首页 > 最新文献

Komputasi: Jurnal Ilmiah Ilmu Komputer dan Matematika最新文献

英文 中文
PEMILIHAN BIBIT KELINCI NEW ZEALAND WHITE (NZW) TERBAIK DENGAN MENGGUNAKAN METODE VIKOR 新西兰白(新西兰)的兔子幼苗最好采用VIKOR方法
Pub Date : 2021-01-26 DOI: 10.33751/KOMPUTASI.V18I1.2411
M. Mulyati, Erniyati Erniyati
The New Zealand White (NZW) rabbit is a rabbit originating from America that has now spread to Indonesia. NZW rabbits have the advantage that they have large meat weight, small bones and a harvest period of about 3.5 months. However, the quality of the rabbits produced is very influential in the initial selection of seeds. Therefore, a decision support system is needed to select so that the resulting rabbits are as expected. One of the selection methods used in selecting the best rabbit seeds is the Visekriterijumsko Kompromisno Rangiranje (VIKOR) method. VIKOR is a decision-making method that works by looking at the closest solution / alternative as an approach to the ideal solution in ranking. The purpose of this study is to recommend the selection of the best NZW rabbit seeds using the VIKOR method. The results showed that the VIKOR method was able to select the best NZW Rabbit seeds from a number of existing data.
新西兰白兔(NZW)是一种起源于美国的兔子,现在已经传播到印度尼西亚。NZW兔的优点是肉重大,骨头小,收获期约为3.5个月。然而,所产兔子的质量对种子的初始选择有很大的影响。因此,需要一个决策支持系统来进行选择,以使最终的兔子符合预期。选择最佳兔种的方法之一是VIKOR (Visekriterijumsko Kompromisno Rangiranje)法。VIKOR是一种决策方法,它通过将最接近的解决方案/备选方案作为排名中理想解决方案的方法来工作。本研究的目的是用VIKOR方法推荐最佳的NZW兔种子的选择。结果表明,VIKOR方法能够从大量现有数据中筛选出最佳的NZW兔种子。
{"title":"PEMILIHAN BIBIT KELINCI NEW ZEALAND WHITE (NZW) TERBAIK DENGAN MENGGUNAKAN METODE VIKOR","authors":"M. Mulyati, Erniyati Erniyati","doi":"10.33751/KOMPUTASI.V18I1.2411","DOIUrl":"https://doi.org/10.33751/KOMPUTASI.V18I1.2411","url":null,"abstract":"The New Zealand White (NZW) rabbit is a rabbit originating from America that has now spread to Indonesia. NZW rabbits have the advantage that they have large meat weight, small bones and a harvest period of about 3.5 months. However, the quality of the rabbits produced is very influential in the initial selection of seeds. Therefore, a decision support system is needed to select so that the resulting rabbits are as expected. One of the selection methods used in selecting the best rabbit seeds is the Visekriterijumsko Kompromisno Rangiranje (VIKOR) method. VIKOR is a decision-making method that works by looking at the closest solution / alternative as an approach to the ideal solution in ranking. The purpose of this study is to recommend the selection of the best NZW rabbit seeds using the VIKOR method. The results showed that the VIKOR method was able to select the best NZW Rabbit seeds from a number of existing data.","PeriodicalId":339673,"journal":{"name":"Komputasi: Jurnal Ilmiah Ilmu Komputer dan Matematika","volume":"183 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123372608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
IMPLEMENTASI WEIGHT PRODUCT MODEL (WPM) DALAM MEMILIH JENIS ASURANSI
Pub Date : 2021-01-26 DOI: 10.33751/KOMPUTASI.V18I1.2397
Siska Andriani, Dinar Munggaran Akhmad, M. Ulya
Asuransi merupakan suatu alat untuk mengurangi risiko keuangan, dengan cara pengumpulan unit-unit exposure dalam jumlah yang memadai, untuk membuat agar kerugian individu dapat diperkirakan. Dalam menentukan pilihan pada suatu produk atau jenis asuransi, kerap sekali ditemukan kasus-kasus atau masalah-masalah yang dihadapi oleh calon nasabah, seperti salah memilih jenis asuransi yang akhirnya akan menimbulkan rasa ketidakpuasan terhadap suatu layanan asuransi yang dipilih. Hal ini disebabkan karena kurangnya pemahaman dari nasabah terhadap detail dan kegunaan dari produk-produk yang ditawarkan, dan bila hal itu terus berlanjut, maka akan ada banyak nasabah yang merasa bahwa pelayanan yang didapatkan tidak cocok bahkan tidak memuaskan yang pada akhirnya nasabah tersebut tidak ingin memakai lagi jasa asuransi tersebut dikemudian hari. penelitian ini adalah merancang dan mengimplementasikan Sistem Pendukung Keputusan Berbasis Web Untuk Pemilihan Jenis Asuransi Bagi Calon Nasabah Dengan Metode Weighted Product. Nasabah akan mendapatkan hasil keputusan untuk menentukan jenis asuransi menggunakan metode weight product.
保险是一种减少财务风险的工具,通过收集足够数量的单位,使个人损失得以预测。在决定一种产品或保险类型的选择时,经常会发现候选人面临的许多案件或问题,比如错误地选择了一种最终会对所选择的保险服务产生不满的保险。这是因为缺乏理解客户对产品的细节和实用性的,如果它继续提供服务,就会有很多的客户觉得不合适甚至不令人满意的最终的保险服务这些客户不想再穿的将来。本研究旨在设计和实施基于Web的支持决策系统,以采用更广泛的生产方法为候选人选择保险类型。通过使用权产法来决定哪种保险将会得到结果。
{"title":"IMPLEMENTASI WEIGHT PRODUCT MODEL (WPM) DALAM MEMILIH JENIS ASURANSI","authors":"Siska Andriani, Dinar Munggaran Akhmad, M. Ulya","doi":"10.33751/KOMPUTASI.V18I1.2397","DOIUrl":"https://doi.org/10.33751/KOMPUTASI.V18I1.2397","url":null,"abstract":"Asuransi merupakan suatu alat untuk mengurangi risiko keuangan, dengan cara pengumpulan unit-unit exposure dalam jumlah yang memadai, untuk membuat agar kerugian individu dapat diperkirakan. Dalam menentukan pilihan pada suatu produk atau jenis asuransi, kerap sekali ditemukan kasus-kasus atau masalah-masalah yang dihadapi oleh calon nasabah, seperti salah memilih jenis asuransi yang akhirnya akan menimbulkan rasa ketidakpuasan terhadap suatu layanan asuransi yang dipilih. Hal ini disebabkan karena kurangnya pemahaman dari nasabah terhadap detail dan kegunaan dari produk-produk yang ditawarkan, dan bila hal itu terus berlanjut, maka akan ada banyak nasabah yang merasa bahwa pelayanan yang didapatkan tidak cocok bahkan tidak memuaskan yang pada akhirnya nasabah tersebut tidak ingin memakai lagi jasa asuransi tersebut dikemudian hari. penelitian ini adalah merancang dan mengimplementasikan Sistem Pendukung Keputusan Berbasis Web Untuk Pemilihan Jenis Asuransi Bagi Calon Nasabah Dengan Metode Weighted Product. Nasabah akan mendapatkan hasil keputusan untuk menentukan jenis asuransi menggunakan metode weight product.","PeriodicalId":339673,"journal":{"name":"Komputasi: Jurnal Ilmiah Ilmu Komputer dan Matematika","volume":"65 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127949594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
PERBANDINGAN KINERJA METODE PRA-PEMROSESAN DALAM PENGKLASIFIKASIAN OTOMATIS DOKUMEN PATEN 专利文件自动分类中处理方法的绩效比较
Pub Date : 2020-07-14 DOI: 10.33751/komputasi.v17i2.2148
B. Nugroho, Asep Denih
This paper presents a performance analysis and comparison of several pre-processing methods used in automatic patent classification with graph kernels for Support Vector Machine (SVM). The pre-processing methods are based on the data transform techniques, namely data scaling, data centering, data standardization, data normalization, the Box-Cox transform and the Yeo-Johnson transform. The automatic patent classification is designed to classify an input of patent citation graphs into one of 10 possible classes of the International Patent Classification (IPC). The input is taken with various background conditions. The experiments showed that the best result is achieved when the pre-processing method is data normalization, achieving a classification accuracy of up to 85.33.15% for the KEHL and 93.80% for the KVHL. In contrast, for the KEHG, the preprocessing method application decreased the accuracy.
本文对基于图核的支持向量机专利自动分类的几种预处理方法进行了性能分析和比较。预处理方法基于数据变换技术,即数据缩放、数据定心、数据标准化、数据归一化、Box-Cox变换和Yeo-Johnson变换。专利自动分类旨在将专利引文图的输入分类为国际专利分类(IPC)的10个可能类别之一。输入是在各种背景条件下进行的。实验表明,当预处理方法为数据归一化时,效果最好,KEHL的分类准确率高达85.33.15%,KVHL的分类准确率高达93.80%。相比之下,对于KEHG,预处理方法的应用降低了精度。
{"title":"PERBANDINGAN KINERJA METODE PRA-PEMROSESAN DALAM PENGKLASIFIKASIAN OTOMATIS DOKUMEN PATEN","authors":"B. Nugroho, Asep Denih","doi":"10.33751/komputasi.v17i2.2148","DOIUrl":"https://doi.org/10.33751/komputasi.v17i2.2148","url":null,"abstract":"This paper presents a performance analysis and comparison of several pre-processing methods used in automatic patent classification with graph kernels for Support Vector Machine (SVM). The pre-processing methods are based on the data transform techniques, namely data scaling, data centering, data standardization, data normalization, the Box-Cox transform and the Yeo-Johnson transform. The automatic patent classification is designed to classify an input of patent citation graphs into one of 10 possible classes of the International Patent Classification (IPC). The input is taken with various background conditions. The experiments showed that the best result is achieved when the pre-processing method is data normalization, achieving a classification accuracy of up to 85.33.15% for the KEHL and 93.80% for the KVHL. In contrast, for the KEHG, the preprocessing method application decreased the accuracy.","PeriodicalId":339673,"journal":{"name":"Komputasi: Jurnal Ilmiah Ilmu Komputer dan Matematika","volume":"93 12","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131771084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IMPLEMENTASI DATA MINING UNTUK MENGETAHUI POLA PEMBELIAN OBAT MENGGUNAKAN ALGORITMA APRIORI 数据挖掘实现,使用杏算法了解药物购买模式
Pub Date : 2020-07-14 DOI: 10.33751/komputasi.v17i2.2150
Nadya Febrianny Ulfha, R. Amin
Competition in the business world requires entrepreneurs to think of finding a way or method to increase the transaction of goods sold. The purpose of this research is to provide drug stock data that is widely purchased by pharmacy customers at Kimia Farma, Green Lake branch in Jakarta. The algorithm used in this study is a priori to determine the relationship between the frequency of sales of drug brands most frequently purchased by customers. The association pattern formed with a minimum support of 40% and a minimum value of 70% confidence produces 17 association rules. The strong rules obtained are that if you buy a 500Mg Ponstan KPL @ 100, you will buy an Incidal OD 10Mg Cap with a support value of 59% and a confidence value of 84%. A priori algorithm can be used by companies to develop marketing strategies in marketing products by examining consumer purchasing patterns.
商业世界的竞争要求企业家思考找到一种方式或方法来增加所售商品的交易。本研究的目的是提供雅加达绿湖分公司Kimia Farma药房客户广泛购买的药品库存数据。本研究使用的算法是先验的,用来确定顾客最常购买的药品品牌的销售频率之间的关系。最小支持度为40%,最小置信度为70%时形成的关联模式产生17条关联规则。获得的强规则是,如果您购买500Mg Ponstan KPL @ 100,您将购买附带OD 10Mg帽,支持值为59%,置信度为84%。公司可以使用先验算法通过检查消费者的购买模式来制定营销产品的营销策略。
{"title":"IMPLEMENTASI DATA MINING UNTUK MENGETAHUI POLA PEMBELIAN OBAT MENGGUNAKAN ALGORITMA APRIORI","authors":"Nadya Febrianny Ulfha, R. Amin","doi":"10.33751/komputasi.v17i2.2150","DOIUrl":"https://doi.org/10.33751/komputasi.v17i2.2150","url":null,"abstract":"Competition in the business world requires entrepreneurs to think of finding a way or method to increase the transaction of goods sold. The purpose of this research is to provide drug stock data that is widely purchased by pharmacy customers at Kimia Farma, Green Lake branch in Jakarta. The algorithm used in this study is a priori to determine the relationship between the frequency of sales of drug brands most frequently purchased by customers. The association pattern formed with a minimum support of 40% and a minimum value of 70% confidence produces 17 association rules. The strong rules obtained are that if you buy a 500Mg Ponstan KPL @ 100, you will buy an Incidal OD 10Mg Cap with a support value of 59% and a confidence value of 84%. A priori algorithm can be used by companies to develop marketing strategies in marketing products by examining consumer purchasing patterns.","PeriodicalId":339673,"journal":{"name":"Komputasi: Jurnal Ilmiah Ilmu Komputer dan Matematika","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125047865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
PENGEMBANGAN MODEL ANALISIS SPASIAL UNTUK MENSIMULASIKAN RESPON HIDROLOGI 模拟流体反应的空间分析模型的发展
Pub Date : 2020-01-27 DOI: 10.33751/komputasi.v17i1.1732
Asep Denih, Emas Kurnia, Umar Mansyur
Urban expansion is a major driving force altering local and regional hydrology. To explore these environmental consequences of urbanization this research would like to forecast the land-use change and assesses the long-term runoff water through hydrologic modeling. To know the detrimental effects of future disasters, especially drought, flood, and tropical storms, this research provided by a simulation technique, and based on two skenarios. First, simulation with a land-use change skenario. Second, simulation without a land-use change skenario. It provided by some parameters such as characteristics of catchments, land use, contour, river, soil, infiltration, and rainfall intensity. The objective of using different skenario is to know what kind of hydrological responses. Moreover, the outcomes would indicate that land use and climate change would likely be subjected to impacts the tremendous loss of life and damage due to excessive runoff and flooding. This is the primary watershed that affects the greater Jakarta urban zone, which has had increasingly severe flooding annually impacting and displacing hundreds of thousands of people. However, urbanization will considerably increase runoff water. Finally, the results of this research would have significant implications to support decision-makers, academia, and the wider public in preparing urban planning, water resources management, development of better regulations and their effective implementations. The techniques described in this proposed research can be used in other areas.
城市扩张是改变当地和区域水文的主要驱动力。为了探讨城市化对环境的影响,本研究希望通过水文模拟来预测土地利用变化和评估长期径流。为了了解未来灾害的有害影响,特别是干旱、洪水和热带风暴,这项研究提供了一种模拟技术,并基于两个情景。首先,利用土地利用变化情景进行模拟。第二,不考虑土地利用变化情景的模拟。它由集水区特征、土地利用、等高线、河流、土壤、入渗、降雨强度等参数提供。使用不同情景的目的是了解什么样的水文响应。此外,研究结果还表明,土地利用和气候变化可能会受到过度径流和洪水造成的巨大生命损失和破坏的影响。这是影响大雅加达市区的主要分水岭,该地区每年都发生日益严重的洪水,影响和流离失所数十万人。然而,城市化将大大增加径流。最后,这项研究的结果将对支持决策者、学术界和广大公众编制城市规划、水资源管理、制定更好的法规及其有效实施产生重大影响。本研究中描述的技术可以用于其他领域。
{"title":"PENGEMBANGAN MODEL ANALISIS SPASIAL UNTUK MENSIMULASIKAN RESPON HIDROLOGI","authors":"Asep Denih, Emas Kurnia, Umar Mansyur","doi":"10.33751/komputasi.v17i1.1732","DOIUrl":"https://doi.org/10.33751/komputasi.v17i1.1732","url":null,"abstract":"Urban expansion is a major driving force altering local and regional hydrology. To explore these environmental consequences of urbanization this research would like to forecast the land-use change and assesses the long-term runoff water through hydrologic modeling. To know the detrimental effects of future disasters, especially drought, flood, and tropical storms, this research provided by a simulation technique, and based on two skenarios. First, simulation with a land-use change skenario. Second, simulation without a land-use change skenario. It provided by some parameters such as characteristics of catchments, land use, contour, river, soil, infiltration, and rainfall intensity. The objective of using different skenario is to know what kind of hydrological responses. Moreover, the outcomes would indicate that land use and climate change would likely be subjected to impacts the tremendous loss of life and damage due to excessive runoff and flooding. This is the primary watershed that affects the greater Jakarta urban zone, which has had increasingly severe flooding annually impacting and displacing hundreds of thousands of people. However, urbanization will considerably increase runoff water. Finally, the results of this research would have significant implications to support decision-makers, academia, and the wider public in preparing urban planning, water resources management, development of better regulations and their effective implementations. The techniques described in this proposed research can be used in other areas.","PeriodicalId":339673,"journal":{"name":"Komputasi: Jurnal Ilmiah Ilmu Komputer dan Matematika","volume":"142 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116111828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PEMODELAN SPASIAL BAHAYA LONGSOR DI DAS CILIWUNG HULU, KABUPATEN BOGOR
Pub Date : 2020-01-27 DOI: 10.33751/komputasi.v17i1.1734
Muhamad Rizal Gojali, B. Tjahjono, Ernan Rustiadi
Landslide is a natural phenomenon that occurs because nature is looking for a balance due to disturbance affecting the land at the point of the landslide. Bogor Regency is categorized into a medium to high level ground vulnerable zone by BNPB, in this case the Cilwung Hulu watershed is an area that often experiences landslides. This study aims to develop a spatial model of landslides in the Ciliwung Hulu watershed using a PCA-based assessment method of the factors causing landslides. The results showed that there are seven parameters that can be used for spatial modeling of landslides, namely landform, land use, slope, rainfall, straightness, soil type, and lithology. Based on the results of the analysis it was found that the weight of each parameter is 0.347; 0.223; 0,200; 0,100; 0.071; 0.049; and 0.010. In this case landform has the highest weight as a determinant of landslide hazards. The area of landslide hazard class (low, medium, and high) obtained from the results of modeling are 4,651.53 ha (31%), 6,637.72 ha (43%), and 3,941.41 ha (26%) with accuracy overall of 57.8.
滑坡是一种自然现象,它的发生是因为大自然在滑坡点寻找一种平衡,因为扰动影响了土地。Bogor Regency被BNPB归类为中高地面脆弱区,在这种情况下,Cilwung Hulu流域是一个经常发生山体滑坡的地区。本研究旨在利用基于pca的滑坡成因评估方法,建立慈利翁Hulu流域滑坡的空间模型。结果表明,滑坡空间模拟可采用地貌、土地利用、坡度、降雨、直线度、土壤类型和岩性等7个参数。根据分析结果,各参数的权重为0.347;0.223;0200;0100;0.071;0.049;和0.010。在这种情况下,地形作为滑坡灾害的决定因素具有最高的权重。模拟结果得到的滑坡危险性等级(低、中、高)面积分别为4,651.53 ha(31%)、6,637.72 ha(43%)和3,941.41 ha(26%),总体精度为57.8。
{"title":"PEMODELAN SPASIAL BAHAYA LONGSOR DI DAS CILIWUNG HULU, KABUPATEN BOGOR","authors":"Muhamad Rizal Gojali, B. Tjahjono, Ernan Rustiadi","doi":"10.33751/komputasi.v17i1.1734","DOIUrl":"https://doi.org/10.33751/komputasi.v17i1.1734","url":null,"abstract":"Landslide is a natural phenomenon that occurs because nature is looking for a balance due to disturbance affecting the land at the point of the landslide. Bogor Regency is categorized into a medium to high level ground vulnerable zone by BNPB, in this case the Cilwung Hulu watershed is an area that often experiences landslides. This study aims to develop a spatial model of landslides in the Ciliwung Hulu watershed using a PCA-based assessment method of the factors causing landslides. The results showed that there are seven parameters that can be used for spatial modeling of landslides, namely landform, land use, slope, rainfall, straightness, soil type, and lithology. Based on the results of the analysis it was found that the weight of each parameter is 0.347; 0.223; 0,200; 0,100; 0.071; 0.049; and 0.010. In this case landform has the highest weight as a determinant of landslide hazards. The area of landslide hazard class (low, medium, and high) obtained from the results of modeling are 4,651.53 ha (31%), 6,637.72 ha (43%), and 3,941.41 ha (26%) with accuracy overall of 57.8.","PeriodicalId":339673,"journal":{"name":"Komputasi: Jurnal Ilmiah Ilmu Komputer dan Matematika","volume":"5 1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129078447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PENENTUAN DAERAH PRIORITAS PELAYANAN AKTA KELAHIRAN DENGAN METODE K-NN DAN K-MEANS 从n - nn和k -手段确定出生证服务的优先区域
Pub Date : 2020-01-27 DOI: 10.33751/komputasi.v17i1.1735
Ade Muchlis Maulana Anwar, Prihastuti Harsani, Aries Maesya
Population Data is individual data or aggregate data that is structured as a result of Population Registration and Civil Registration activities. Birth Certificate is a Civil Registration Deed as a result of recording the birth event of a baby whose birth is reported to be registered on the Family Card and given a Population Identification Number (NIK) as a basis for obtaining other community services. From the total number of integrated birth certificate reporting for the 2018 Population Administration Information System (SIAK) totaling 570,637 there were 503,946 reported late and only 66,691 were reported publicly. Clustering is a method used to classify data that is similar to others in one group or similar data to other groups. K-Nearest Neighbor is a method for classifying objects based on learning data that is the closest distance to the test data. k-means is a method used to divide a number of objects into groups based on existing categories by looking at the midpoint. In data mining preprocesses, data is cleaned by filling in the blank data with the most dominating data, and selecting attributes using the information gain method. Based on the k-nearest neighbor method to predict delays in reporting and the k-means method to classify priority areas of service with 10,000 birth certificate data on birth certificates in 2019 that have good enough performance to produce predictions with an accuracy of 74.00% and with K = 2 on k-means produces a index davies bouldin of 1,179
人口数据是根据人口登记和民事登记活动构建的个人数据或汇总数据。出生证明是一种民事登记契据,记录了婴儿的出生事件,该婴儿的出生报告已在家庭卡上登记,并获得人口识别号码,作为获得其他社区服务的基础。在2018年人口管理信息系统(SIAK)的综合出生证明报告总数为570,637份中,有503,946份报告延迟,只有66,691份报告公开。聚类是一种用于对一组中与其他组相似的数据或与其他组相似的数据进行分类的方法。K-Nearest Neighbor是一种基于与测试数据距离最近的学习数据对对象进行分类的方法。K-means是一种根据现有的类别,通过观察中点,将若干对象分成若干组的方法。在数据挖掘的预处理过程中,利用最具优势的数据填充空白数据,利用信息增益法选择属性,对数据进行清理。基于预测报告延迟的K近邻方法和对2019年出生证明上的10,000个出生证明数据进行优先服务领域分类的K -means方法,这些数据具有足够好的性能,可以产生准确率为74.00%的预测,K -means上的K = 2产生的指数戴维斯bouldin为1179
{"title":"PENENTUAN DAERAH PRIORITAS PELAYANAN AKTA KELAHIRAN DENGAN METODE K-NN DAN K-MEANS","authors":"Ade Muchlis Maulana Anwar, Prihastuti Harsani, Aries Maesya","doi":"10.33751/komputasi.v17i1.1735","DOIUrl":"https://doi.org/10.33751/komputasi.v17i1.1735","url":null,"abstract":"Population Data is individual data or aggregate data that is structured as a result of Population Registration and Civil Registration activities. Birth Certificate is a Civil Registration Deed as a result of recording the birth event of a baby whose birth is reported to be registered on the Family Card and given a Population Identification Number (NIK) as a basis for obtaining other community services. From the total number of integrated birth certificate reporting for the 2018 Population Administration Information System (SIAK) totaling 570,637 there were 503,946 reported late and only 66,691 were reported publicly. Clustering is a method used to classify data that is similar to others in one group or similar data to other groups. K-Nearest Neighbor is a method for classifying objects based on learning data that is the closest distance to the test data. k-means is a method used to divide a number of objects into groups based on existing categories by looking at the midpoint. In data mining preprocesses, data is cleaned by filling in the blank data with the most dominating data, and selecting attributes using the information gain method. Based on the k-nearest neighbor method to predict delays in reporting and the k-means method to classify priority areas of service with 10,000 birth certificate data on birth certificates in 2019 that have good enough performance to produce predictions with an accuracy of 74.00% and with K = 2 on k-means produces a index davies bouldin of 1,179","PeriodicalId":339673,"journal":{"name":"Komputasi: Jurnal Ilmiah Ilmu Komputer dan Matematika","volume":"50 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125195146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IMPLEMENTASI METODE DATA MINING APRIORI PADA APLIKASI PENJUALAN PT. TIGA RAKSA SATRIA 数据挖掘方法的杏酸应用于PT.三重RAKSA销售应用程序
Pub Date : 2020-01-27 DOI: 10.33751/komputasi.v17i1.1736
Siti Qomariah, Hanifah Ekawati, Sepriyadi Belareq
PT. Tiga Raksa Satria, Tbk is a company engaged in trading in the form of selling products of various brands to shops in Samarinda. the recording process of selling has been done computerized, but the sales data has not been processed optimally. there is no application that analyzes sales data for category, planning and service to consumers. Analyzing sales data is an important part of the company, an analysis of sales results has an impact on the profits to be gained by the company. Datamining is the science of digging up valuable information and knowledge in databases. One algorithm in data mining is a priori algorithm. Datamining is widely implemented in various fields such as business, commerce, and others. This research aims to make an application with the Application of Data Mining Basketball Analysis Method with Apriori Algorithm to process the sales data in a more structured, detailed and know the problems in product sales. This application generates rules that help draw conclusions needed for drawing conclusions of strategic information for companies regarding sales data. Application made with the application of a priori methods helps in the analysis of sales data that is owned.
PT. Tiga Raksa Satria, Tbk是一家从事贸易的公司,以各种品牌的产品销售给萨玛林达的商店。销售的记录过程已由计算机完成,但销售数据没有得到最佳处理。没有应用程序分析销售数据的类别,规划和服务的消费者。分析销售数据是公司的重要组成部分,对销售结果的分析影响着公司要获得的利润。数据挖掘是在数据库中挖掘有价值的信息和知识的科学。数据挖掘中的一种算法是先验算法。数据挖掘广泛应用于商业、商务等各个领域。本研究旨在应用基于Apriori算法的数据挖掘篮球分析方法,对销售数据进行更结构化、更细化的处理,了解产品销售中的问题。该应用程序生成一些规则,这些规则有助于为公司得出关于销售数据的战略信息的结论。使用先验方法的应用程序有助于分析所拥有的销售数据。
{"title":"IMPLEMENTASI METODE DATA MINING APRIORI PADA APLIKASI PENJUALAN PT. TIGA RAKSA SATRIA","authors":"Siti Qomariah, Hanifah Ekawati, Sepriyadi Belareq","doi":"10.33751/komputasi.v17i1.1736","DOIUrl":"https://doi.org/10.33751/komputasi.v17i1.1736","url":null,"abstract":"PT. Tiga Raksa Satria, Tbk is a company engaged in trading in the form of selling products of various brands to shops in Samarinda. the recording process of selling has been done computerized, but the sales data has not been processed optimally. there is no application that analyzes sales data for category, planning and service to consumers. Analyzing sales data is an important part of the company, an analysis of sales results has an impact on the profits to be gained by the company. Datamining is the science of digging up valuable information and knowledge in databases. One algorithm in data mining is a priori algorithm. Datamining is widely implemented in various fields such as business, commerce, and others. This research aims to make an application with the Application of Data Mining Basketball Analysis Method with Apriori Algorithm to process the sales data in a more structured, detailed and know the problems in product sales. This application generates rules that help draw conclusions needed for drawing conclusions of strategic information for companies regarding sales data. Application made with the application of a priori methods helps in the analysis of sales data that is owned.","PeriodicalId":339673,"journal":{"name":"Komputasi: Jurnal Ilmiah Ilmu Komputer dan Matematika","volume":"70 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121260633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
SISTEM PEMANTAUAN PERTUMBUHAN BATITA MENGGUNAKAN METODE FUZZY TSUKAMOTO BATITA生长监督系统采用模糊的TSUKAMOTO方法
Pub Date : 2020-01-27 DOI: 10.33751/komputasi.v17i1.1738
Irma Anggraeni, Yusma Yanti
The growth of children under the age of three (toddlers) is one of the determinants of children's development in the future. One of the parameters of toddler growth assessment is determined by gender, age, height and weight. This research makes a system that can monitor toddler growth with web-based. The research method used is the System Life Development Cycle, which consists of planning, analysis, design, implementation and use. This system also uses the Tsukamoto fuzzy method to determine the membership set of each input variable. The gender criteria are divided into two classes, male and female, the age criteria are divided into three classes, the height criteria are three classes, and the weight criteria are divided into three classes. Based on the division of classes, the output of this study is the growth status of toddlers, namely poor growth, poor, normal and more. Based on the results of input data criteria and calculations using Tsukamoto fuzzy, the output obtained in the form of the status of the child's growth. 
三岁以下儿童(学步儿童)的成长是儿童未来发展的决定因素之一。幼儿生长评估的参数之一是由性别、年龄、身高和体重决定的。本研究开发了一个基于网络的幼儿生长监测系统。使用的研究方法是系统生命开发周期,包括计划、分析、设计、实施和使用。该系统还采用了冢本模糊方法来确定各输入变量的隶属度集。性别标准分为男女两类,年龄标准分为三类,身高标准分为三类,体重标准分为三类。在班级划分的基础上,本研究的输出是幼儿的生长状况,即发育不良、发育不良、正常和发育不良。根据输入数据标准的结果,利用冢本模糊法进行计算,得到以输出形式出现的儿童生长状况。
{"title":"SISTEM PEMANTAUAN PERTUMBUHAN BATITA MENGGUNAKAN METODE FUZZY TSUKAMOTO","authors":"Irma Anggraeni, Yusma Yanti","doi":"10.33751/komputasi.v17i1.1738","DOIUrl":"https://doi.org/10.33751/komputasi.v17i1.1738","url":null,"abstract":"The growth of children under the age of three (toddlers) is one of the determinants of children's development in the future. One of the parameters of toddler growth assessment is determined by gender, age, height and weight. This research makes a system that can monitor toddler growth with web-based. The research method used is the System Life Development Cycle, which consists of planning, analysis, design, implementation and use. This system also uses the Tsukamoto fuzzy method to determine the membership set of each input variable. The gender criteria are divided into two classes, male and female, the age criteria are divided into three classes, the height criteria are three classes, and the weight criteria are divided into three classes. Based on the division of classes, the output of this study is the growth status of toddlers, namely poor growth, poor, normal and more. Based on the results of input data criteria and calculations using Tsukamoto fuzzy, the output obtained in the form of the status of the child's growth. ","PeriodicalId":339673,"journal":{"name":"Komputasi: Jurnal Ilmiah Ilmu Komputer dan Matematika","volume":"156 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130660193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
PERANCANGAN SISTEM PAKAR PENENTUAN USAHATANI BUDIDAYA PADI MENGGUNAKAN METODE CERTAINTY FACTOR BERBASIS ANDROID 设计专家确定水稻种植的方法是基于ANDROID的确定因素
Pub Date : 2019-12-31 DOI: 10.33751/komputasi.v16i2.1623
N. GesaRizky, S. Setyaningsih, A. Saepulrohman
Rice is a staple food in several countries of Southeast Asia including Indonesia, rice is the main commodity that acts as the fulfillment of basic needs of carbohydrate and protein. As one of the big rice producer and consumer countries, the increase of rice production is very influential to the state economic condition, effective and efficient national rice production will be achieved if cultivation technology is applied in specific location, in accordance with environmental conditions and farmers. However, the number and ability and extension agents are very limited to serve farmers whose land is diverse. The existence of tools to determine the proper way of cultivating rice-specific locations, easy to use and disseminated will help solve many problems above, The tool used in this study is artificial intelligence is the expert system to help solve the problem due to the limited number of experts or extension workers, many methods used in expert system one of them is certainty factor method which is a method that defines the size of certainty of a fact or rule, to describe the level of expert belief to a problem encountered, by using certainty factor this can level of expert beliefs with android based.
大米是包括印度尼西亚在内的几个东南亚国家的主食,大米是满足碳水化合物和蛋白质基本需求的主要商品。作为水稻生产和消费大国之一,水稻产量的增加对国家经济状况的影响很大,如果根据环境条件和农民在特定的地点应用种植技术,就可以实现有效和高效的国家水稻生产。然而,为土地多样化的农民提供服务的代理商数量和能力都非常有限。工具的存在,以确定适当的方式种植水稻特定的位置,易于使用和传播将有助于解决许多问题,在本研究中使用的工具是人工智能是专家系统,以帮助解决由于专家或推广工作者的数量有限的问题,在专家系统中使用的许多方法之一是确定性因子法,这是一种方法来定义一个事实或规则的确定性大小。为了描述专家对遇到的问题的信念水平,通过使用确定性因子,可以将专家的信念水平与android结合起来。
{"title":"PERANCANGAN SISTEM PAKAR PENENTUAN USAHATANI BUDIDAYA PADI MENGGUNAKAN METODE CERTAINTY FACTOR BERBASIS ANDROID","authors":"N. GesaRizky, S. Setyaningsih, A. Saepulrohman","doi":"10.33751/komputasi.v16i2.1623","DOIUrl":"https://doi.org/10.33751/komputasi.v16i2.1623","url":null,"abstract":"Rice is a staple food in several countries of Southeast Asia including Indonesia, rice is the main commodity that acts as the fulfillment of basic needs of carbohydrate and protein. As one of the big rice producer and consumer countries, the increase of rice production is very influential to the state economic condition, effective and efficient national rice production will be achieved if cultivation technology is applied in specific location, in accordance with environmental conditions and farmers. However, the number and ability and extension agents are very limited to serve farmers whose land is diverse. The existence of tools to determine the proper way of cultivating rice-specific locations, easy to use and disseminated will help solve many problems above, The tool used in this study is artificial intelligence is the expert system to help solve the problem due to the limited number of experts or extension workers, many methods used in expert system one of them is certainty factor method which is a method that defines the size of certainty of a fact or rule, to describe the level of expert belief to a problem encountered, by using certainty factor this can level of expert beliefs with android based.","PeriodicalId":339673,"journal":{"name":"Komputasi: Jurnal Ilmiah Ilmu Komputer dan Matematika","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114204746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Komputasi: Jurnal Ilmiah Ilmu Komputer dan Matematika
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1