首页 > 最新文献

Oil Crop Science最新文献

英文 中文
Genotypic effects on accelerated propagation of oil palm breeding materials selected (Elaeis guineensis jacq.) using somatic embryogenesis 利用体细胞胚胎发生加速繁殖所选油棕育种材料(Elaeis guineensis Jacq.)的基因型效应
Q3 Agricultural and Biological Sciences Pub Date : 2024-05-01 DOI: 10.1016/j.ocsci.2024.03.005
Retno Puji Astari , Mohammad Basyuni , Luthfi A.M. Siregar , Revandy I.M. Damanik , Deni Arifiyanto , Dadang Affandi , Indra Syahputra

Vegetable oil production from oil palm (Elaeis guineensis Jacq.) is an important industry due to the rising demand every year. The somatic embryogenesis culture can propagate oil palm duplicate as parent plant, which can be selected as breeding material to produce new planting germplasm with high production or disease resistance. This study aims to evaluate the genotypic effect of somatic embryogenesis, while immature leaflets were employed as explants. The culture used embryo induction medium based on Murashige and Skoog (MS) modifications that contained 5 ​mg/L Naphthalene Acetic acid (NAA) and 0.5 ​mg/L Benzyl Amino Purine (BAP). The genotypic effect was statistically significant in the percentage of callus induction, producing somatic embryos, and germination embryos. In this study, we successfully cloned thirteen oil palm genotypes (GE-02, GE-03, GE-06, GE-07, GE-09, GE-23, GE-24, GE-27, GE-28, GE-32, GE-33, GE-34, and GE-35), with the highest number of somatic embryos formed on GE-27 with a percentage of 70.1%. The cloning was successful in accelerating the propagation of oil palm for materials breeding programs to create new varieties with high production and disease resistance. It is necessary to observation the performance of these clones in the field in terms of mantle flower appearance.

油棕(Elaeis guineensis Jacq.)植物油生产是一项重要产业,需求量逐年上升。体细胞胚胎发生培养可以繁殖油棕复本作为亲本,从而选育出高产或抗病的新种植种质。本研究以未成熟小叶为外植体,旨在评估体细胞胚胎发生的基因型效应。培养使用的胚胎诱导培养基是根据 Murashige 和 Skoog(MS)改良的,其中含有 5 毫克/升的萘乙酸(NAA)和 0.5 毫克/升的苄基氨基嘌呤(BAP)。在胼胝体诱导率、产生体细胞胚胎率和胚胎发芽率方面,基因型效应具有统计学意义。在本研究中,我们成功克隆了 13 个油棕基因型(GE-02、GE-03、GE-06、GE-07、GE-09、GE-23、GE-24、GE-27、GE-28、GE-32、GE-33、GE-34 和 GE-35),其中以 GE-27 的体细胞胚胎形成率最高,达到 70.1%。克隆成功加速了油棕的繁殖,为材料育种计划创造了高产、抗病的新品种。有必要在田间观察这些克隆体的套花外观表现。
{"title":"Genotypic effects on accelerated propagation of oil palm breeding materials selected (Elaeis guineensis jacq.) using somatic embryogenesis","authors":"Retno Puji Astari ,&nbsp;Mohammad Basyuni ,&nbsp;Luthfi A.M. Siregar ,&nbsp;Revandy I.M. Damanik ,&nbsp;Deni Arifiyanto ,&nbsp;Dadang Affandi ,&nbsp;Indra Syahputra","doi":"10.1016/j.ocsci.2024.03.005","DOIUrl":"10.1016/j.ocsci.2024.03.005","url":null,"abstract":"<div><p>Vegetable oil production from oil palm (<em>Elaeis guineensis</em> Jacq.) is an important industry due to the rising demand every year. The somatic embryogenesis culture can propagate oil palm duplicate as parent plant, which can be selected as breeding material to produce new planting germplasm with high production or disease resistance. This study aims to evaluate the genotypic effect of somatic embryogenesis, while immature leaflets were employed as explants. The culture used embryo induction medium based on Murashige and Skoog (MS) modifications that contained 5 ​mg/L Naphthalene Acetic acid (NAA) and 0.5 ​mg/L Benzyl Amino Purine (BAP). The genotypic effect was statistically significant in the percentage of callus induction, producing somatic embryos, and germination embryos. In this study, we successfully cloned thirteen oil palm genotypes (GE-02, GE-03, GE-06, GE-07, GE-09, GE-23, GE-24, GE-27, GE-28, GE-32, GE-33, GE-34, and GE-35), with the highest number of somatic embryos formed on GE-27 with a percentage of 70.1%. The cloning was successful in accelerating the propagation of oil palm for materials breeding programs to create new varieties with high production and disease resistance. It is necessary to observation the performance of these clones in the field in terms of mantle flower appearance.</p></div>","PeriodicalId":34095,"journal":{"name":"Oil Crop Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2096242824000265/pdfft?md5=e54a8018d5dd4b5cc02ad5472f988b00&pid=1-s2.0-S2096242824000265-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141027402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The influence of Lactobacillus plantarum fermentation in selenium-enriched Brassica napus L.: changes in the nutritional constituents, bioactivities and bioaccessibility 植物乳杆菌发酵对富硒甘蓝的影响:营养成分、生物活性和生物利用率的变化
Q3 Agricultural and Biological Sciences Pub Date : 2024-05-01 DOI: 10.1016/j.ocsci.2024.03.004
Wen Wang, Zhixiong He, Ruiying Zhang, Min Li, Zhenxia Xu, Xia Xiang

Selenium (Se)-enriched Brassica napus L. is a valuable organic Se supplement. In this study, the fermentation broth enriched with organic Se (FFS) was prepared using Lactobacillus plantarum to ferment the substrate of Se-enriched Brassica napus L. Significant increases were observed after fermentation in total sugars, reducing sugars, soluble proteins, total phenolic content (TPC), and total flavonoid content (TFC). The organic Se was retained at a concentration of 54.75 ​mg/g in the freeze-dried sample. Principal component analysis and cluster analysis showed good separation between the FFS and unfermented (FS) groups. Fragrant 2-ethyloxetane had the highest content among all volatiles, while sinapine had the highest content among all phenolic compounds. The fermentation process showed remarkable improvement in the abundance and concentration of volatile compounds and phenolic contents, making FFS exhibit strong antioxidant activity and inhibitory capacity against α-glucosidase activity. The bioaccessibility of phenolic compounds was significantly greater in FFS compared to FS. ADMET analysis revealed that the majority of phenolic compounds contained in FFS did not exhibit mutagenicity toxicity, hepatotoxicity, skin sensitization, or blood-brain barrier penetration, indicating a favorable level of biosafety. Overall, our study provides a new insight into the further utilization of Se-enriched Brassica napus L. in foods.

富硒(Se)甘蓝是一种宝贵的有机 Se 补充剂。本研究利用植物乳杆菌发酵富硒甘蓝底物,制备了富含有机硒的发酵液(FFS),发酵后观察到总糖、还原糖、可溶性蛋白质、总酚含量(TPC)和总黄酮含量(TFC)显著增加。冻干样品中的有机硒保留浓度为 54.75 毫克/克。主成分分析和聚类分析显示,冻干和未发酵(FS)组之间有很好的分离。在所有挥发性物质中,2-乙基氧杂环丁烷的含量最高,而在所有酚类化合物中,山奈酚的含量最高。发酵过程显著提高了挥发性化合物和酚类化合物的含量和浓度,使 FFS 具有很强的抗氧化活性和抑制α-葡萄糖苷酶活性的能力。与 FS 相比,FFS 中酚类化合物的生物可及性明显更高。ADMET 分析表明,FFS 中所含的大多数酚类化合物没有诱变毒性、肝毒性、皮肤过敏或血脑屏障穿透性,表明其生物安全性达到了良好水平。总之,我们的研究为在食品中进一步利用富含硒的甘蓝提供了新的思路。
{"title":"The influence of Lactobacillus plantarum fermentation in selenium-enriched Brassica napus L.: changes in the nutritional constituents, bioactivities and bioaccessibility","authors":"Wen Wang,&nbsp;Zhixiong He,&nbsp;Ruiying Zhang,&nbsp;Min Li,&nbsp;Zhenxia Xu,&nbsp;Xia Xiang","doi":"10.1016/j.ocsci.2024.03.004","DOIUrl":"10.1016/j.ocsci.2024.03.004","url":null,"abstract":"<div><p>Selenium (Se)-enriched <em>Brassica napus</em> L. is a valuable organic Se supplement. In this study, the fermentation broth enriched with organic Se (FFS) was prepared using <em>Lactobacillus plantarum</em> to ferment the substrate of Se-enriched <em>Brassica napus</em> L. Significant increases were observed after fermentation in total sugars, reducing sugars, soluble proteins, total phenolic content (TPC), and total flavonoid content (TFC). The organic Se was retained at a concentration of 54.75 ​mg/g in the freeze-dried sample. Principal component analysis and cluster analysis showed good separation between the FFS and unfermented (FS) groups. Fragrant 2-ethyloxetane had the highest content among all volatiles, while sinapine had the highest content among all phenolic compounds. The fermentation process showed remarkable improvement in the abundance and concentration of volatile compounds and phenolic contents, making FFS exhibit strong antioxidant activity and inhibitory capacity against α-glucosidase activity. The bioaccessibility of phenolic compounds was significantly greater in FFS compared to FS. ADMET analysis revealed that the majority of phenolic compounds contained in FFS did not exhibit mutagenicity toxicity, hepatotoxicity, skin sensitization, or blood-brain barrier penetration, indicating a favorable level of biosafety. Overall, our study provides a new insight into the further utilization of Se-enriched <em>Brassica napus</em> L. in foods.</p></div>","PeriodicalId":34095,"journal":{"name":"Oil Crop Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2096242824000253/pdfft?md5=3b3fca786e0bc4e2a1cf3b6e0b550235&pid=1-s2.0-S2096242824000253-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141047605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Degradation and resynthesis of chlorophyll during increased oxidative stress and prolonged darkness differ between annual and perennial flax (Linum L.) 一年生和多年生亚麻(Linum L.)在氧化胁迫增加和长期黑暗条件下叶绿素的降解和再合成存在差异
Q3 Agricultural and Biological Sciences Pub Date : 2024-05-01 DOI: 10.1016/j.ocsci.2024.04.001
Kenyon J. Nisbett , Abida Alokozai , Su Hyun Elizabeth Ko , G. Adam Mott , Jason C.L. Brown

Among plants, there is considerable variation in lifespan: annuals live less than one year, whereas perennials live for several years, with the longest-living perennial having survived 43,600 years. As proposed by the Disposable Soma Theory, this lifespan variation among plants likely reflects differential investment of limited energy and nutrient resources, with perennials investing more energy and nutrients into biomolecular maintenance compared to annuals in order to ensure persistence over multiple seasons. Such differential investment may be particularly important during periods of exogenous stress, which are known to accelerate biomolecular damage. The present study evaluated this hypothesis using annual and perennial flax (Linum L.) subjected to two exogenous stressors—increased oxidative stress (i.e., foliar H2O2 spraying) and complete prolonged darkness. As chlorophyll has been shown to exhibit degradation in response to changes in environmental conditions, we utilized changes in chlorophyll levels during and after periods of exogenous stress to evaluate our hypotheses. We predicted that i) perennials would exhibit a slower rate of chlorophyll degradation during exposure to exogenous stressors compared to annuals, and ii) perennials would exhibit a faster rate of chlorophyll resynthesis following such exposure compared to annuals. Chlorophyll levels before, during, and after exposure to both exogenous stressors were measured in two separate trails, once using image colour analysis and once using spectrophotometry. While chlorophyll degradation rates in response to oxidative stress did not differ between annuals and perennials, contrary to our predictions, chlorophyll resynthesis rates following such exposure were significantly higher in perennials, as predicted. When plants were subjected to complete prolonged darkness, chlorophyll degradation rates were significantly lower in perennials than annuals, as predicted; however, when plants were subsequently reintroduced to natural photoperiod, chlorophyll resynthesis rates did not consistently differ between annuals and perennials, though they tended to be higher in the latter, as predicted. Overall, our study illuminates that evolutionary transitions between life history strategies in plants have been accompanied by physiological modifications to chlorophyll dynamics that permit perennial species to better maintain chlorophyll levels—and thus photosynthetic energy acquisition—in the face of exogenous stressors, which likely underlies their capacity to survive for multiple growing seasons. Future studies should explore whether other key biomolecules (e.g., proteins, DNA) are also better maintained in perennial plants, especially in the face of exogenous stress.

植物之间的寿命差异很大:一年生植物的寿命不到一年,而多年生植物的寿命则长达数年,最长寿的多年生植物已经存活了43600年。正如 "一次性体细胞理论 "所提出的,植物之间的这种寿命差异很可能反映了有限的能量和养分资源的投资差异,与一年生植物相比,多年生植物将更多的能量和养分投入到生物分子的维护中,以确保其在多个季节都能持续生长。众所周知,外源压力会加速生物分子的损伤,因此这种不同的投资在外源压力时期可能尤为重要。本研究利用一年生和多年生亚麻(Linum L.)受到两种外源胁迫--氧化胁迫增加(即叶面喷洒 H2O2)和完全长时间黑暗--的情况对这一假设进行了评估。由于叶绿素会随着环境条件的变化而降解,我们利用外源胁迫期间和之后叶绿素水平的变化来评估我们的假设。我们预测:i)与一年生植物相比,多年生植物在受到外源胁迫时的叶绿素降解速度较慢;ii)与一年生植物相比,多年生植物在受到外源胁迫后的叶绿素合成速度较快。叶绿素水平在暴露于两种外源胁迫之前、期间和之后分别进行了两次测量,一次采用图像色彩分析法,另一次采用分光光度法。虽然叶绿素在氧化胁迫下的降解率在一年生植物和多年生植物之间没有差异,但与我们的预测相反,叶绿素在氧化胁迫下的再合成率在多年生植物中明显更高。当植物处于完全的长期黑暗环境中时,多年生植物的叶绿素降解率明显低于一年生植物,这与我们的预测一致;然而,当植物随后恢复到自然光周期时,叶绿素的再合成率在一年生植物和多年生植物之间并没有持续的差异,尽管后者的叶绿素再合成率往往更高,这与我们的预测一致。总之,我们的研究表明,植物生活史策略之间的进化转变伴随着叶绿素动态的生理变化,这使得多年生物种在面对外源胁迫时能够更好地维持叶绿素水平,从而更好地获取光合能量,这可能是它们能够在多个生长季存活的基础。未来的研究应探讨多年生植物是否也能更好地维持其他关键生物大分子(如蛋白质、DNA),尤其是在面临外源胁迫时。
{"title":"Degradation and resynthesis of chlorophyll during increased oxidative stress and prolonged darkness differ between annual and perennial flax (Linum L.)","authors":"Kenyon J. Nisbett ,&nbsp;Abida Alokozai ,&nbsp;Su Hyun Elizabeth Ko ,&nbsp;G. Adam Mott ,&nbsp;Jason C.L. Brown","doi":"10.1016/j.ocsci.2024.04.001","DOIUrl":"10.1016/j.ocsci.2024.04.001","url":null,"abstract":"<div><p>Among plants, there is considerable variation in lifespan: annuals live less than one year, whereas perennials live for several years, with the longest-living perennial having survived 43,600 years. As proposed by the Disposable Soma Theory, this lifespan variation among plants likely reflects differential investment of limited energy and nutrient resources, with perennials investing more energy and nutrients into biomolecular maintenance compared to annuals in order to ensure persistence over multiple seasons. Such differential investment may be particularly important during periods of exogenous stress, which are known to accelerate biomolecular damage. The present study evaluated this hypothesis using annual and perennial flax (<em>Linum</em> L.) subjected to two exogenous stressors—increased oxidative stress (i.e., foliar H<sub>2</sub>O<sub>2</sub> spraying) and complete prolonged darkness. As chlorophyll has been shown to exhibit degradation in response to changes in environmental conditions, we utilized changes in chlorophyll levels during and after periods of exogenous stress to evaluate our hypotheses. We predicted that i) perennials would exhibit a slower rate of chlorophyll degradation during exposure to exogenous stressors compared to annuals, and ii) perennials would exhibit a faster rate of chlorophyll resynthesis following such exposure compared to annuals. Chlorophyll levels before, during, and after exposure to both exogenous stressors were measured in two separate trails, once using image colour analysis and once using spectrophotometry. While chlorophyll degradation rates in response to oxidative stress did not differ between annuals and perennials, contrary to our predictions, chlorophyll resynthesis rates following such exposure were significantly higher in perennials, as predicted. When plants were subjected to complete prolonged darkness, chlorophyll degradation rates were significantly lower in perennials than annuals, as predicted; however, when plants were subsequently reintroduced to natural photoperiod, chlorophyll resynthesis rates did not consistently differ between annuals and perennials, though they tended to be higher in the latter, as predicted. Overall, our study illuminates that evolutionary transitions between life history strategies in plants have been accompanied by physiological modifications to chlorophyll dynamics that permit perennial species to better maintain chlorophyll levels—and thus photosynthetic energy acquisition—in the face of exogenous stressors, which likely underlies their capacity to survive for multiple growing seasons. Future studies should explore whether other key biomolecules (e.g., proteins, DNA) are also better maintained in perennial plants, especially in the face of exogenous stress.</p></div>","PeriodicalId":34095,"journal":{"name":"Oil Crop Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2096242824000277/pdfft?md5=b969924d8f3ac81d0f1b75e4a11fd728&pid=1-s2.0-S2096242824000277-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141040216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genome-wide identification, characterization and functional prediction of the SRS gene family in sesame (Sesamum indicum L.) 芝麻 SRS 基因家族的全基因组鉴定、特征描述和功能预测
Q3 Agricultural and Biological Sciences Pub Date : 2024-05-01 DOI: 10.1016/j.ocsci.2024.02.002
Farjana Afroz Susmi, Tasmina Islam Simi, Md Nahid Hasan, Md Abdur Rahim

Sesame (Sesamum indicum L.) is an ancient oilseed crop of the Pedaliaceae family with high oil content and potential health benefits. SHI RELATED SEQUENCE (SRS) proteins are the transcription factors (TFs) specific to plants that contain RING-like zinc figure domain and are associated with the regulation of several physiological and biochemical processes. They also play vital roles in plant growth and development such as root formation, leaf development, floral development, hormone biosynthesis, signal transduction, and biotic and abiotic stress responses. Nevertheless, the SRS gene family was not reported in sesame yet. In this study, identification, molecular characterization, phylogenetic relationship, cis-acting regulatory elements, protein-protein interaction, syntenic relationship, duplication events and expression pattern of SRS genes were analyzed in S. indicum. We identified total six SiSRS genes on seven different linkage groups in the S. indicum genome by comparing with the other species, including the model plant Arabidopsis thaliana. The SiSRS genes showed variation in their structure like 2–5 exons and 1–4 introns. Like other species, SiSRS proteins also contained ‘RING-like zinc figure’ and ‘LRP1’ domains. Then, the SiSRS genes were clustered into subclasses via phylogenetic analysis with proteins of S. indicum, A. thaliana, and some other plant species. The cis-acting regulatory elements analysis revealed that the promoter region of SiSRS4 (SIN_1011561) showed the highest 13 and 16 elements for light- and phytohormone-responses whereas, SiSRS1 (SIN_1015187) showed the highest 15 elements for stress-response. The ABREs, or ABA-responsive elements, were found in a maximum of 8 copies in the SiSRS3 (SIN 1009100). Moreover, the available RNA-seq based expression of SiSRS genes revealed variation in expression patterns between stress-treated and non-treated samples, especially in drought and salinity conditions in. S. indicum. Two SiSRS genes like SiSRS1 (SIN_1015187) and SiSRS5 (SIN_1021065), also exhibited variable expression patterns between control vs PEG-treated sesame root samples and three SiSRS genes, including SiSRS1 (SIN_1015187), SiSRS2 (SIN_1003328) and SiSRS5 (SIN_1021065) were responsive to salinity treatments. The present outcomes will encourage more research into the gene expression and functionality analysis of SiSRS genes in S. indicum and other related species.

芝麻(Sesamum indicum L.)是一种古老的油料作物,属于豆科植物,具有很高的含油量和潜在的健康益处。SHI RELATED SEQUENCE(SRS)蛋白是植物特有的转录因子(TFs),含有类 RING 锌图结构域,与多种生理和生化过程的调控有关。它们在植物生长和发育过程中也发挥着重要作用,如根的形成、叶的发育、花的发育、激素的生物合成、信号转导以及生物和非生物胁迫反应。然而,SRS 基因家族在芝麻中尚未见报道。本研究分析了 S. indicum 中 SRS 基因的鉴定、分子特征、系统发育关系、顺式作用调控元件、蛋白-蛋白相互作用、同源关系、重复事件和表达模式。通过与其他物种(包括模式植物拟南芥)的比较,我们在 S. indicum 基因组的 7 个不同连接组上共鉴定出 6 个 SiSRS 基因。SiSRS 基因的结构存在差异,如 2-5 个外显子和 1-4 个内含子。与其他物种一样,SiSRS 蛋白也含有 "RING-like zinc figure "和 "LRP1 "结构域。然后,通过系统发育分析,将 SiSRS 基因与 S. indicum、A. thaliana 和其他一些植物物种的蛋白质聚成亚类。顺式调控元件分析表明,SiSRS4(SIN_1011561)的启动子区域对光和植物激素反应的调控元件最多,分别为13个和16个;而SiSRS1(SIN_1015187)的启动子区域对胁迫反应的调控元件最多,为15个。在 SiSRS3(SIN 1009100)中,ABREs 或 ABA 反应元件最多为 8 个拷贝。此外,现有的基于 RNA-seq 的 SiSRS 基因表达显示,胁迫处理样本和非处理样本之间的表达模式存在差异,尤其是在干旱和盐碱条件下。S. indicum。两个 SiSRS 基因,如 SiSRS1(SIN_1015187)和 SiSRS5(SIN_1021065),在对照与 PEG 处理的芝麻根样品之间也表现出不同的表达模式;三个 SiSRS 基因,包括 SiSRS1(SIN_1015187)、SiSRS2(SIN_1003328)和 SiSRS5(SIN_1021065)对盐分处理有反应。本研究成果将促进对 S. indicum 及其他相关物种 SiSRS 基因的表达和功能分析的更多研究。
{"title":"Genome-wide identification, characterization and functional prediction of the SRS gene family in sesame (Sesamum indicum L.)","authors":"Farjana Afroz Susmi,&nbsp;Tasmina Islam Simi,&nbsp;Md Nahid Hasan,&nbsp;Md Abdur Rahim","doi":"10.1016/j.ocsci.2024.02.002","DOIUrl":"10.1016/j.ocsci.2024.02.002","url":null,"abstract":"<div><p>Sesame (<em>Sesamum indicum</em> L.) is an ancient oilseed crop of the Pedaliaceae family with high oil content and potential health benefits. SHI RELATED SEQUENCE (SRS) proteins are the transcription factors (TFs) specific to plants that contain RING-like zinc figure domain and are associated with the regulation of several physiological and biochemical processes. They also play vital roles in plant growth and development such as root formation, leaf development, floral development, hormone biosynthesis, signal transduction, and biotic and abiotic stress responses. Nevertheless, the <em>SRS</em> gene family was not reported in sesame yet. In this study, identification, molecular characterization, phylogenetic relationship, <em>cis</em>-acting regulatory elements, protein-protein interaction, syntenic relationship, duplication events and expression pattern of <em>SRS</em> genes were analyzed in <em>S. indicum</em>. We identified total six <em>SiSRS</em> genes on seven different linkage groups in the <em>S. indicum</em> genome by comparing with the other species, including the model plant <em>Arabidopsis thaliana</em>. The <em>SiSRS</em> genes showed variation in their structure like 2–5 exons and 1–4 introns. Like other species, <em>SiSRS</em> proteins also contained ‘RING-like zinc figure’ and ‘LRP1’ domains. Then, the <em>SiSRS</em> genes were clustered into subclasses via phylogenetic analysis with proteins of <em>S. indicum, A. thaliana,</em> and some other plant species. The <em>cis</em>-acting regulatory elements analysis revealed that the promoter region of <em>SiSRS4</em> (SIN_1011561) showed the highest 13 and 16 elements for light- and phytohormone-responses whereas, <em>SiSRS1</em> (SIN_1015187) showed the highest 15 elements for stress-response. The ABREs, or ABA-responsive elements, were found in a maximum of 8 copies in the <em>SiSRS3</em> (SIN 1009100). Moreover, the available RNA-seq based expression of <em>SiSRS</em> genes revealed variation in expression patterns between stress-treated and non-treated samples, especially in drought and salinity conditions in<em>. S. indicum</em>. Two <em>SiSRS</em> genes like <em>SiSRS1</em> (SIN_1015187) and <em>SiSRS5</em> (SIN_1021065), also exhibited variable expression patterns between control vs PEG-treated sesame root samples and three <em>SiSRS</em> genes, including <em>SiSRS1</em> (SIN_1015187), <em>SiSRS2</em> (SIN_1003328) and <em>SiSRS5</em> (SIN_1021065) were responsive to salinity treatments. The present outcomes will encourage more research into the gene expression and functionality analysis of <em>SiSRS</em> genes in <em>S. indicum</em> and other related species.</p></div>","PeriodicalId":34095,"journal":{"name":"Oil Crop Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S209624282400023X/pdfft?md5=0cd76ea160e1d59de15781e7269a12b2&pid=1-s2.0-S209624282400023X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141055515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to “Identification and virulence test of a new pathogen that causes verticillium striping on rapeseed in northwestern China” [Oil Crop Sci. (2024), doi: https://doi.org/10.1016/j.ocsci.2023.12.005] 中国西北油菜纹枯病新病原菌的鉴定和毒力测试》更正[《油料作物科学》(2024年),doi: https://doi.org/10.1016/j.ocsci.2023.12.005]
Q3 Agricultural and Biological Sciences Pub Date : 2024-05-01 DOI: 10.1016/j.ocsci.2024.06.002
We Si, Ruisheng Wang, Mingde Wu, Long Yang, Guoqing Li, Jing Zhang
{"title":"Corrigendum to “Identification and virulence test of a new pathogen that causes verticillium striping on rapeseed in northwestern China” [Oil Crop Sci. (2024), doi: https://doi.org/10.1016/j.ocsci.2023.12.005]","authors":"We Si,&nbsp;Ruisheng Wang,&nbsp;Mingde Wu,&nbsp;Long Yang,&nbsp;Guoqing Li,&nbsp;Jing Zhang","doi":"10.1016/j.ocsci.2024.06.002","DOIUrl":"https://doi.org/10.1016/j.ocsci.2024.06.002","url":null,"abstract":"","PeriodicalId":34095,"journal":{"name":"Oil Crop Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2096242824000307/pdfft?md5=2511a3d36c2728288392e0e19e669f91&pid=1-s2.0-S2096242824000307-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141314844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Erratum regarding previously published articles 关于以前发表的文章的勘误
Q3 Agricultural and Biological Sciences Pub Date : 2024-05-01 DOI: 10.1016/j.ocsci.2024.06.001
{"title":"Erratum regarding previously published articles","authors":"","doi":"10.1016/j.ocsci.2024.06.001","DOIUrl":"https://doi.org/10.1016/j.ocsci.2024.06.001","url":null,"abstract":"","PeriodicalId":34095,"journal":{"name":"Oil Crop Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2096242824000289/pdfft?md5=f76137ebd919191ab40ded0924ee1741&pid=1-s2.0-S2096242824000289-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141322918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of near-infrared spectroscopy for fast germplasm analysis and classification in multi-environment using intact-seed peanut (Arachis hypogaea L.) 应用近红外光谱技术在多环境下利用完整种子花生(Arachis hypogaea L.)进行快速种质分析和分类
Q3 Agricultural and Biological Sciences Pub Date : 2024-05-01 DOI: 10.1016/j.ocsci.2024.03.003
Fentanesh Chekole Kassie , Gilles Chaix , Hermine Bille Ngalle , Maguette Seye , Coura Fall , Hodo-Abalo Tossim , Aissatou Sambou , Olivier Gibert , Fabrice Davrieux , Joseph Martin Bell , Jean-François Rami , Daniel Fonceka , Joël Romaric Nguepjop

Peanut is a worldwide oilseed crop and the need to assess germplasm in a non-destructive manner is important for seed nutritional breeding. In this study, Near Infrared Spectroscopy (NIRS) was applied to rapidly assess germplasm variability from whole seed of 699 samples, field-collected and assembled in four genetic and environment-based sets: one set of 300 varieties of a core-collection and three sets of 133 genotypes of an interspecific population, evaluated in three environments in a large spatial scale of two countries, Mbalmayo and Bafia in Cameroon and Nioro in Senegal, under rainfed conditions. NIR elemental spectra were gathered on six subsets of seeds of each sample, after three rotation scans, with a spectral resolution of 16 cm-1 over the spectral range of 867 nm to 2530 ​nm. Spectra were then processed by principal component analysis (PCA) coupled with Partial least squares-discriminant analysis (PLS-DA). As results, a huge variability was found between varieties and genotypes for all NIR wavelength within and between environments. The magnitude of genetic variation was particularly observed at 11 relevant wavelengths such as 1723 ​nm, usually related to oil content and fatty acid composition. PCA yielded the most chemical attributes in three significant PCs (i.e., eigenvalues >10), which together captured 93% of the total variation, revealing genetic and environment structure of varieties and genotypes into four clusters, corresponding to the four samples sets. The pattern of genetic variability of the interspecific population covers, remarkably half of spectrum of the core-collection, turning out to be the largest. Interestingly, a PLS-DA model was developed and a strong accuracy of 99.6% was achieved for the four sets, aiming to classify each seed sample according to environment origin. The confusion matrix achieved for the two sets of Bafia and Nioro showed 100% of instances classified correctly with 100% at both sensitivity and specificity, confirming that their seed quality was different from each other and all other samples. Overall, NIRS chemometrics is useful to assess and distinguish seeds from different environments and highlights the value of the interspecific population and core-collection, as a source of nutritional diversity, to support the breeding efforts.

花生是一种世界性的油料作物,以非破坏性方式评估种质对于种子营养育种非常重要。在这项研究中,应用近红外光谱技术(NIRS)从田间采集的 699 个样品的全籽中快速评估种质变异性,这些样品被组合成四个基于遗传和环境的集合:一组是核心集合的 300 个品种,三组是种间群体的 133 个基因型,在两个国家(喀麦隆的 Mbalmayo 和 Bafia 以及塞内加尔的 Nioro)的三个大空间尺度环境中的雨水灌溉条件下进行评估。对每个样本的六个种子子集进行了近红外元素光谱采集,经过三次旋转扫描,光谱分辨率为 16 cm-1,光谱范围为 867 nm 至 2530 nm。然后通过主成分分析(PCA)和偏最小二乘判别分析(PLS-DA)对光谱进行处理。结果发现,在环境内和环境间,品种和基因型之间在所有近红外波长上都存在巨大差异。在 11 个相关波长(如 1723 nm)上观察到的遗传变异幅度尤其大,这些波长通常与含油量和脂肪酸组成有关。PCA 在三个显著的 PC(即特征值为 10)中得到了最多的化学属性,这三个 PC 共捕获了总变异的 93%,揭示了品种和基因型的遗传和环境结构,将其分为四个聚类,与四个样本集相对应。值得注意的是,种间群体的遗传变异模式覆盖了核心收集谱的一半,是最大的遗传变异模式。有趣的是,我们开发了一个 PLS-DA 模型,该模型对四组样本的准确率高达 99.6%,目的是根据环境来源对每个种子样本进行分类。Bafia 和 Nioro 两组样本的混淆矩阵显示,100% 的实例被正确分类,灵敏度和特异度均为 100%,这证明它们的种子质量与其他所有样本不同。总之,近红外光谱化学计量学有助于评估和区分来自不同环境的种子,并突出了种间群体和核心采集作为营养多样性来源的价值,以支持育种工作。
{"title":"Application of near-infrared spectroscopy for fast germplasm analysis and classification in multi-environment using intact-seed peanut (Arachis hypogaea L.)","authors":"Fentanesh Chekole Kassie ,&nbsp;Gilles Chaix ,&nbsp;Hermine Bille Ngalle ,&nbsp;Maguette Seye ,&nbsp;Coura Fall ,&nbsp;Hodo-Abalo Tossim ,&nbsp;Aissatou Sambou ,&nbsp;Olivier Gibert ,&nbsp;Fabrice Davrieux ,&nbsp;Joseph Martin Bell ,&nbsp;Jean-François Rami ,&nbsp;Daniel Fonceka ,&nbsp;Joël Romaric Nguepjop","doi":"10.1016/j.ocsci.2024.03.003","DOIUrl":"10.1016/j.ocsci.2024.03.003","url":null,"abstract":"<div><p>Peanut is a worldwide oilseed crop and the need to assess germplasm in a non-destructive manner is important for seed nutritional breeding. In this study, Near Infrared Spectroscopy (NIRS) was applied to rapidly assess germplasm variability from whole seed of 699 samples, field-collected and assembled in four genetic and environment-based sets: one set of 300 varieties of a core-collection and three sets of 133 genotypes of an interspecific population, evaluated in three environments in a large spatial scale of two countries, Mbalmayo and Bafia in Cameroon and Nioro in Senegal, under rainfed conditions. NIR elemental spectra were gathered on six subsets of seeds of each sample, after three rotation scans, with a spectral resolution of 16 cm<sup>-1</sup> over the spectral range of 867 nm to 2530 ​nm. Spectra were then processed by principal component analysis (PCA) coupled with Partial least squares-discriminant analysis (PLS-DA). As results, a huge variability was found between varieties and genotypes for all NIR wavelength within and between environments. The magnitude of genetic variation was particularly observed at 11 relevant wavelengths such as 1723 ​nm, usually related to oil content and fatty acid composition. PCA yielded the most chemical attributes in three significant PCs (i.e., eigenvalues &gt;10), which together captured 93% of the total variation, revealing genetic and environment structure of varieties and genotypes into four clusters, corresponding to the four samples sets. The pattern of genetic variability of the interspecific population covers, remarkably half of spectrum of the core-collection, turning out to be the largest. Interestingly, a PLS-DA model was developed and a strong accuracy of 99.6% was achieved for the four sets, aiming to classify each seed sample according to environment origin. The confusion matrix achieved for the two sets of Bafia and Nioro showed 100% of instances classified correctly with 100% at both sensitivity and specificity, confirming that their seed quality was different from each other and all other samples. Overall, NIRS chemometrics is useful to assess and distinguish seeds from different environments and highlights the value of the interspecific population and core-collection, as a source of nutritional diversity, to support the breeding efforts.</p></div>","PeriodicalId":34095,"journal":{"name":"Oil Crop Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2096242824000241/pdfft?md5=c346609e816dacff868dbdf230d628b2&pid=1-s2.0-S2096242824000241-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141046499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of biochar on the metabolome of soybean seedlings 生物炭对大豆幼苗代谢组的影响
Q3 Agricultural and Biological Sciences Pub Date : 2024-03-01 DOI: 10.1016/j.ocsci.2024.01.002
Nathalia E. Silva , Mariana G. Aguilar , Osania E. Ferreira , Gleicia M. Paulino , Jaqueline C.L. Carvalho , Lúcia P.S. Pimenta , Alan R.T. Machado

The use of biochar can have several effects on plant germination, depending on raw material, preparation method and application dose. However, the molecular mechanisms that lead to those results have yet to be elucidated. The aim of this research was to improve the understanding of these mechanisms by characterizing the metabolic effects of sugarcane bagasse biochar on soybean germination. Three types of biochars were prepared by pyrolysis at 300 ​°C (SCB300), 400 ​°C (SCB400) and 600 ​°C (SCB600). Then, each one was mixed into sand at 1%, 3%, 5% (w/w) dose, respectively. The experiment was performed in 8 days of incubation, when the number of germinated seeds and the average radicle length were determined. To evaluate the metabolome, the dry biomass (DB) was subjected to extraction with a mixture of methanol-d4 and D2O (1:1 v/v). The extracts were submitted to metabolomics analysis by Proton Nuclear Magnetic Resonance. The Relative Germination, Relative Average Radicle Growth and Germination Index increased in all treatments compared to control. On the other hand, the DB increased in all treatments, except for SCB300, at doses of 1% and 3% w/w. Seven metabolites (alanine, asparagine, acetic acid, citric acid, glycerol, fatty acids and sucrose) were identified and quantified in DB extracts as the most influential finding for the separation of treatments. Taken together, these results strongly suggested that biochars accelerated the catabolism of triacylglycerols to sucrose and induced a slight osmotic stress.

生物炭的使用可对植物发芽产生多种影响,具体取决于原料、制备方法和施用剂量。然而,导致这些结果的分子机制仍有待阐明。本研究的目的是通过分析甘蔗渣生物炭对大豆发芽的代谢作用,加深对这些机制的理解。通过在 300 °C (SCB300)、400 °C (SCB400) 和 600 °C (SCB600) 下热解制备了三种生物炭。然后,分别以 1%、3%、5%(重量比)的剂量将每种生物炭混入沙子中。实验经过 8 天的培养,测定了发芽种子的数量和平均胚根长度。为了评估代谢组,用甲醇-d4 和 D2O(1:1 v/v)的混合物萃取干生物质(DB)。提取物通过质子核磁共振进行代谢组学分析。与对照组相比,所有处理的相对发芽率、相对平均胚根生长量和发芽指数都有所提高。另一方面,在 1%和 3% w/w 剂量下,除 SCB300 外,其他处理的 DB 均有所增加。在 DB 提取物中鉴定并量化了七种代谢物(丙氨酸、天冬酰胺、乙酸、柠檬酸、甘油、脂肪酸和蔗糖),这是对各处理的分离最有影响的发现。总之,这些结果有力地表明,生物碳酸钙加速了三酰甘油向蔗糖的分解,并诱发了轻微的渗透压力。
{"title":"Effect of biochar on the metabolome of soybean seedlings","authors":"Nathalia E. Silva ,&nbsp;Mariana G. Aguilar ,&nbsp;Osania E. Ferreira ,&nbsp;Gleicia M. Paulino ,&nbsp;Jaqueline C.L. Carvalho ,&nbsp;Lúcia P.S. Pimenta ,&nbsp;Alan R.T. Machado","doi":"10.1016/j.ocsci.2024.01.002","DOIUrl":"10.1016/j.ocsci.2024.01.002","url":null,"abstract":"<div><p>The use of biochar can have several effects on plant germination, depending on raw material, preparation method and application dose. However, the molecular mechanisms that lead to those results have yet to be elucidated. The aim of this research was to improve the understanding of these mechanisms by characterizing the metabolic effects of sugarcane bagasse biochar on soybean germination. Three types of biochars were prepared by pyrolysis at 300 ​°C (SCB300), 400 ​°C (SCB400) and 600 ​°C (SCB600). Then, each one was mixed into sand at 1%, 3%, 5% (w/w) dose, respectively. The experiment was performed in 8 days of incubation, when the number of germinated seeds and the average radicle length were determined. To evaluate the metabolome, the dry biomass (DB) was subjected to extraction with a mixture of methanol-<em>d</em><sub>4</sub> and D<sub>2</sub>O (1:1 v/v). The extracts were submitted to metabolomics analysis by Proton Nuclear Magnetic Resonance. The Relative Germination, Relative Average Radicle Growth and Germination Index increased in all treatments compared to control. On the other hand, the DB increased in all treatments, except for SCB300, at doses of 1% and 3% w/w. Seven metabolites (alanine, asparagine, acetic acid, citric acid, glycerol, fatty acids and sucrose) were identified and quantified in DB extracts as the most influential finding for the separation of treatments. Taken together, these results strongly suggested that biochars accelerated the catabolism of triacylglycerols to sucrose and induced a slight osmotic stress.</p></div>","PeriodicalId":34095,"journal":{"name":"Oil Crop Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2096242824000149/pdfft?md5=34617cd6225d9c55f479d1b7c932b9ea&pid=1-s2.0-S2096242824000149-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140271512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The combined effects of farm yard manure and boron application on growth, and oil quality of canola grown under newly reclaimed soils 施用农家肥和硼对新开垦土壤下种植的油菜生长和油质的综合影响
Q3 Agricultural and Biological Sciences Pub Date : 2024-03-01 DOI: 10.1016/j.ocsci.2023.12.007
Farid Hellal , Saied El Sayed , Amany Abdel Mohsen Ramadan , Doaa M. Abobasha

Two field experiments were conducted during the main seasons of 2021/2022 ​at the Research and Production Station of National Research Centre in Egypt to investigate the effects of farmyard manure (FYM) and boron on Canola growth, yield, oil yield, and quality. The results unequivocally demonstrated that the combined application of FYM at a rate of 14.4 ​ton ​ha−1 with a foliar spray of boron at 100ppm positively influenced plant characteristics, leading to enhanced growth rates and higher yields compared to the control group. Moreover, this integrated approach significantly improved nutrient content by enhancing levels of oil content, carbohydrates, proteins, phenolics, flavonoids, and total soluble sugars. These findings provide compelling evidence that utilizing farm manure along with boron can effectively enhance Canola properties in newly reclaimed soils while promoting sustainable agricultural practices.

埃及国家研究中心的研究和生产站在 2021/2022 年的主要季节进行了两项田间试验,研究农家肥(FYM)和硼对油菜籽生长、产量、出油率和质量的影响。结果清楚地表明,以每公顷 14.4 吨的比例联合施用 FYM 和叶面喷施硼(100ppm)对植物特性有积极影响,与对照组相比,生长率提高,产量增加。此外,这种综合方法通过提高油脂含量、碳水化合物、蛋白质、酚类、类黄酮和总可溶性糖的水平,极大地改善了养分含量。这些发现提供了令人信服的证据,证明利用农家肥和硼能有效提高新开垦土壤中油菜籽的特性,同时促进可持续农业实践。
{"title":"The combined effects of farm yard manure and boron application on growth, and oil quality of canola grown under newly reclaimed soils","authors":"Farid Hellal ,&nbsp;Saied El Sayed ,&nbsp;Amany Abdel Mohsen Ramadan ,&nbsp;Doaa M. Abobasha","doi":"10.1016/j.ocsci.2023.12.007","DOIUrl":"10.1016/j.ocsci.2023.12.007","url":null,"abstract":"<div><p>Two field experiments were conducted during the main seasons of 2021/2022 ​at the Research and Production Station of National Research Centre in Egypt to investigate the effects of farmyard manure (FYM) and boron on Canola growth, yield, oil yield, and quality. The results unequivocally demonstrated that the combined application of FYM at a rate of 14.4 ​ton ​ha<sup>−1</sup> with a foliar spray of boron at 100ppm positively influenced plant characteristics, leading to enhanced growth rates and higher yields compared to the control group. Moreover, this integrated approach significantly improved nutrient content by enhancing levels of oil content, carbohydrates, proteins, phenolics, flavonoids, and total soluble sugars. These findings provide compelling evidence that utilizing farm manure along with boron can effectively enhance Canola properties in newly reclaimed soils while promoting sustainable agricultural practices.</p></div>","PeriodicalId":34095,"journal":{"name":"Oil Crop Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2096242824000137/pdfft?md5=fe3a8863d91be4107203a43f0ec51a2e&pid=1-s2.0-S2096242824000137-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140276984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Selection criteria of MPOB-Angola germplasm collection for yield improvement of the oil palm 为提高油棕榈树产量而收集的 MPOB-安哥拉种质的选择标准
Q3 Agricultural and Biological Sciences Pub Date : 2024-03-01 DOI: 10.1016/j.ocsci.2023.12.003
A. Norziha , Z. Zamri , Y. Zulkifli , A.M. Fadila , M. Marhalil

Oil palm germplasm collected from Angola, Africa in 1991 were subjected to genetic variability potential studies. The collection was planted in the form of open-pollinated families as trials at the Malaysian Palm Oil Board (MPOB) Kluang Research Station, Johor, Malaysia, in 1994. Dura palms from 52 families and tenera palms from 44 families of MPOB-Angola were evaluated for their bunch yield and bunch quality components. The objectives of this study were to determine the genetic variability among the families and performance of MPOB-Angola germplasm for yield improvement. The analysis of variance (ANOVA) revealed highly significant differences between the dura and tenera families for most of the traits, suggesting the presence of high genetic variability, which is essential for breeding programmes. Among the duras, family AGO 02.02 displayed the best yield performance, with a high fresh fruit bunch, oil yield and total economic product at 240.40, 29.46 and 37.93 ​kg palm−1 year−1, respectively. As for the teneras, family AGO 03.04 recorded the highest FFB yield and oil yield at 249.25 and 45.22 ​kg palm−1 year−1, respectively. Besides that, several families with big fruit sizes or producing a mean fruit weight of 14–17 ​g were also identified. Both dura and tenera from AGO 01.01 recorded the highest oil to bunch (O/B) of 17.76% and 28.65%, respectively. These findings will facilitate the selection of palms from the MPOB-Angola germplasm for future breeding programmes.

对 1991 年从非洲安哥拉收集的油棕种质进行了遗传变异潜力研究。1994 年,在马来西亚柔佛州的马来西亚棕榈油局居銮研究站(MPOB),以开放授粉家系的形式种植了这些油棕种质。对 MPOB-Angola 52 个家系的杜拉棕榈和 44 个家系的特纳棕榈进行了果穗产量和果穗质量成分评估。这项研究的目的是确定各科之间的遗传变异以及 MPOB-Angola 种质在提高产量方面的表现。方差分析(ANOVA)显示,杜拉(dura)和特耐拉(tenera)品系之间在大多数性状上存在非常显著的差异,表明存在较高的遗传变异性,这对育种计划至关重要。在杜拉品种中,AGO 02.02 家族的产量表现最好,鲜果串、产油量和总经济产量分别为 240.40、29.46 和 37.93 千克棕榈-1-年-1。在特耐拉品种中,AGO 03.04 家族的鲜果串产量和产油量最高,分别为 249.25 千克/棕榈-1 年和 45.22 千克/棕榈-1 年。此外,还发现了几个果实较大或平均果重为 14-17 克的品系。来自 AGO 01.01 的杜拉(dura)和特耐拉(tenera)油比(O/B)最高,分别为 17.76% 和 28.65%。这些发现将有助于从 MPOB-Angola 种质中挑选棕榈树用于未来的育种计划。
{"title":"Selection criteria of MPOB-Angola germplasm collection for yield improvement of the oil palm","authors":"A. Norziha ,&nbsp;Z. Zamri ,&nbsp;Y. Zulkifli ,&nbsp;A.M. Fadila ,&nbsp;M. Marhalil","doi":"10.1016/j.ocsci.2023.12.003","DOIUrl":"https://doi.org/10.1016/j.ocsci.2023.12.003","url":null,"abstract":"<div><p>Oil palm germplasm collected from Angola, Africa in 1991 were subjected to genetic variability potential studies. The collection was planted in the form of open-pollinated families as trials at the Malaysian Palm Oil Board (MPOB) Kluang Research Station, Johor, Malaysia, in 1994. <em>Dura</em> palms from 52 families and <em>tenera</em> palms from 44 families of MPOB-Angola were evaluated for their bunch yield and bunch quality components. The objectives of this study were to determine the genetic variability among the families and performance of MPOB-Angola germplasm for yield improvement. The analysis of variance (ANOVA) revealed highly significant differences between the <em>dura</em> and <em>tenera</em> families for most of the traits, suggesting the presence of high genetic variability, which is essential for breeding programmes. Among the <em>duras</em>, family AGO 02.02 displayed the best yield performance, with a high fresh fruit bunch, oil yield and total economic product at 240.40, 29.46 and 37.93 ​kg palm<sup>−1</sup> year<sup>−1</sup>, respectively. As for the <em>teneras</em>, family AGO 03.04 recorded the highest FFB yield and oil yield at 249.25 and 45.22 ​kg palm<sup>−1</sup> year<sup>−1</sup>, respectively. Besides that, several families with big fruit sizes or producing a mean fruit weight of 14–17 ​g were also identified. Both dura and tenera from AGO 01.01 recorded the highest oil to bunch (O/B) of 17.76% and 28.65%, respectively. These findings will facilitate the selection of palms from the MPOB-Angola germplasm for future breeding programmes.</p></div>","PeriodicalId":34095,"journal":{"name":"Oil Crop Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2096242824000071/pdfft?md5=f0652dd7412b2edb681d99c8a433a102&pid=1-s2.0-S2096242824000071-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140062694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Oil Crop Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1