首页 > 最新文献

IEEE Open Journal of Engineering in Medicine and Biology最新文献

英文 中文
Quantifying the Suitability of Biosignals Acquired During Surgery for Multimodal Analysis 量化手术中获取的生物信号是否适合用于多模态分析
IF 5.8 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-03-20 DOI: 10.1109/OJEMB.2024.3379733
Ennio Idrobo-Ávila;Gergő Bognár;Dagmar Krefting;Thomas Penzel;Péter Kovács;Nicolai Spicher
Goal: Recently, large datasets of biosignals acquired during surgery became available. As they offer multiple physiological signals measured in parallel, multimodal analysis – which involves their joint analysis – can be conducted and could provide deeper insights than unimodal analysis based on a single signal. However, it is unclear what percentage of intraoperatively acquired data is suitable for multimodal analysis. Due to the large amount of data, manual inspection and labelling into suitable and unsuitable segments are not feasible. Nevertheless, multimodal analysis is performed successfully in sleep studies since many years as their signals have proven suitable. Hence, this study evaluates the suitability to perform multimodal analysis on a surgery dataset (VitalDB) using a multi-center sleep dataset (SIESTA) as reference. Methods: We applied widely known algorithms entitled “signal quality indicators” to the common biosignals in both datasets, namely electrocardiography, electroencephalography, and respiratory signals split in segments of 10 s duration. As there are no multimodal methods available, we used only unimodal signal quality indicators. In case, all three signals were determined as being adequate by the indicators, we assumed that the whole signal segment was suitable for multimodal analysis. Results: 82% of SIESTA and 72% of VitalDB are suitable for multimodal analysis. Unsuitable signal segments exhibit constant or physiologically unreasonable values. Histogram examination indicated similar signal quality distributions between the datasets, albeit with potential statistical biases due to different measurement setups. Conclusions: The majority of data within VitalDB is suitable for multimodal analysis.
目标:最近,人们可以获得手术过程中采集的大量生物信号数据集。由于这些数据集提供了并行测量的多种生理信号,因此可以进行多模态分析(包括对这些信号的联合分析),与基于单一信号的单模态分析相比,多模态分析能提供更深入的见解。不过,目前还不清楚术中获取的数据中有多大比例适合进行多模态分析。由于数据量巨大,人工检查和标记合适和不合适的片段并不可行。然而,多年来,多模态分析已在睡眠研究中成功应用,因为其信号已被证明是合适的。因此,本研究以多中心睡眠数据集(SIESTA)为参考,对手术数据集(VitalDB)进行多模态分析的适宜性进行了评估。分析方法我们将广为人知的名为 "信号质量指标 "的算法应用于这两个数据集中的常见生物信号,即心电图、脑电图和呼吸信号,并将其分割成持续时间为 10 秒的片段。由于没有可用的多模态方法,我们只使用了单模态信号质量指标。如果所有三个信号都被指标确定为合格,我们就认为整个信号段适合进行多模态分析。分析结果82% 的 SIESTA 和 72% 的 VitalDB 适合进行多模态分析。不适合的信号段表现为恒定值或生理上不合理的值。直方图检查显示两个数据集的信号质量分布相似,但由于测量设置不同,可能存在统计偏差。结论VitalDB 中的大部分数据都适合进行多模态分析。
{"title":"Quantifying the Suitability of Biosignals Acquired During Surgery for Multimodal Analysis","authors":"Ennio Idrobo-Ávila;Gergő Bognár;Dagmar Krefting;Thomas Penzel;Péter Kovács;Nicolai Spicher","doi":"10.1109/OJEMB.2024.3379733","DOIUrl":"10.1109/OJEMB.2024.3379733","url":null,"abstract":"<italic>Goal:</i>\u0000 Recently, large datasets of biosignals acquired during surgery became available. As they offer multiple physiological signals measured in parallel, multimodal analysis – which involves their joint analysis – can be conducted and could provide deeper insights than unimodal analysis based on a single signal. However, it is unclear what percentage of intraoperatively acquired data is suitable for multimodal analysis. Due to the large amount of data, manual inspection and labelling into suitable and unsuitable segments are not feasible. Nevertheless, multimodal analysis is performed successfully in sleep studies since many years as their signals have proven suitable. Hence, this study evaluates the suitability to perform multimodal analysis on a surgery dataset (VitalDB) using a multi-center sleep dataset (SIESTA) as reference. \u0000<italic>Methods:</i>\u0000 We applied widely known algorithms entitled “signal quality indicators” to the common biosignals in both datasets, namely electrocardiography, electroencephalography, and respiratory signals split in segments of 10 s duration. As there are no multimodal methods available, we used only unimodal signal quality indicators. In case, all three signals were determined as being adequate by the indicators, we assumed that the whole signal segment was suitable for multimodal analysis. \u0000<italic>Results:</i>\u0000 82% of SIESTA and 72% of VitalDB are suitable for multimodal analysis. Unsuitable signal segments exhibit constant or physiologically unreasonable values. Histogram examination indicated similar signal quality distributions between the datasets, albeit with potential statistical biases due to different measurement setups. \u0000<italic>Conclusions:</i>\u0000 The majority of data within VitalDB is suitable for multimodal analysis.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"5 ","pages":"250-260"},"PeriodicalIF":5.8,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10476670","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140202163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unrolled Optimization via Physics-Assisted Convolutional Neural Network for MR-Based Electrical Properties Tomography: A Numerical Investigation 通过物理辅助卷积神经网络进行基于 MR 的电特性断层成像的非卷积优化:数值研究
IF 2.7 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-03-20 DOI: 10.1109/OJEMB.2024.3402998
Sabrina Zumbo;Stefano Mandija;Ettore F. Meliadò;Peter Stijnman;Thierry G. Meerbothe;Cornelis A.T. van den Berg;Tommaso Isernia;Martina T. Bevacqua
Magnetic Resonance imaging based Electrical Properties Tomography (MR-EPT) is a non-invasive technique that measures the electrical properties (EPs) of biological tissues. In this work, we present and numerically investigate the performance of an unrolled, physics-assisted method for 2D MR-EPT reconstructions, where a cascade of Convolutional Neural Networks is used to compute the contrast update. Each network takes in input the EPs and the gradient descent direction (encoding the physics underlying the adopted scattering model) and returns as output the updated contrast function. The network is trained and tested in silico using 2D slices of realistic brain models at 128 MHz. Results show the capability of the proposed procedure to reconstruct EPs maps with quality comparable to that of the popular Contrast Source Inversion-EPT, while significantly reducing the computational time.
基于磁共振成像的电特性断层扫描(MR-EPT)是一种测量生物组织电特性(EPs)的无创技术。在这项工作中,我们介绍了一种用于二维 MR-EPT 重建的未卷积物理辅助方法,并对该方法的性能进行了数值研究,其中使用了级联卷积神经网络来计算对比度更新。每个网络输入 EPs 和梯度下降方向(编码所采用的散射模型的物理基础),并作为输出返回更新的对比度函数。该网络使用 128 MHz 下的真实大脑模型二维切片进行训练和测试。结果表明,所建议的程序有能力重建 EPs 图,其质量可与流行的对比源反转-EPT 相媲美,同时大大减少了计算时间。
{"title":"Unrolled Optimization via Physics-Assisted Convolutional Neural Network for MR-Based Electrical Properties Tomography: A Numerical Investigation","authors":"Sabrina Zumbo;Stefano Mandija;Ettore F. Meliadò;Peter Stijnman;Thierry G. Meerbothe;Cornelis A.T. van den Berg;Tommaso Isernia;Martina T. Bevacqua","doi":"10.1109/OJEMB.2024.3402998","DOIUrl":"10.1109/OJEMB.2024.3402998","url":null,"abstract":"Magnetic Resonance imaging based Electrical Properties Tomography (MR-EPT) is a non-invasive technique that measures the electrical properties (EPs) of biological tissues. In this work, we present and numerically investigate the performance of an unrolled, physics-assisted method for 2D MR-EPT reconstructions, where a cascade of Convolutional Neural Networks is used to compute the contrast update. Each network takes in input the EPs and the gradient descent direction (encoding the physics underlying the adopted scattering model) and returns as output the updated contrast function. The network is trained and tested in silico using 2D slices of realistic brain models at 128 MHz. Results show the capability of the proposed procedure to reconstruct EPs maps with quality comparable to that of the popular Contrast Source Inversion-EPT, while significantly reducing the computational time.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"5 ","pages":"505-513"},"PeriodicalIF":2.7,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10534835","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141150877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lymphocyte-Infiltrated Periportal Region Detection With Structurally-Refined Deep Portal Segmentation and Heterogeneous Infiltration Features 利用结构定义的深度门静脉分割和异质浸润特征检测淋巴细胞浸润的门静脉周围区域
IF 5.8 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-03-20 DOI: 10.1109/OJEMB.2024.3379479
Hung-Wen Tsai;Chien-Yu Chiou;Wei-Jong Yang;Tsan-An Hsieh;Cheng-Yi Chen;Che-Wei Hsu;Yih-Jyh Lin;Min-En Hsieh;Matthew M. Yeh;Chin-Chun Chen;Meng-Ru Shen;Pau-Choo Chung
Goal: The early diagnosis and treatment of hepatitis is essential to reduce hepatitis-related liver function deterioration and mortality. One component of the widely-used Ishak grading system for the grading of periportal interface hepatitis is based on the percentage of portal borders infiltrated by lymphocytes. Thus, the accurate detection of lymphocyte-infiltrated periportal regions is critical in the diagnosis of hepatitis. However, the infiltrating lymphocytes usually result in the formation of ambiguous and highly-irregular portal boundaries, and thus identifying the infiltrated portal boundary regions precisely using automated methods is challenging. This study aims to develop a deep-learning-based automatic detection framework to assist diagnosis. Methods: The present study proposes a framework consisting of a Structurally-REfined Deep Portal Segmentation module and an Infiltrated Periportal Region Detection module based on heterogeneous infiltration features to accurately identify the infiltrated periportal regions in liver Whole Slide Images. Results: The proposed method achieves 0.725 in F1-score of lymphocyte-infiltrated periportal region detection. Moreover, the statistics of the ratio of the detected infiltrated portal boundary have high correlation to the Ishak grade (Spearman's correlations more than 0.87 with p-values less than 0.001) and medium correlation to the liver function index aspartate aminotransferase and alanine aminotransferase (Spearman's correlations more than 0.63 and 0.57 with p-values less than 0.001). Conclusions: The study shows the statistics of the ratio of infiltrated portal boundary have correlation to the Ishak grade and liver function index. The proposed framework provides pathologists with a useful and reliable tool for hepatitis diagnosis.
目标:肝炎的早期诊断和治疗对于减少与肝炎相关的肝功能恶化和死亡率至关重要。广泛使用的伊萨克(Ishak)分级系统对门静脉周围界面肝炎进行分级,该系统的一个组成部分是基于门静脉边界淋巴细胞浸润的百分比。因此,准确检测淋巴细胞浸润的门静脉周围区域对于诊断肝炎至关重要。然而,浸润的淋巴细胞通常会形成模糊且高度不规则的门静脉边界,因此使用自动化方法精确识别浸润的门静脉边界区域具有挑战性。本研究旨在开发一种基于深度学习的自动检测框架来辅助诊断。方法:本研究提出了一个框架,该框架由结构优化的深度门静脉分割模块和基于异质浸润特征的门静脉周围浸润区域检测模块组成,以准确识别肝脏全切片图像中的门静脉周围浸润区域。结果所提出的方法在淋巴细胞浸润肝门周围区域检测的 F1 分数上达到了 0.725。此外,检测到的浸润门脉边界的比率统计与 Ishak 分级具有高度相关性(Spearman 相关性大于 0.87,P 值小于 0.001),与肝功能指标天冬氨酸氨基转移酶和丙氨酸氨基转移酶具有中等相关性(Spearman 相关性大于 0.63 和 0.57,P 值小于 0.001)。结论研究表明,门静脉边界浸润比例统计与伊萨克分级和肝功能指数具有相关性。所提出的框架为病理学家诊断肝炎提供了有用、可靠的工具。
{"title":"Lymphocyte-Infiltrated Periportal Region Detection With Structurally-Refined Deep Portal Segmentation and Heterogeneous Infiltration Features","authors":"Hung-Wen Tsai;Chien-Yu Chiou;Wei-Jong Yang;Tsan-An Hsieh;Cheng-Yi Chen;Che-Wei Hsu;Yih-Jyh Lin;Min-En Hsieh;Matthew M. Yeh;Chin-Chun Chen;Meng-Ru Shen;Pau-Choo Chung","doi":"10.1109/OJEMB.2024.3379479","DOIUrl":"10.1109/OJEMB.2024.3379479","url":null,"abstract":"<italic>Goal</i>\u0000: The early diagnosis and treatment of hepatitis is essential to reduce hepatitis-related liver function deterioration and mortality. One component of the widely-used Ishak grading system for the grading of periportal interface hepatitis is based on the percentage of portal borders infiltrated by lymphocytes. Thus, the accurate detection of lymphocyte-infiltrated periportal regions is critical in the diagnosis of hepatitis. However, the infiltrating lymphocytes usually result in the formation of ambiguous and highly-irregular portal boundaries, and thus identifying the infiltrated portal boundary regions precisely using automated methods is challenging. This study aims to develop a deep-learning-based automatic detection framework to assist diagnosis. \u0000<italic>Methods</i>\u0000: The present study proposes a framework consisting of a Structurally-REfined Deep Portal Segmentation module and an Infiltrated Periportal Region Detection module based on heterogeneous infiltration features to accurately identify the infiltrated periportal regions in liver Whole Slide Images. \u0000<italic>Results</i>\u0000: The proposed method achieves 0.725 in F1-score of lymphocyte-infiltrated periportal region detection. Moreover, the statistics of the ratio of the detected infiltrated portal boundary have high correlation to the Ishak grade (Spearman's correlations more than 0.87 with p-values less than 0.001) and medium correlation to the liver function index aspartate aminotransferase and alanine aminotransferase (Spearman's correlations more than 0.63 and 0.57 with p-values less than 0.001). \u0000<italic>Conclusions</i>\u0000: The study shows the statistics of the ratio of infiltrated portal boundary have correlation to the Ishak grade and liver function index. The proposed framework provides pathologists with a useful and reliable tool for hepatitis diagnosis.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"5 ","pages":"261-270"},"PeriodicalIF":5.8,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10476647","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140202129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bayesian Inference of Hidden Cognitive Performance and Arousal States in Presence of Music 贝叶斯推断音乐声中的隐性认知表现和唤醒状态
IF 2.7 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-03-18 DOI: 10.1109/OJEMB.2024.3377923
Saman Khazaei;Md Rafiul Amin;Maryam Tahir;Rose T. Faghih
Goal: Poor arousal management may lead to reduced cognitive performance. Specifying a model and decoder to infer the cognitive arousal and performance contributes to arousal regulation via non-invasive actuators such as music. Methods: We employ a Bayesian filtering approach within an expectation-maximization framework to track the hidden states during the $n$-back task in the presence of calming and exciting music. We decode the arousal and performance states from the skin conductance and behavioral signals, respectively. We derive an arousal-performance model based on the Yerkes—Dodson law. We design a performance-based arousal decoder by considering the corresponding performance and skin conductance as the observation. Results: The quantified arousal and performance are presented. The existence of Yerkes—Dodson law can be interpreted from the arousal-performance relationship. Findings display higher matrices of performance within the exciting music. Conclusions: The performance-based arousal decoder has a better agreement with the Yerkes—Dodson law. Our study can be implemented in designing non-invasive closed-loop systems.
目标:唤醒管理不善可能导致认知能力下降。指定一个模型和解码器来推断认知唤醒状态和表现,有助于通过音乐等非侵入式致动器来调节唤醒状态。方法:我们在期望最大化框架内采用贝叶斯过滤方法,在平静和激动的音乐声中追踪 "n$后退 "任务中的隐藏状态。我们分别从皮肤电导和行为信号中解码唤醒状态和表现状态。我们根据耶克斯-多德森定律推导出一个唤醒-表现模型。我们将相应的表现和皮肤电导作为观测指标,设计出基于表现的唤醒解码器。结果:展示了量化的唤醒和表现。从唤醒-表现关系可以解释耶克斯-多德森定律的存在。研究结果显示,在激动人心的音乐中,表现矩阵较高。结论基于表现的唤醒解码器与耶克斯-多德森定律有更好的一致性。我们的研究可用于设计非侵入式闭环系统。
{"title":"Bayesian Inference of Hidden Cognitive Performance and Arousal States in Presence of Music","authors":"Saman Khazaei;Md Rafiul Amin;Maryam Tahir;Rose T. Faghih","doi":"10.1109/OJEMB.2024.3377923","DOIUrl":"10.1109/OJEMB.2024.3377923","url":null,"abstract":"<italic>Goal:</i>\u0000 Poor arousal management may lead to reduced cognitive performance. Specifying a model and decoder to infer the cognitive arousal and performance contributes to arousal regulation via non-invasive actuators such as music. \u0000<italic>Methods:</i>\u0000 We employ a Bayesian filtering approach within an expectation-maximization framework to track the hidden states during the \u0000<inline-formula><tex-math>$n$</tex-math></inline-formula>\u0000-back task in the presence of calming and exciting music. We decode the arousal and performance states from the skin conductance and behavioral signals, respectively. We derive an arousal-performance model based on the Yerkes—Dodson law. We design a performance-based arousal decoder by considering the corresponding performance and skin conductance as the observation. \u0000<italic>Results:</i>\u0000 The quantified arousal and performance are presented. The existence of Yerkes—Dodson law can be interpreted from the arousal-performance relationship. Findings display higher matrices of performance within the exciting music. \u0000<italic>Conclusions:</i>\u0000 The performance-based arousal decoder has a better agreement with the Yerkes—Dodson law. Our study can be implemented in designing non-invasive closed-loop systems.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"5 ","pages":"627-636"},"PeriodicalIF":2.7,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10474164","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140169852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Objective and Automated Quantification of Instrument Handling for Open Surgical Suturing Skill Assessment: A Simulation-Based Study 开放式手术缝合技能评估中器械操作的客观和自动量化:基于模拟的研究
IF 2.7 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-03-17 DOI: 10.1109/OJEMB.2024.3402393
Simar P. Singh;Amir Mehdi Shayan;Jianxin Gao;Joseph Bible;Richard E. Groff;Ravikiran Singapogu
Goal: Vascular surgical procedures are challenging and require proficient suturing skills. To develop these skills, medical training simulators with objective feedback for formative assessment are gaining popularity. As hardware advancements offer more complex, unique sensors, determining effective task performance measures becomes imperative for efficient suturing training. Methods: 97 subjects of varying clinical expertise completed four trials on a suturing skills measurement and feedback platform (SutureCoach). Instrument handling metrics were calculated from electromagnetic motion trackers affixed to the needle driver. Results: The results of the study showed that all metrics significantly differentiated between novices (no medical experience) from both experts (attending surgeons/fellows) and intermediates (residents). Rotational motion metrics were more consistent in differentiating experts and intermediates over traditionally used tooltip motion metrics. Conclusions: Our work emphasizes the importance of tool motion metrics for open suturing skills assessment and establishes groundwork to explore rotational motion for quantifying a critical facet of surgical performance.
目标:血管外科手术具有挑战性,需要熟练的缝合技能。为了培养这些技能,带有客观反馈以进行形成性评估的医疗培训模拟器越来越受欢迎。随着硬件的不断进步,传感器的复杂性和独特性也在不断提高,因此确定有效的任务绩效衡量标准已成为高效缝合训练的当务之急。方法:97 名具有不同临床专业知识的受试者在缝合技能测量和反馈平台(SutureCoach)上完成了四次试验。仪器操作指标是通过贴在针驱动器上的电磁运动跟踪器计算得出的。结果显示研究结果表明,新手(无医疗经验)与专家(主治外科医生/研究员)和中级专家(住院医师)之间的所有指标均有明显差异。与传统的工具提示运动指标相比,旋转运动指标在区分专家和中级专家方面更为一致。结论:我们的工作强调了工具运动指标对开放式缝合技能评估的重要性,并为探索旋转运动量化手术表现的一个关键方面奠定了基础。
{"title":"Objective and Automated Quantification of Instrument Handling for Open Surgical Suturing Skill Assessment: A Simulation-Based Study","authors":"Simar P. Singh;Amir Mehdi Shayan;Jianxin Gao;Joseph Bible;Richard E. Groff;Ravikiran Singapogu","doi":"10.1109/OJEMB.2024.3402393","DOIUrl":"10.1109/OJEMB.2024.3402393","url":null,"abstract":"<italic>Goal:</i>\u0000 Vascular surgical procedures are challenging and require proficient suturing skills. To develop these skills, medical training simulators with objective feedback for formative assessment are gaining popularity. As hardware advancements offer more complex, unique sensors, determining effective task performance measures becomes imperative for efficient suturing training. \u0000<italic>Methods:</i>\u0000 97 subjects of varying clinical expertise completed four trials on a suturing skills measurement and feedback platform (SutureCoach). Instrument handling metrics were calculated from electromagnetic motion trackers affixed to the needle driver. \u0000<italic>Results:</i>\u0000 The results of the study showed that all metrics significantly differentiated between novices (no medical experience) from both experts (attending surgeons/fellows) and intermediates (residents). Rotational motion metrics were more consistent in differentiating experts and intermediates over traditionally used tooltip motion metrics. \u0000<italic>Conclusions:</i>\u0000 Our work emphasizes the importance of tool motion metrics for open suturing skills assessment and establishes groundwork to explore rotational motion for quantifying a critical facet of surgical performance.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"5 ","pages":"485-493"},"PeriodicalIF":2.7,"publicationDate":"2024-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10533671","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141063460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DISPEL: A Python Framework for Developing Measures From Digital Health Technologies DISPEL:从数字健康技术中开发衡量标准的 Python 框架。
IF 2.7 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-03-17 DOI: 10.1109/OJEMB.2024.3402531
A. Scotland;G. Cosne;A. Juraver;A. Karatsidis;J. Penalver-Andres;E. Bartholomé;C. M. Kanzler;C. Mazzà;D. Roggen;C. Hinchliffe;S. Del Din;S. Belachew
Goal: This paper introduces DISPEL, a Python framework to facilitate development of sensor-derived measures (SDMs) from data collected with digital health technologies in the context of therapeutic development for neurodegenerative diseases. Methods: Modularity, integrability and flexibility were achieved adopting an object-oriented architecture for data modelling and SDM extraction, which also allowed standardizing SDM generation, naming, storage, and documentation. Additionally, a functionality was designed to implement systematic flagging of missing data and unexpected user behaviors, both frequent in unsupervised monitoring. Results: DISPEL is available under MIT license. It already supports formats from different data providers and allows traceable end-to-end processing from raw data collected with wearables and smartphones to structured SDM datasets. Novel and literature-based signal processing approaches currently allow to extract SDMs from 16 structured tests (including six questionnaires), assessing overall disability and quality of life, and measuring performance outcomes of cognition, manual dexterity, and mobility. Conclusion: DISPEL supports SDM development for clinical trials by providing a production-grade Python framework and a large set of already implemented SDMs. While the framework has already been refined based on clinical trials’ data, ad-hoc validation of the provided algorithms in their specific context of use is recommended to the users.
目标:本文介绍了 DISPEL,这是一个 Python 框架,用于在神经退行性疾病的治疗开发过程中,从数字健康技术收集的数据中促进传感器衍生措施(SDM)的开发。方法:采用面向对象的架构进行数据建模和 SDM 提取,实现了模块化、可集成性和灵活性,并使 SDM 的生成、命名、存储和文档标准化。此外,还设计了一种功能,用于系统地标记缺失数据和意外用户行为,这两种情况在无监督监测中经常出现。成果:DISPEL 采用 MIT 许可。它已支持来自不同数据提供商的格式,并可对从可穿戴设备和智能手机收集的原始数据到结构化 SDM 数据集进行可追溯的端到端处理。新颖的、基于文献的信号处理方法目前可从 16 个结构化测试(包括 6 份问卷)中提取 SDM,评估总体残疾情况和生活质量,并测量认知、手部灵活性和移动能力的表现结果。结论DISPEL 通过提供一个生产级 Python 框架和大量已实施的 SDM,支持临床试验 SDM 的开发。虽然该框架已根据临床试验数据进行了改进,但仍建议用户在特定使用环境中对所提供的算法进行临时验证。
{"title":"DISPEL: A Python Framework for Developing Measures From Digital Health Technologies","authors":"A. Scotland;G. Cosne;A. Juraver;A. Karatsidis;J. Penalver-Andres;E. Bartholomé;C. M. Kanzler;C. Mazzà;D. Roggen;C. Hinchliffe;S. Del Din;S. Belachew","doi":"10.1109/OJEMB.2024.3402531","DOIUrl":"10.1109/OJEMB.2024.3402531","url":null,"abstract":"<italic>Goal</i>\u0000: This paper introduces DISPEL, a Python framework to facilitate development of sensor-derived measures (SDMs) from data collected with digital health technologies in the context of therapeutic development for neurodegenerative diseases. \u0000<italic>Methods</i>\u0000: Modularity, integrability and flexibility were achieved adopting an object-oriented architecture for data modelling and SDM extraction, which also allowed standardizing SDM generation, naming, storage, and documentation. Additionally, a functionality was designed to implement systematic flagging of missing data and unexpected user behaviors, both frequent in unsupervised monitoring. \u0000<italic>Results</i>\u0000: DISPEL is available under MIT license. It already supports formats from different data providers and allows traceable end-to-end processing from raw data collected with wearables and smartphones to structured SDM datasets. Novel and literature-based signal processing approaches currently allow to extract SDMs from 16 structured tests (including six questionnaires), assessing overall disability and quality of life, and measuring performance outcomes of cognition, manual dexterity, and mobility. \u0000<italic>Conclusion</i>\u0000: DISPEL supports SDM development for clinical trials by providing a production-grade Python framework and a large set of already implemented SDMs. While the framework has already been refined based on clinical trials’ data, ad-hoc validation of the provided algorithms in their specific context of use is recommended to the users.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"5 ","pages":"494-497"},"PeriodicalIF":2.7,"publicationDate":"2024-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10533679","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141063428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Strategy for the In-Silico Assessment of Drug Eluting Stents: A Comparative Study for the Evaluation of Retinoic Acid as a Novel Drug Candidate for Drug Eluting Stents 药物洗脱支架的体内评估策略:将维甲酸作为药物洗脱支架的新型候选药物进行评估的比较研究
IF 2.7 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-03-16 DOI: 10.1109/OJEMB.2024.3402057
Dimitrios S. Pleouras;Vasileios S. Loukas;Georgia Karanasiou;Christos Katsouras;Arsen Semertzioglou;Anargyros N. Moulas;Lambros K. Michalis;Dimitrios I. Fotiadis
In this work, a methodology for the in-silico evaluation of drug eluting stents (DES) is presented. A stent model developed by Rontis S.A. has been employed. For modeling purposes two different stent parts have been considered: the metal core and the coating. For the arterial models, we used animal specific imaging data and realistic geometries were reconstructed which were used as input to the drug-delivery model. More specifically, optical coherence tomography (OCT) imaging data from two coney iliac arterial segments were 3D reconstructed, and the preprocessed 3D stent was deployed in-silico. The deformed geometries of the in-silico deployed stents and the dilated arterial segments were used as input to the drug elution model. The same reconstructed arteries were used in three different cases: (i) Case A. The coatings contain retinoic acid at an initial concentration 49.2% w/w. (ii) Case B. The coatings contain retinoic acid at an initial concentration 1% w/w. (iii) Case C. The coatings contain sirolimus at an initial concentration 0.85% w/w. In each case, two different coatings were examined: (a) polylactic acid and (b) polylactic-co-glycolic acid. The results proved that retinoic acid is a very promising drug candidate for DES due to its binding time to the smooth muscle cells of the arterial wall that exceeds the corresponding time of sirolimus, while being non-toxic to the smooth muscle cells.
在这项工作中,介绍了一种对药物洗脱支架(DES)进行室内评估的方法。采用了 Rontis S.A. 公司开发的支架模型。建模时考虑了两个不同的支架部分:金属内核和涂层。对于动脉模型,我们使用了动物特定的成像数据,并重建了逼真的几何图形,作为给药模型的输入。更具体地说,我们对两个锥髂动脉节段的光学相干断层扫描(OCT)成像数据进行了三维重建,并对预处理后的三维支架进行了体内部署。药物洗脱模型输入的是在模拟中部署的支架和扩张动脉段的变形几何图形。同样的重建动脉被用于三种不同的情况:(i)情况 A:涂层含有维甲酸,初始浓度为 49.2% w/w。(ii) 情况 B:涂层含有初始浓度为 1%(重量百分比)的维甲酸。(iii) 情况 C:涂层含有初始浓度为 0.85%(重量百分比)的西罗莫司。在每种情况下,研究了两种不同的涂层:(a) 聚乳酸和 (b) 聚乳酸-共-乙醇酸。结果证明,维甲酸与动脉壁平滑肌细胞的结合时间超过西罗莫司的相应时间,同时对平滑肌细胞无毒,因此是一种非常有前途的 DES 候选药物。
{"title":"A Strategy for the In-Silico Assessment of Drug Eluting Stents: A Comparative Study for the Evaluation of Retinoic Acid as a Novel Drug Candidate for Drug Eluting Stents","authors":"Dimitrios S. Pleouras;Vasileios S. Loukas;Georgia Karanasiou;Christos Katsouras;Arsen Semertzioglou;Anargyros N. Moulas;Lambros K. Michalis;Dimitrios I. Fotiadis","doi":"10.1109/OJEMB.2024.3402057","DOIUrl":"10.1109/OJEMB.2024.3402057","url":null,"abstract":"In this work, a methodology for the in-silico evaluation of drug eluting stents (DES) is presented. A stent model developed by Rontis S.A. has been employed. For modeling purposes two different stent parts have been considered: the metal core and the coating. For the arterial models, we used animal specific imaging data and realistic geometries were reconstructed which were used as input to the drug-delivery model. More specifically, optical coherence tomography (OCT) imaging data from two coney iliac arterial segments were 3D reconstructed, and the preprocessed 3D stent was deployed in-silico. The deformed geometries of the in-silico deployed stents and the dilated arterial segments were used as input to the drug elution model. The same reconstructed arteries were used in three different cases: (i) Case A. The coatings contain retinoic acid at an initial concentration 49.2% w/w. (ii) Case B. The coatings contain retinoic acid at an initial concentration 1% w/w. (iii) Case C. The coatings contain sirolimus at an initial concentration 0.85% w/w. In each case, two different coatings were examined: (a) polylactic acid and (b) polylactic-co-glycolic acid. The results proved that retinoic acid is a very promising drug candidate for DES due to its binding time to the smooth muscle cells of the arterial wall that exceeds the corresponding time of sirolimus, while being non-toxic to the smooth muscle cells.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"6 ","pages":"1-9"},"PeriodicalIF":2.7,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10531649","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141063457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Attention Feature Fusion Network via Knowledge Propagation for Automated Respiratory Sound Classification 通过知识传播的注意力特征融合网络用于自动呼吸声分类
IF 5.8 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-03-16 DOI: 10.1109/OJEMB.2024.3402139
Ida A. P. A. Crisdayanti;Sung Woo Nam;Seong Kwan Jung;Seong-Eun Kim
Goal: In light of the COVID-19 pandemic, the early diagnosis of respiratory diseases has become increasingly crucial. Traditional diagnostic methods such as computed tomography (CT) and magnetic resonance imaging (MRI), while accurate, often face accessibility challenges. Lung auscultation, a simpler alternative, is subjective and highly dependent on the clinician's expertise. The pandemic has further exacerbated these challenges by restricting face-to-face consultations. This study aims to overcome these limitations by developing an automated respiratory sound classification system using deep learning, facilitating remote and accurate diagnoses. Methods: We developed a deep convolutional neural network (CNN) model that utilizes spectrographic representations of respiratory sounds within an image classification framework. Our model is enhanced with attention feature fusion of low-to-high-level information based on a knowledge propagation mechanism to increase classification effectiveness. This novel approach was evaluated using the ICBHI benchmark dataset and a larger, self-collected Pediatric dataset comprising outpatient children aged 1 to 6 years. Results: The proposed CNN model with knowledge propagation demonstrated superior performance compared to existing state-of-the-art models. Specifically, our model showed higher sensitivity in detecting abnormalities in the Pediatric dataset, indicating its potential for improving the accuracy of respiratory disease diagnosis. Conclusions: The integration of a knowledge propagation mechanism into a CNN model marks a significant advancement in the field of automated diagnosis of respiratory disease. This study paves the way for more accessible and precise healthcare solutions, which is especially crucial in pandemic scenarios.
目标:鉴于 COVID-19 大流行,呼吸系统疾病的早期诊断变得越来越重要。传统的诊断方法,如计算机断层扫描(CT)和磁共振成像(MRI),虽然准确,但往往面临可及性方面的挑战。肺部听诊是一种较为简单的替代方法,但主观性较强,而且高度依赖于临床医生的专业知识。大流行限制了面对面的咨询,从而进一步加剧了这些挑战。本研究旨在利用深度学习技术开发自动呼吸声音分类系统,从而克服这些局限性,为远程准确诊断提供便利。方法:我们开发了一种深度卷积神经网络(CNN)模型,该模型在图像分类框架内利用呼吸声音的光谱表征。我们的模型通过基于知识传播机制的低级到高级信息的注意力特征融合来增强分类效果。我们使用 ICBHI 基准数据集和一个更大的自我收集的儿科数据集对这种新方法进行了评估,该数据集由 1 到 6 岁的门诊儿童组成。结果与现有的先进模型相比,所提出的具有知识传播功能的 CNN 模型表现出了卓越的性能。特别是,我们的模型在检测儿科数据集中的异常情况时表现出更高的灵敏度,这表明它具有提高呼吸系统疾病诊断准确性的潜力。结论将知识传播机制整合到 CNN 模型中,标志着呼吸系统疾病自动诊断领域的重大进步。这项研究为更便捷、更精确的医疗解决方案铺平了道路,这在大流行病的情况下尤为重要。
{"title":"Attention Feature Fusion Network via Knowledge Propagation for Automated Respiratory Sound Classification","authors":"Ida A. P. A. Crisdayanti;Sung Woo Nam;Seong Kwan Jung;Seong-Eun Kim","doi":"10.1109/OJEMB.2024.3402139","DOIUrl":"10.1109/OJEMB.2024.3402139","url":null,"abstract":"<italic>Goal:</i>\u0000 In light of the COVID-19 pandemic, the early diagnosis of respiratory diseases has become increasingly crucial. Traditional diagnostic methods such as computed tomography (CT) and magnetic resonance imaging (MRI), while accurate, often face accessibility challenges. Lung auscultation, a simpler alternative, is subjective and highly dependent on the clinician's expertise. The pandemic has further exacerbated these challenges by restricting face-to-face consultations. This study aims to overcome these limitations by developing an automated respiratory sound classification system using deep learning, facilitating remote and accurate diagnoses. \u0000<italic>Methods:</i>\u0000 We developed a deep convolutional neural network (CNN) model that utilizes spectrographic representations of respiratory sounds within an image classification framework. Our model is enhanced with attention feature fusion of low-to-high-level information based on a knowledge propagation mechanism to increase classification effectiveness. This novel approach was evaluated using the ICBHI benchmark dataset and a larger, self-collected Pediatric dataset comprising outpatient children aged 1 to 6 years. \u0000<italic>Results:</i>\u0000 The proposed CNN model with knowledge propagation demonstrated superior performance compared to existing state-of-the-art models. Specifically, our model showed higher sensitivity in detecting abnormalities in the Pediatric dataset, indicating its potential for improving the accuracy of respiratory disease diagnosis. \u0000<italic>Conclusions:</i>\u0000 The integration of a knowledge propagation mechanism into a CNN model marks a significant advancement in the field of automated diagnosis of respiratory disease. This study paves the way for more accessible and precise healthcare solutions, which is especially crucial in pandemic scenarios.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"5 ","pages":"383-392"},"PeriodicalIF":5.8,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10531227","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141063461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Review on Recent Advancements of Biomedical Radar for Clinical Applications 临床应用生物医学雷达的最新进展综述
IF 2.7 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-03-15 DOI: 10.1109/OJEMB.2024.3401105
Shuqin Dong;Li Wen;Yangtao Ye;Zhi Zhang;Yi Wang;Zhiwei Liu;Qing Cao;Yuchen Xu;Changzhi Li;Changzhan Gu
The field of biomedical radar has witnessed significant advancements in recent years, paving the way for innovative and transformative applications in clinical settings. Most medical instruments invented to measure human activities rely on contact electrodes, causing discomfort. Thanks to its non-invasive nature, biomedical radar is particularly valuable for clinical applications. A significant portion of the review discusses improvements in radar hardware, with a focus on miniaturization, increased resolution, and enhanced sensitivity. Then, this paper also delves into the signal processing and machine learning techniques tailored for radar data. This review will explore the recent breakthroughs and applications of biomedical radar technology, shedding light on its transformative potential in shaping the future of clinical diagnostics, patient and elderly care, and healthcare innovation.
近年来,生物医学雷达领域取得了重大进展,为临床环境中的创新和变革性应用铺平了道路。为测量人体活动而发明的大多数医疗仪器都依赖于接触式电极,会引起不适。生物医学雷达具有非侵入性的特点,因此在临床应用中尤为重要。这篇综述的很大一部分讨论了雷达硬件的改进,重点是微型化、提高分辨率和灵敏度。然后,本文还深入探讨了针对雷达数据定制的信号处理和机器学习技术。本综述将探讨生物医学雷达技术的最新突破和应用,揭示其在塑造未来临床诊断、病人和老人护理以及医疗保健创新方面的变革潜力。
{"title":"A Review on Recent Advancements of Biomedical Radar for Clinical Applications","authors":"Shuqin Dong;Li Wen;Yangtao Ye;Zhi Zhang;Yi Wang;Zhiwei Liu;Qing Cao;Yuchen Xu;Changzhi Li;Changzhan Gu","doi":"10.1109/OJEMB.2024.3401105","DOIUrl":"10.1109/OJEMB.2024.3401105","url":null,"abstract":"The field of biomedical radar has witnessed significant advancements in recent years, paving the way for innovative and transformative applications in clinical settings. Most medical instruments invented to measure human activities rely on contact electrodes, causing discomfort. Thanks to its non-invasive nature, biomedical radar is particularly valuable for clinical applications. A significant portion of the review discusses improvements in radar hardware, with a focus on miniaturization, increased resolution, and enhanced sensitivity. Then, this paper also delves into the signal processing and machine learning techniques tailored for radar data. This review will explore the recent breakthroughs and applications of biomedical radar technology, shedding light on its transformative potential in shaping the future of clinical diagnostics, patient and elderly care, and healthcare innovation.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"5 ","pages":"707-724"},"PeriodicalIF":2.7,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10531059","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141063429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NeoSSNet: Real-Time Neonatal Chest Sound Separation Using Deep Learning NeoSSNet:利用深度学习实时分离新生儿胸音
IF 5.8 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-03-15 DOI: 10.1109/OJEMB.2024.3401571
Yang Yi Poh;Ethan Grooby;Kenneth Tan;Lindsay Zhou;Arrabella King;Ashwin Ramanathan;Atul Malhotra;Mehrtash Harandi;Faezeh Marzbanrad
Goal: Auscultation for neonates is a simple and non-invasive method of diagnosing cardiovascular and respiratory disease. However, obtaining high-quality chest sounds containing only heart or lung sounds is non-trivial. Hence, this study introduces a new deep-learning model named NeoSSNet and evaluates its performance in neonatal chest sound separation with previous methods. Methods: We propose a masked-based architecture similar to Conv-TasNet. The encoder and decoder consist of 1D convolution and 1D transposed convolution, while the mask generator consists of a convolution and transformer architecture. The input chest sounds were first encoded as a sequence of tokens using 1D convolution. The tokens were then passed to the mask generator to generate two masks, one for heart sounds and one for lung sounds. Each mask is then applied to the input token sequence. Lastly, the tokens are converted back to waveforms using 1D transposed convolution. Results: Our proposed model showed superior results compared to the previous methods based on objective distortion measures, ranging from a 2.01 dB improvement to a 5.06 dB improvement. The proposed model is also significantly faster than the previous methods, with at least a 17-time improvement. Conclusions: The proposed model could be a suitable preprocessing step for any health monitoring system where only the heart sound or lung sound is desired.
目标:新生儿听诊是诊断心血管和呼吸系统疾病的一种简单而无创的方法。然而,获得仅包含心音或肺音的高质量胸音并非易事。因此,本研究引入了一种名为 NeoSSNet 的新型深度学习模型,并评估了它与之前的方法在新生儿胸音分离方面的性能。方法:我们提出了一种与 Conv-TasNet 类似的基于掩码的架构。编码器和解码器由一维卷积和一维转置卷积组成,而掩码生成器则由卷积和变换器架构组成。首先使用一维卷积将输入的胸腔声音编码为标记序列。然后将标记传递给掩码生成器,生成两个掩码,一个用于心音,另一个用于肺音。然后将每个掩码应用于输入的标记序列。最后,使用一维转置卷积将标记转换回波形。结果根据客观失真测量结果,我们提出的模型与之前的方法相比显示出更优越的效果,改善幅度从 2.01 dB 到 5.06 dB 不等。此外,所提出的模型也明显快于之前的方法,至少提高了 17 倍。结论:对于任何只需要心音或肺音的健康监测系统来说,所提出的模型都是一个合适的预处理步骤。
{"title":"NeoSSNet: Real-Time Neonatal Chest Sound Separation Using Deep Learning","authors":"Yang Yi Poh;Ethan Grooby;Kenneth Tan;Lindsay Zhou;Arrabella King;Ashwin Ramanathan;Atul Malhotra;Mehrtash Harandi;Faezeh Marzbanrad","doi":"10.1109/OJEMB.2024.3401571","DOIUrl":"10.1109/OJEMB.2024.3401571","url":null,"abstract":"<italic>Goal:</i>\u0000 Auscultation for neonates is a simple and non-invasive method of diagnosing cardiovascular and respiratory disease. However, obtaining high-quality chest sounds containing only heart or lung sounds is non-trivial. Hence, this study introduces a new deep-learning model named NeoSSNet and evaluates its performance in neonatal chest sound separation with previous methods. \u0000<italic>Methods:</i>\u0000 We propose a masked-based architecture similar to Conv-TasNet. The encoder and decoder consist of 1D convolution and 1D transposed convolution, while the mask generator consists of a convolution and transformer architecture. The input chest sounds were first encoded as a sequence of tokens using 1D convolution. The tokens were then passed to the mask generator to generate two masks, one for heart sounds and one for lung sounds. Each mask is then applied to the input token sequence. Lastly, the tokens are converted back to waveforms using 1D transposed convolution. \u0000<italic>Results:</i>\u0000 Our proposed model showed superior results compared to the previous methods based on objective distortion measures, ranging from a 2.01 dB improvement to a 5.06 dB improvement. The proposed model is also significantly faster than the previous methods, with at least a 17-time improvement. \u0000<italic>Conclusions:</i>\u0000 The proposed model could be a suitable preprocessing step for any health monitoring system where only the heart sound or lung sound is desired.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"5 ","pages":"345-352"},"PeriodicalIF":5.8,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10531026","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141063458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Open Journal of Engineering in Medicine and Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1