization 利用粒子群优化技术对腹部热疗专用 MRgHIFU 应用器进行计算机辅助术中定位
IF 2.7 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-06-05 DOI: 10.1109/OJEMB.2024.3410118
Yacine M'Rad;Caecilia Charbonnier;Marcelo Elias de Oliveira;Pauline Coralie Guillemin;Lindsey Alexandra Crowe;Thibaud Kössler;Pierre-Alexandre Poletti;Sana Boudabbous;Alexis Ricoeur;Rares Salomir;Orane Lorton
Purpose: Transducer positioning for liver ablation by magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU) is challenging due to the presence of air-filled organs or bones on the beam path. This paper presents a software tool developed to optimize the positioning of a HIFU transducer dedicated to abdominal thermal therapy, to maximize the treatment's efficiency while minimizing the near-field risk. Methods: A software tool was developed to determine the theoretical optimal position (TOP) of the transducer based on the minimization of a cost function using the particle swarm optimization (PSO). After an initialization phase and a manual segmentation of the abdomen of 5 pigs, the program randomly generates particles with 2 degrees of freedom and iteratively minimizes the cost function of the particles considering 3 parameters weighted according to their criticality. New particles are generated around the best position obtained at the previous step and the process is repeated until the optimal position of the transducer is reached. MR imaging data from in vivo HIFU ablation in pig livers was used for ground truth comparison between the TOP and the experimental position (EP). Results: As compared to the manual EP, the rotation difference with the TOP was on average −3.1 ± 7.1° and the distance difference was on average −7.1 ± 5.4 mm. The computational time to suggest the TOP was 20s. The software tool is modulable and demonstrated consistency and robustness when repeating the calculation and changing the initial position of the transducer.
目的:磁共振引导下高强度聚焦超声(MRgHIFU)肝脏消融的换能器定位具有挑战性,因为在射束路径上存在充满空气的器官或骨骼。本文介绍了一种软件工具,用于优化腹部热疗专用 HIFU 传感器的定位,以最大限度地提高治疗效率,同时最大限度地降低近场风险。方法:利用粒子群优化(PSO)技术,在最小化成本函数的基础上,开发了一种软件工具来确定换能器的理论最佳位置(TOP)。在初始化阶段和手动分割 5 头猪的腹部后,程序随机生成具有 2 个自由度的粒子,并根据粒子的临界值加权考虑 3 个参数,反复最小化粒子的成本函数。新粒子围绕上一步获得的最佳位置生成,该过程重复进行,直到达到换能器的最佳位置。猪肝脏活体 HIFU 消融的磁共振成像数据被用来比较 TOP 位置和实验位置 (EP) 之间的基本真实情况。结果:与手动 EP 相比,TOP 的旋转差平均为 -3.1 ± 7.1°,距离差平均为 -7.1 ± 5.4 mm。建议 TOP 的计算时间为 20 秒。该软件工具是可修改的,在重复计算和改变传感器初始位置时表现出一致性和稳健性。
{"title":"Computer-Aided Intra-Operatory Positioning of an MRgHIFU Applicator Dedicated to Abdominal Thermal Therapy Using Particle Swarm Optimization","authors":"Yacine M'Rad;Caecilia Charbonnier;Marcelo Elias de Oliveira;Pauline Coralie Guillemin;Lindsey Alexandra Crowe;Thibaud Kössler;Pierre-Alexandre Poletti;Sana Boudabbous;Alexis Ricoeur;Rares Salomir;Orane Lorton","doi":"10.1109/OJEMB.2024.3410118","DOIUrl":"https://doi.org/10.1109/OJEMB.2024.3410118","url":null,"abstract":"Purpose: Transducer positioning for liver ablation by magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU) is challenging due to the presence of air-filled organs or bones on the beam path. This paper presents a software tool developed to optimize the positioning of a HIFU transducer dedicated to abdominal thermal therapy, to maximize the treatment's efficiency while minimizing the near-field risk. Methods: A software tool was developed to determine the theoretical optimal position (TOP) of the transducer based on the minimization of a cost function using the particle swarm optimization (PSO). After an initialization phase and a manual segmentation of the abdomen of 5 pigs, the program randomly generates particles with 2 degrees of freedom and iteratively minimizes the cost function of the particles considering 3 parameters weighted according to their criticality. New particles are generated around the best position obtained at the previous step and the process is repeated until the optimal position of the transducer is reached. MR imaging data from \u0000<italic>in vivo</i>\u0000 HIFU ablation in pig livers was used for ground truth comparison between the TOP and the experimental position (EP). Results: As compared to the manual EP, the rotation difference with the TOP was on average −3.1 ± 7.1° and the distance difference was on average −7.1 ± 5.4 mm. The computational time to suggest the TOP was 20s. The software tool is modulable and demonstrated consistency and robustness when repeating the calculation and changing the initial position of the transducer.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"5 ","pages":"524-533"},"PeriodicalIF":2.7,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10549770","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141732490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance of a Continuous Subcutaneous Insulin Infusion (CSII) Pump With Acoustic Volume and Flow Sensing in Simulated High-Consequence Situations 具有声学体积和流量感应功能的连续皮下胰岛素输注(CSII)泵在模拟高后果情况下的表现
IF 2.7 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-06-04 DOI: 10.1109/OJEMB.2024.3408092
Robert D. Butterfield;Nathaniel M. Sims
Goal: An insulin pump's failure to deliver insulin in the right amount at the right time is a preventable cause of hospitalization. We evaluated key performance metrics of a novel insulin pump that prevents “silent insulin non-delivery” caused by blockage, delivery of air and site leakage. This is accomplished via an acoustic sensor that measures the volume of insulin delivered with each pulse in real-time. Methods: We tested long and short-term flow accuracy, occlusion-detection time and pressure, and air management of the new device (ND) versus 3 U.S. commercial insulin pumps (CIPs) using standardized methods. Results: The ND outperformed CIPs on long-term basal flow rate error. Occlusion detection was 5 to 22.5 times faster depending on the basal rate and resulted in significantly lower (2 to 5x) pressures at time of occlusion. With air included in the drug reservoir, the tested CIPs can infuse air without detection, while the ND prevented air delivery without interruption. Conclusions: Bench tests of the ND versus 3 commercially available pumps showed improved occlusion detection and air management without flow performance tradeoffs. Additionally, the lower delivery pressure measured at time of occlusion suggests a substantially lower potential for site leakage at both basal and bolus rates. These enhancements combine to decrease the likelihood of silent insulin non-delivery.
目标:胰岛素泵不能适时适量地输送胰岛素是导致住院的一个可预防的原因。我们对一种新型胰岛素泵的关键性能指标进行了评估,该泵可防止因堵塞、输送空气和部位泄漏造成的 "无声胰岛素不输送"。这是通过声学传感器实时测量每次脉冲输送的胰岛素量来实现的。方法:我们使用标准化方法测试了新设备 (ND) 与 3 种美国商用胰岛素泵 (CIP) 的长期和短期流量准确性、堵塞检测时间和压力以及空气管理。结果:ND 在长期基础流速误差方面优于 CIP。根据基础流速的不同,闭塞检测速度提高了 5 到 22.5 倍,闭塞时的压力明显降低(2 到 5 倍)。在药物储库中加入空气后,测试的 CIP 可以在不被检测到的情况下注入空气,而 ND 则可以不间断地阻止空气输送。结论:对 ND 和 3 种市场上销售的泵进行的台架测试表明,闭塞检测和空气管理都得到了改善,但流量性能却没有受到影响。此外,闭塞时测量到的较低输送压力表明,在基础和栓塞速率下,发生部位泄漏的可能性大大降低。这些改进共同降低了胰岛素静默不输送的可能性。
{"title":"Performance of a Continuous Subcutaneous Insulin Infusion (CSII) Pump With Acoustic Volume and Flow Sensing in Simulated High-Consequence Situations","authors":"Robert D. Butterfield;Nathaniel M. Sims","doi":"10.1109/OJEMB.2024.3408092","DOIUrl":"https://doi.org/10.1109/OJEMB.2024.3408092","url":null,"abstract":"<italic>Goal:</i>\u0000 An insulin pump's failure to deliver insulin in the right amount at the right time is a preventable cause of hospitalization. We evaluated key performance metrics of a novel insulin pump that prevents “silent insulin non-delivery” caused by blockage, delivery of air and site leakage. This is accomplished via an acoustic sensor that measures the volume of insulin delivered with each pulse in real-time. \u0000<italic>Methods:</i>\u0000 We tested long and short-term flow accuracy, occlusion-detection time and pressure, and air management of the new device (ND) versus 3 U.S. commercial insulin pumps (CIPs) using standardized methods. \u0000<italic>Results:</i>\u0000 The ND outperformed CIPs on long-term basal flow rate error. Occlusion detection was 5 to 22.5 times faster depending on the basal rate and resulted in significantly lower (2 to 5x) pressures at time of occlusion. With air included in the drug reservoir, the tested CIPs can infuse air without detection, while the ND prevented air delivery without interruption. \u0000<italic>Conclusions:</i>\u0000 Bench tests of the ND versus 3 commercially available pumps showed improved occlusion detection and air management without flow performance tradeoffs. Additionally, the lower delivery pressure measured at time of occlusion suggests a substantially lower potential for site leakage at both basal and bolus rates. These enhancements combine to decrease the likelihood of silent insulin non-delivery.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"5 ","pages":"593-599"},"PeriodicalIF":2.7,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10547403","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141965146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Guest Editorial Introduction to the Special Section on Invisible Sensing: Radar-Based Biomonitoring 隐形传感:基于雷达的生物监测
IF 2.7 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-06-04 DOI: 10.1109/OJEMB.2024.3409086
Bjoern M. Eskofier;Martin Vossiek
{"title":"Guest Editorial Introduction to the Special Section on Invisible Sensing: Radar-Based Biomonitoring","authors":"Bjoern M. Eskofier;Martin Vossiek","doi":"10.1109/OJEMB.2024.3409086","DOIUrl":"10.1109/OJEMB.2024.3409086","url":null,"abstract":"","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"5 ","pages":"678-679"},"PeriodicalIF":2.7,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10547285","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141948751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neuromodulation Improves Stress Urinary Incontinence-Like Deficits in Female Rabbits 神经调节可改善雌兔压力性尿失禁样缺陷
IF 2.7 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-06-03 DOI: 10.1109/OJEMB.2024.3408454
F. S. Rahman;Z. Yousuf;F. Castelán;M. Martínez-Gómez;Y. M. Akay;P. Zimmern;M. Akay;M. I. Romero-Ortega
Objective: Stress urinary incontinence (SUI) affects a third of the female population and is characterized by involuntary urine leakage during abdominal efforts such as sneezing, laughing, or coughing. Acute neuromodulation of the bulbospongiosus nerve (BsN) was shown to increase bladder efficiency in aged and multiparous rabbits. This study investigates the efficacy of sub-chronic BsN neuromodulation in alleviating SUI-like deficits in mature multiparous rabbits, characterized by increased urine leakage and reduced leak point pressure. Results: Using the voiding spot assay, we observed a 40% reduction in urine leakage events after 30 days of BsN stimulation, which correlated with a 60% increase in daily micturition volume, a 10-fold increase in voided volume, and improvements in voiding efficiency and leak point pressure compared to negative control animals. Conclusion: In multiparous rabbits, BsN neuromodulation improves important SUI-like metrics including bladder capacity and urethral closure, supporting the use of this bioelectronic modality as treatment for SUI.
目的:压力性尿失禁(SUI)影响着三分之一的女性人口,其特征是在打喷嚏、大笑或咳嗽等腹部用力时不自主漏尿。研究表明,对球海绵体神经(BsN)进行急性神经调节可提高老年和多胎兔子的膀胱效率。本研究调查了亚慢性 BsN 神经调节对缓解成熟多胎兔 SUI 类缺陷的疗效,这些缺陷的特点是漏尿增加和漏点压力降低。研究结果与阴性对照组相比,使用排尿点测定法,我们观察到 BsN 刺激 30 天后,漏尿事件减少了 40%,这与每日排尿量增加 60%、排尿量增加 10 倍以及排尿效率和漏尿点压力提高有关。结论在多胎兔中,BsN 神经调节改善了类似 SUI 的重要指标,包括膀胱容量和尿道闭合,支持使用这种生物电子方式治疗 SUI。
{"title":"Neuromodulation Improves Stress Urinary Incontinence-Like Deficits in Female Rabbits","authors":"F. S. Rahman;Z. Yousuf;F. Castelán;M. Martínez-Gómez;Y. M. Akay;P. Zimmern;M. Akay;M. I. Romero-Ortega","doi":"10.1109/OJEMB.2024.3408454","DOIUrl":"10.1109/OJEMB.2024.3408454","url":null,"abstract":"<italic>Objective:</i>\u0000 Stress urinary incontinence (SUI) affects a third of the female population and is characterized by involuntary urine leakage during abdominal efforts such as sneezing, laughing, or coughing. Acute neuromodulation of the bulbospongiosus nerve (BsN) was shown to increase bladder efficiency in aged and multiparous rabbits. This study investigates the efficacy of sub-chronic BsN neuromodulation in alleviating SUI-like deficits in mature multiparous rabbits, characterized by increased urine leakage and reduced leak point pressure\u0000<italic>. Results:</i>\u0000 Using the voiding spot assay, we observed a 40% reduction in urine leakage events after 30 days of BsN stimulation, which correlated with a 60% increase in daily micturition volume, a 10-fold increase in voided volume, and improvements in voiding efficiency and leak point pressure compared to negative control animals. \u0000<italic>Conclusion:</i>\u0000 In multiparous rabbits, BsN neuromodulation improves important SUI-like metrics including bladder capacity and urethral closure, supporting the use of this bioelectronic modality as treatment for SUI.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"6 ","pages":"10-19"},"PeriodicalIF":2.7,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10545601","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141969750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Overview of Radar-Based Gait Parameter Estimation Techniques for Fall Risk Assessment 基于雷达的跌倒风险评估步态参数估计技术概述
IF 2.7 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-06-03 DOI: 10.1109/OJEMB.2024.3408078
Sevgi Z. Gurbuz;Mohammad Mahbubur Rahman;Zahra Bassiri;Dario Martelli
Current methods for fall risk assessment rely on Quantitative Gait Analysis (QGA) using costly optical tracking systems, which are often only available at specialized laboratories that may not be easily accessible to rural communities. Radar placed in a home or assisted living facility can acquire continuous ambulatory recordings over extended durations of a subject's natural gait and activity. Thus, radar-based QGA has the potential to capture day-to-day variations in gait, is time efficient and removes the burden for the subject to come to a clinic, providing a more realistic picture of older adults’ mobility. Although there has been research on gait-related health monitoring, most of this work focuses on classification-based methods, while only a few consider gait parameter estimation. On the one hand, metrics that are accurately and easily computable from radar data have not been demonstrated to have an established correlation with fall risk or other medical conditions; on the other hand, the accuracy of radar-based estimates of gait parameters that are well-accepted by the medical community as indicators of fall risk have not been adequately validated. This paper provides an overview of emerging radar-based techniques for gait parameter estimation, especially with emphasis on those relevant to fall risk. A pilot study that compares the accuracy of estimating gait parameters from different radar data representations – in particular, the micro-Doppler signature and skeletal point estimates – is conducted based on validation against an 8-camera, marker-based optical tracking system. The results of pilot study are discussed to assess the current state-of-the-art in radar-based QGA and potential directions for future research that can improve radar-based gait parameter estimation accuracy.
目前的跌倒风险评估方法依赖于使用昂贵的光学跟踪系统进行定量步态分析(QGA),而这种系统通常只能在专业实验室中使用,农村社区可能难以使用。而放置在家中或辅助生活设施中的雷达则可以获取受试者自然步态和活动的连续动态记录。因此,基于雷达的 QGA 有可能捕捉到步态的日常变化,而且省时省力,减轻了受试者前往诊所的负担,从而更真实地反映出老年人的活动能力。虽然已经有了步态相关健康监测方面的研究,但这些研究大多侧重于基于分类的方法,只有少数研究考虑了步态参数估计。一方面,从雷达数据中精确且易于计算的指标尚未被证明与跌倒风险或其他医疗状况具有确定的相关性;另一方面,基于雷达的步态参数估计的准确性尚未得到充分验证,而这些参数已被医学界广泛接受为跌倒风险的指标。本文概述了新出现的基于雷达的步态参数估计技术,特别强调了与跌倒风险相关的参数。在与基于标记的 8 摄像机光学跟踪系统进行验证的基础上,进行了一项试点研究,比较了从不同雷达数据表示(特别是微多普勒特征和骨骼点估计)估计步态参数的准确性。对试验研究结果进行了讨论,以评估基于雷达的 QGA 的当前先进水平,以及可提高基于雷达的步态参数估计准确性的潜在未来研究方向。
{"title":"Overview of Radar-Based Gait Parameter Estimation Techniques for Fall Risk Assessment","authors":"Sevgi Z. Gurbuz;Mohammad Mahbubur Rahman;Zahra Bassiri;Dario Martelli","doi":"10.1109/OJEMB.2024.3408078","DOIUrl":"10.1109/OJEMB.2024.3408078","url":null,"abstract":"Current methods for fall risk assessment rely on Quantitative Gait Analysis (QGA) using costly optical tracking systems, which are often only available at specialized laboratories that may not be easily accessible to rural communities. Radar placed in a home or assisted living facility can acquire continuous ambulatory recordings over extended durations of a subject's natural gait and activity. Thus, radar-based QGA has the potential to capture day-to-day variations in gait, is time efficient and removes the burden for the subject to come to a clinic, providing a more realistic picture of older adults’ mobility. Although there has been research on gait-related health monitoring, most of this work focuses on classification-based methods, while only a few consider gait parameter estimation. On the one hand, metrics that are accurately and easily computable from radar data have not been demonstrated to have an established correlation with fall risk or other medical conditions; on the other hand, the accuracy of radar-based estimates of gait parameters that are well-accepted by the medical community as indicators of fall risk have not been adequately validated. This paper provides an overview of emerging radar-based techniques for gait parameter estimation, especially with emphasis on those relevant to fall risk. A pilot study that compares the accuracy of estimating gait parameters from different radar data representations – in particular, the micro-Doppler signature and skeletal point estimates – is conducted based on validation against an 8-camera, marker-based optical tracking system. The results of pilot study are discussed to assess the current state-of-the-art in radar-based QGA and potential directions for future research that can improve radar-based gait parameter estimation accuracy.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"5 ","pages":"735-749"},"PeriodicalIF":2.7,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10546280","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141948752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pulsed Low-Intensity Focused Ultrasound (LIFU) Activation of Ovarian Follicles 脉冲低强度聚焦超声(LIFU)激活卵泡
IF 5.8 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-04-26 DOI: 10.1109/OJEMB.2024.3391939
Yan Xiao;Lixia Yang;Yicong Wang;Yu Wang;Yuning Chen;Wenhan Lu;Zhenle Pei;Ruonan Zhang;Yao Ye;Xiaowei Ji;Suying Liu;Xi Dong;Yonghua Xu;Yi Feng
Objective: A biological system's internal morphological structure or function can be changed as a result of the mechanical effect of focused ultrasound. Pulsed low-intensity focused ultrasound (LIFU) has mechanical effects that might induce follicle development with less damage to ovarian tissue. The potential development of LIFU as a non-invasive method for the treatment of female infertility is being considered, and this study sought to explore and confirm that LIFU can activate ovarian follicles. Results: We found a 50% increase in ovarian weight and in the number of mature follicles on the ultrasound-stimulated side with pulsed LIFU and intraperitoneal injection of 10 IU PMSG in 10-day-old rats. After ultrasound stimulation, the PCOS-like rats had a decrease in androgen levels, restoration of regular estrous cycle and increase in the number of mature follicles and corpora lutea, and the ratio of M1 and M2 type macrophages was altered in antral follicles of PCOS-like rats, consequently promoting further development and maturation of antral follicles. Conclusion: LIFU treatment could trigger actin changes in ovarian cells, which might disrupt the Hippo signal pathway to promote follicle formation, and the mechanical impact on the ovaries of PCOS-like rats improved antral follicle development.
目的聚焦超声的机械效应可改变生物系统的内部形态结构或功能。脉冲低强度聚焦超声(LIFU)具有机械效应,可诱导卵泡发育,同时对卵巢组织的损伤较小。目前正在考虑将低强度聚焦超声作为治疗女性不孕症的一种非侵入性方法,本研究试图探索并证实低强度聚焦超声可以激活卵巢卵泡。结果我们发现,在脉冲 LIFU 和腹腔注射 10 IU PMSG 的情况下,10 日龄大鼠卵巢重量和超声刺激侧成熟卵泡数量增加了 50%。超声刺激后,PCOS 样大鼠雄激素水平下降,发情周期恢复正常,成熟卵泡和黄体数量增加,PCOS 样大鼠窦前卵泡中 M1 和 M2 型巨噬细胞的比例发生改变,从而促进了窦前卵泡的进一步发育和成熟。结论LIFU治疗可引发卵巢细胞肌动蛋白变化,从而破坏Hippo信号通路以促进卵泡形成,而对PCOS样大鼠卵巢的机械影响可改善前房卵泡的发育。
{"title":"Pulsed Low-Intensity Focused Ultrasound (LIFU) Activation of Ovarian Follicles","authors":"Yan Xiao;Lixia Yang;Yicong Wang;Yu Wang;Yuning Chen;Wenhan Lu;Zhenle Pei;Ruonan Zhang;Yao Ye;Xiaowei Ji;Suying Liu;Xi Dong;Yonghua Xu;Yi Feng","doi":"10.1109/OJEMB.2024.3391939","DOIUrl":"10.1109/OJEMB.2024.3391939","url":null,"abstract":"<italic>Objective:</i>\u0000 A biological system's internal morphological structure or function can be changed as a result of the mechanical effect of focused ultrasound. Pulsed low-intensity focused ultrasound (LIFU) has mechanical effects that might induce follicle development with less damage to ovarian tissue. The potential development of LIFU as a non-invasive method for the treatment of female infertility is being considered, and this study sought to explore and confirm that LIFU can activate ovarian follicles. \u0000<italic>Results:</i>\u0000 We found a 50% increase in ovarian weight and in the number of mature follicles on the ultrasound-stimulated side with pulsed LIFU and intraperitoneal injection of 10 IU PMSG in 10-day-old rats. After ultrasound stimulation, the PCOS-like rats had a decrease in androgen levels, restoration of regular estrous cycle and increase in the number of mature follicles and corpora lutea, and the ratio of M1 and M2 type macrophages was altered in antral follicles of PCOS-like rats, consequently promoting further development and maturation of antral follicles. \u0000<italic>Conclusion:</i>\u0000 LIFU treatment could trigger actin changes in ovarian cells, which might disrupt the Hippo signal pathway to promote follicle formation, and the mechanical impact on the ovaries of PCOS-like rats improved antral follicle development.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"5 ","pages":"316-329"},"PeriodicalIF":5.8,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10508955","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140803921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On-Demand Gait-Synchronous Electrical Cueing in Parkinson's Disease Using Machine Learning and Edge Computing: A Pilot Study 利用机器学习和边缘计算对帕金森病进行按需步态同步电提示--试点研究
IF 5.8 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-04-18 DOI: 10.1109/OJEMB.2024.3390562
Ardit Dvorani;Constantin Wiesener;Christina Salchow-Hömmen;Magdalena Jochner;Lotta Spieker;Matej Skrobot;Hanno Voigt;Andrea Kühn;Nikolaus Wenger;Thomas Schauer
Goal: Parkinson's disease (PD) can lead to gait impairment and Freezing of Gait (FoG). Recent advances in cueing technologies have enhanced mobility in PD patients. While sensor technology and machine learning offer real-time detection for on-demand cueing, existing systems are limited by the usage of smartphones between the sensor(s) and cueing device(s) for data processing. By avoiding this we aim at improving usability, robustness, and detection delay. Methods: We present a new technical solution, that runs detection and cueing algorithms directly on the sensing and cueing devices, bypassing the smartphone. This solution relies on edge computing on the devices' hardware. The wearable system consists of a single inertial sensor to control a stimulator and enables machine-learning-based FoG detection by classifying foot motion phases as either normal or FoG-affected. We demonstrate the system's functionality and safety during on-demand gait-synchronous electrical cueing in two patients, performing freezing of gait assessments. As references, motion phases and FoG episodes have been video-annotated. Results: The analysis confirms adequate gait phase and FoG detection performance. The mobility assistant detected foot motions with a rate above 94 % and classified them with an accuracy of 84 % into normal or FoG-affected. The FoG detection delay is mainly defined by the foot-motion duration, which is below the delay in existing sliding-window approaches. Conclusions: Direct computing on the sensor and cueing devices ensures robust detection of FoG-affected motions for on demand cueing synchronized with the gait. The proposed solution can be easily adopted to other sensor and cueing modalities.
目标:帕金森病(PD)可导致步态障碍和步态冻结(FoG)。提示技术的最新进展提高了帕金森病患者的行动能力。虽然传感器技术和机器学习为按需提示提供了实时检测功能,但现有系统却受限于在传感器和提示设备之间使用智能手机进行数据处理。通过避免这种情况,我们的目标是提高可用性、鲁棒性和检测延迟。方法:我们提出了一种新的技术解决方案,绕过智能手机,直接在传感和提示设备上运行检测和提示算法。该解决方案依赖于设备硬件上的边缘计算。该可穿戴系统由一个惯性传感器组成,用于控制一个刺激器,并通过将脚部运动阶段分类为正常或受 FoG 影响,实现基于机器学习的 FoG 检测。我们在两名患者身上演示了该系统的功能性和安全性,在按需进行步态同步电提示的过程中,对步态进行了冻结评估。作为参考,我们对运动阶段和 FoG 事件进行了视频标注。结果分析证实,步态相位和 FoG 检测性能良好。助行器对足部运动的检测率超过 94%,对正常或受 FoG 影响足部运动的分类准确率为 84%。FoG 检测延迟主要由脚部运动持续时间决定,低于现有滑动窗口方法的延迟。结论传感器和提示设备上的直接计算可确保对受 FoG 影响的运动进行稳健检测,从而实现与步态同步的按需提示。所提出的解决方案可轻松应用于其他传感器和提示模式。
{"title":"On-Demand Gait-Synchronous Electrical Cueing in Parkinson's Disease Using Machine Learning and Edge Computing: A Pilot Study","authors":"Ardit Dvorani;Constantin Wiesener;Christina Salchow-Hömmen;Magdalena Jochner;Lotta Spieker;Matej Skrobot;Hanno Voigt;Andrea Kühn;Nikolaus Wenger;Thomas Schauer","doi":"10.1109/OJEMB.2024.3390562","DOIUrl":"10.1109/OJEMB.2024.3390562","url":null,"abstract":"<italic>Goal:</i>\u0000 Parkinson's disease (PD) can lead to gait impairment and Freezing of Gait (FoG). Recent advances in cueing technologies have enhanced mobility in PD patients. While sensor technology and machine learning offer real-time detection for on-demand cueing, existing systems are limited by the usage of smartphones between the sensor(s) and cueing device(s) for data processing. By avoiding this we aim at improving usability, robustness, and detection delay. \u0000<italic>Methods:</i>\u0000 We present a new technical solution, that runs detection and cueing algorithms directly on the sensing and cueing devices, bypassing the smartphone. This solution relies on edge computing on the devices' hardware. The wearable system consists of a single inertial sensor to control a stimulator and enables machine-learning-based FoG detection by classifying foot motion phases as either normal or FoG-affected. We demonstrate the system's functionality and safety during on-demand gait-synchronous electrical cueing in two patients, performing freezing of gait assessments. As references, motion phases and FoG episodes have been video-annotated. \u0000<italic>Results:</i>\u0000 The analysis confirms adequate gait phase and FoG detection performance. The mobility assistant detected foot motions with a rate above 94 % and classified them with an accuracy of 84 % into normal or FoG-affected. The FoG detection delay is mainly defined by the foot-motion duration, which is below the delay in existing sliding-window approaches. \u0000<italic>Conclusions:</i>\u0000 Direct computing on the sensor and cueing devices ensures robust detection of FoG-affected motions for on demand cueing synchronized with the gait. The proposed solution can be easily adopted to other sensor and cueing modalities.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"5 ","pages":"306-315"},"PeriodicalIF":5.8,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10504963","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140625436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BeatProfiler: Multimodal In Vitro Analysis of Cardiac Function Enables Machine Learning Classification of Diseases and Drugs BeatProfiler:心脏功能的多模态体外分析实现了疾病和药物的机器学习分类
IF 5.8 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-04-05 DOI: 10.1109/OJEMB.2024.3377461
Youngbin Kim;Kunlun Wang;Roberta I. Lock;Trevor R. Nash;Sharon Fleischer;Bryan Z. Wang;Barry M. Fine;Gordana Vunjak-Novakovic
Goal: Contractile response and calcium handling are central to understanding cardiac function and physiology, yet existing methods of analysis to quantify these metrics are often time-consuming, prone to mistakes, or require specialized equipment/license. We developed BeatProfiler, a suite of cardiac analysis tools designed to quantify contractile function, calcium handling, and force generation for multiple in vitro cardiac models and apply downstream machine learning methods for deep phenotyping and classification. Methods: We first validate BeatProfiler's accuracy, robustness, and speed by benchmarking against existing tools with a fixed dataset. We further confirm its ability to robustly characterize disease and dose-dependent drug response. We then demonstrate that the data acquired by our automatic acquisition pipeline can be further harnessed for machine learning (ML) analysis to phenotype a disease model of restrictive cardiomyopathy and profile cardioactive drug functional response. To accurately classify between these biological signals, we apply feature-based ML and deep learning models (temporal convolutional-bidirectional long short-term memory model or TCN-BiLSTM). Results: Benchmarking against existing tools revealed that BeatProfiler detected and analyzed contraction and calcium signals better than existing tools through improved sensitivity in low signal data, reduction in false positives, and analysis speed increase by 7 to 50-fold. Of signals accurately detected by published methods (PMs), BeatProfiler's extracted features showed high correlations to PMs, confirming that it is reliable and consistent with PMs. The features extracted by BeatProfiler classified restrictive cardiomyopathy cardiomyocytes from isogenic healthy controls with 98% accuracy and identified relax90 as a top distinguishing feature in congruence with previous findings. We also show that our TCN-BiLSTM model was able to classify drug-free control and 4 cardiac drugs with different mechanisms of action at 96% accuracy. We further apply Grad-CAM on our convolution-based models to identify signature regions of perturbations by these drugs in calcium signals. Conclusions: We anticipate that the capabilities of BeatProfiler will help advance in vitro studies in cardiac biology through rapid phenotyping, revealing mechanisms underlying cardiac health and disease, and enabling objective classification of cardiac disease and responses to drugs.
目标:收缩反应和钙处理是了解心脏功能和生理学的核心,然而量化这些指标的现有分析方法往往耗时长、容易出错,或者需要专业设备/许可证。我们开发了一套心脏分析工具 BeatProfiler,旨在量化多个体外心脏模型的收缩功能、钙处理和发力情况,并应用下游机器学习方法进行深度表型和分类。方法:我们首先用一个固定数据集与现有工具进行比对,验证 BeatProfiler 的准确性、稳健性和速度。我们还进一步证实了它能够稳健地描述疾病特征和剂量依赖性药物反应。然后,我们证明了自动采集管道获得的数据可进一步用于机器学习(ML)分析,对限制性心肌病的疾病模型进行表型,并分析心肌活性药物的功能反应。为了对这些生物信号进行准确分类,我们应用了基于特征的 ML 和深度学习模型(时序卷积-双向长短期记忆模型或 TCN-BiLSTM)。结果与现有工具的基准测试表明,BeatProfiler 通过提高低信号数据的灵敏度、减少误报率以及将分析速度提高 7 到 50 倍,比现有工具更好地检测和分析了收缩和钙信号。在已发表方法(PMs)准确检测到的信号中,BeatProfiler 提取的特征与 PMs 显示出很高的相关性,这证实了它的可靠性以及与 PMs 的一致性。BeatProfiler 提取的特征对限制性心肌病心肌细胞和同源健康对照进行了分类,准确率高达 98%,并将松弛 90 识别为最主要的区分特征,这与之前的研究结果一致。我们还表明,我们的 TCN-BiLSTM 模型能够以 96% 的准确率对无药物对照和 4 种具有不同作用机制的心脏病药物进行分类。我们进一步在基于卷积的模型上应用 Grad-CAM 来识别这些药物对钙信号扰动的特征区域。结论:我们预计 BeatProfiler 的功能将有助于通过快速表型推进心脏生物学的体外研究,揭示心脏健康和疾病的内在机制,并对心脏疾病和药物反应进行客观分类。
{"title":"BeatProfiler: Multimodal In Vitro Analysis of Cardiac Function Enables Machine Learning Classification of Diseases and Drugs","authors":"Youngbin Kim;Kunlun Wang;Roberta I. Lock;Trevor R. Nash;Sharon Fleischer;Bryan Z. Wang;Barry M. Fine;Gordana Vunjak-Novakovic","doi":"10.1109/OJEMB.2024.3377461","DOIUrl":"https://doi.org/10.1109/OJEMB.2024.3377461","url":null,"abstract":"<italic>Goal:</i>\u0000 Contractile response and calcium handling are central to understanding cardiac function and physiology, yet existing methods of analysis to quantify these metrics are often time-consuming, prone to mistakes, or require specialized equipment/license. We developed BeatProfiler, a suite of cardiac analysis tools designed to quantify contractile function, calcium handling, and force generation for multiple in vitro cardiac models and apply downstream machine learning methods for deep phenotyping and classification. \u0000<italic>Methods:</i>\u0000 We first validate BeatProfiler's accuracy, robustness, and speed by benchmarking against existing tools with a fixed dataset. We further confirm its ability to robustly characterize disease and dose-dependent drug response. We then demonstrate that the data acquired by our automatic acquisition pipeline can be further harnessed for machine learning (ML) analysis to phenotype a disease model of restrictive cardiomyopathy and profile cardioactive drug functional response. To accurately classify between these biological signals, we apply feature-based ML and deep learning models (temporal convolutional-bidirectional long short-term memory model or TCN-BiLSTM). \u0000<italic>Results:</i>\u0000 Benchmarking against existing tools revealed that BeatProfiler detected and analyzed contraction and calcium signals better than existing tools through improved sensitivity in low signal data, reduction in false positives, and analysis speed increase by 7 to 50-fold. Of signals accurately detected by published methods (PMs), BeatProfiler's extracted features showed high correlations to PMs, confirming that it is reliable and consistent with PMs. The features extracted by BeatProfiler classified restrictive cardiomyopathy cardiomyocytes from isogenic healthy controls with 98% accuracy and identified relax90 as a top distinguishing feature in congruence with previous findings. We also show that our TCN-BiLSTM model was able to classify drug-free control and 4 cardiac drugs with different mechanisms of action at 96% accuracy. We further apply Grad-CAM on our convolution-based models to identify signature regions of perturbations by these drugs in calcium signals. \u0000<italic>Conclusions:</i>\u0000 We anticipate that the capabilities of BeatProfiler will help advance in vitro studies in cardiac biology through rapid phenotyping, revealing mechanisms underlying cardiac health and disease, and enabling objective classification of cardiac disease and responses to drugs.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"5 ","pages":"238-249"},"PeriodicalIF":5.8,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10490213","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140351488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stability of Watch-Based Blood Pressure Measurements Analyzed by Pre-Post Calibration Differences 通过前后校准差异分析手表式血压测量的稳定性
IF 2.7 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-04-03 DOI: 10.1109/OJEMB.2024.3384488
Youngro Lee;Jongae Park;Sungjoon Park;Jongmo Seo;Hae-Young Lee
Recent advancements in smartwatch technology have introduced photoplethysmography (PPG)-based blood pressure (BP) estimation, enabling convenient and continuous monitoring of BP. However, concerns about accuracy and validation for clinical use persist. This study uses real-world data from a Samsung Galaxy Watch campaign to assess smartwatch-based BP measurements. The approach examines calibration stability by comparing average systolic BP (SBP) before and after calibration, identifying factors affecting stability through regression analysis. User-level strategies are suggested to mitigate calibration instability and emphasize guideline adherence. Notably, calibration instability is found to decrease during night-time measurements and when averaging multiple readings in the same time frame. Guideline adherence is vital, particularly for the elderly, females, and individuals with hypertension. The research enhances measurement reliability through extensive datasets, shedding light on calibration stability.
智能手表技术的最新进展引入了基于光电血压计(PPG)的血压(BP)估算,实现了方便、连续的血压监测。然而,临床使用的准确性和验证问题仍然令人担忧。本研究使用来自三星 Galaxy Watch 活动的真实数据来评估基于智能手表的血压测量。该方法通过比较校准前后的平均收缩压 (SBP) 来检查校准稳定性,并通过回归分析确定影响稳定性的因素。提出了用户层面的策略,以减轻校准不稳定性并强调遵守指南。值得注意的是,校准不稳定性在夜间测量和同一时间内平均多个读数时会降低。遵守指南至关重要,尤其是对于老年人、女性和高血压患者。这项研究通过广泛的数据集提高了测量的可靠性,揭示了校准稳定性。
{"title":"Stability of Watch-Based Blood Pressure Measurements Analyzed by Pre-Post Calibration Differences","authors":"Youngro Lee;Jongae Park;Sungjoon Park;Jongmo Seo;Hae-Young Lee","doi":"10.1109/OJEMB.2024.3384488","DOIUrl":"10.1109/OJEMB.2024.3384488","url":null,"abstract":"Recent advancements in smartwatch technology have introduced photoplethysmography (PPG)-based blood pressure (BP) estimation, enabling convenient and continuous monitoring of BP. However, concerns about accuracy and validation for clinical use persist. This study uses real-world data from a Samsung Galaxy Watch campaign to assess smartwatch-based BP measurements. The approach examines calibration stability by comparing average systolic BP (SBP) before and after calibration, identifying factors affecting stability through regression analysis. User-level strategies are suggested to mitigate calibration instability and emphasize guideline adherence. Notably, calibration instability is found to decrease during night-time measurements and when averaging multiple readings in the same time frame. Guideline adherence is vital, particularly for the elderly, females, and individuals with hypertension. The research enhances measurement reliability through extensive datasets, shedding light on calibration stability.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"5 ","pages":"828-836"},"PeriodicalIF":2.7,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10490153","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140585424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Usability Assessment of Technologies for Remote Monitoring of Knee Osteoarthritis 膝关节骨关节炎远程监控技术的可用性评估
IF 5.8 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-03-31 DOI: 10.1109/OJEMB.2024.3407961
Andrea Cafarelli;Angela Sorriento;Giorgia Marola;Denise Amram;Fabien Rabusseau;Hervé Locteau;Paolo Cabras;Erik Dumont;Sam Nakhaei;Ake Jernberger;Pär Bergsten;Paolo Spinnato;Alessandro Russo;Leonardo Ricotti
Goal: To evaluate the usability of different technologies designed for a remote assessment of knee osteoarthritis. Methods: We recruited eleven patients affected by mild or moderate knee osteoarthritis, eleven caregivers, and eleven clinicians to assess the following technologies: a wristband for monitoring physical activity, an examination chair for measuring leg extension, a thermal camera for acquiring skin thermographic data, a force balance for measuring center of pressure, an ultrasound imaging system for remote echographic acquisition, a mobile app, and a clinical portal software. Specific questionnaires scoring usability were filled out by patients, caregivers and clinicians. Results: The questionnaires highlighted a good level of usability and user-friendliness for all the technologies, obtaining an average score of 8.7 provided by the patients, 8.8 by the caregivers, and 8.5 by the clinicians, on a scale ranging from 0 to 10. Such average scores were calculated by putting together the scores obtained for the single technologies under evaluation and averaging them. Conclusions: This study demonstrates a high level of acceptability for the tested portable technologies designed for a potentially remote and frequent assessment of knee osteoarthritis.
目标:评估为远程评估膝关节骨关节炎而设计的不同技术的可用性。方法:我们招募了 11 名轻度或中度膝关节骨性关节炎患者、11 名护理人员:我们招募了 11 名轻度或中度膝关节骨关节炎患者、11 名护理人员和 11 名临床医生,对以下技术进行评估:用于监测身体活动的腕带、用于测量腿部伸展度的检查椅、用于获取皮肤热成像数据的热像仪、用于测量压力中心的力天平、用于远程回声成像采集的超声波成像系统、移动应用程序和临床门户软件。患者、护理人员和临床医生填写了专门的可用性调查问卷。结果显示在 0-10 分的评分范围内,患者、护理人员和临床医生的平均得分分别为 8.7 分、8.8 分和 8.5 分。这些平均分的计算方法是将单项评估技术的得分相加并取平均值。结论这项研究表明,受测的便携式技术具有很高的可接受性,可以对膝关节骨关节炎进行远程和频繁的评估。
{"title":"Usability Assessment of Technologies for Remote Monitoring of Knee Osteoarthritis","authors":"Andrea Cafarelli;Angela Sorriento;Giorgia Marola;Denise Amram;Fabien Rabusseau;Hervé Locteau;Paolo Cabras;Erik Dumont;Sam Nakhaei;Ake Jernberger;Pär Bergsten;Paolo Spinnato;Alessandro Russo;Leonardo Ricotti","doi":"10.1109/OJEMB.2024.3407961","DOIUrl":"10.1109/OJEMB.2024.3407961","url":null,"abstract":"<italic>Goal</i>\u0000: To evaluate the usability of different technologies designed for a remote assessment of knee osteoarthritis. \u0000<italic>Methods:</i>\u0000 We recruited eleven patients affected by mild or moderate knee osteoarthritis, eleven caregivers, and eleven clinicians to assess the following technologies: a wristband for monitoring physical activity, an examination chair for measuring leg extension, a thermal camera for acquiring skin thermographic data, a force balance for measuring center of pressure, an ultrasound imaging system for remote echographic acquisition, a mobile app, and a clinical portal software. Specific questionnaires scoring usability were filled out by patients, caregivers and clinicians. \u0000<italic>Results:</i>\u0000 The questionnaires highlighted a good level of usability and user-friendliness for all the technologies, obtaining an average score of 8.7 provided by the patients, 8.8 by the caregivers, and 8.5 by the clinicians, on a scale ranging from 0 to 10. Such average scores were calculated by putting together the scores obtained for the single technologies under evaluation and averaging them. \u0000<italic>Conclusions:</i>\u0000 This study demonstrates a high level of acceptability for the tested portable technologies designed for a potentially remote and frequent assessment of knee osteoarthritis.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"5 ","pages":"476-484"},"PeriodicalIF":5.8,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10543164","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141191644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Open Journal of Engineering in Medicine and Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1