Pub Date : 2024-06-03DOI: 10.1109/OJEMB.2024.3408078
Sevgi Z. Gurbuz;Mohammad Mahbubur Rahman;Zahra Bassiri;Dario Martelli
Current methods for fall risk assessment rely on Quantitative Gait Analysis (QGA) using costly optical tracking systems, which are often only available at specialized laboratories that may not be easily accessible to rural communities. Radar placed in a home or assisted living facility can acquire continuous ambulatory recordings over extended durations of a subject's natural gait and activity. Thus, radar-based QGA has the potential to capture day-to-day variations in gait, is time efficient and removes the burden for the subject to come to a clinic, providing a more realistic picture of older adults’ mobility. Although there has been research on gait-related health monitoring, most of this work focuses on classification-based methods, while only a few consider gait parameter estimation. On the one hand, metrics that are accurately and easily computable from radar data have not been demonstrated to have an established correlation with fall risk or other medical conditions; on the other hand, the accuracy of radar-based estimates of gait parameters that are well-accepted by the medical community as indicators of fall risk have not been adequately validated. This paper provides an overview of emerging radar-based techniques for gait parameter estimation, especially with emphasis on those relevant to fall risk. A pilot study that compares the accuracy of estimating gait parameters from different radar data representations – in particular, the micro-Doppler signature and skeletal point estimates – is conducted based on validation against an 8-camera, marker-based optical tracking system. The results of pilot study are discussed to assess the current state-of-the-art in radar-based QGA and potential directions for future research that can improve radar-based gait parameter estimation accuracy.
{"title":"Overview of Radar-Based Gait Parameter Estimation Techniques for Fall Risk Assessment","authors":"Sevgi Z. Gurbuz;Mohammad Mahbubur Rahman;Zahra Bassiri;Dario Martelli","doi":"10.1109/OJEMB.2024.3408078","DOIUrl":"10.1109/OJEMB.2024.3408078","url":null,"abstract":"Current methods for fall risk assessment rely on Quantitative Gait Analysis (QGA) using costly optical tracking systems, which are often only available at specialized laboratories that may not be easily accessible to rural communities. Radar placed in a home or assisted living facility can acquire continuous ambulatory recordings over extended durations of a subject's natural gait and activity. Thus, radar-based QGA has the potential to capture day-to-day variations in gait, is time efficient and removes the burden for the subject to come to a clinic, providing a more realistic picture of older adults’ mobility. Although there has been research on gait-related health monitoring, most of this work focuses on classification-based methods, while only a few consider gait parameter estimation. On the one hand, metrics that are accurately and easily computable from radar data have not been demonstrated to have an established correlation with fall risk or other medical conditions; on the other hand, the accuracy of radar-based estimates of gait parameters that are well-accepted by the medical community as indicators of fall risk have not been adequately validated. This paper provides an overview of emerging radar-based techniques for gait parameter estimation, especially with emphasis on those relevant to fall risk. A pilot study that compares the accuracy of estimating gait parameters from different radar data representations – in particular, the micro-Doppler signature and skeletal point estimates – is conducted based on validation against an 8-camera, marker-based optical tracking system. The results of pilot study are discussed to assess the current state-of-the-art in radar-based QGA and potential directions for future research that can improve radar-based gait parameter estimation accuracy.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10546280","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141948752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}