首页 > 最新文献

GIANT最新文献

英文 中文
Fluorine atom substituted aromatic polyimides: Unlocking extraordinary dielectric performance and comprehensive advantages 氟原子取代的芳香族聚酰亚胺:释放非凡的介电性能和综合优势
IF 7 1区 化学 Q1 Materials Science Pub Date : 2024-04-04 DOI: 10.1016/j.giant.2024.100262
Weifeng Peng , Huanyu Lei , Bingyu Zou , Luhao Qiu , Yaohao Song , Xiang Huang , Fan Ye , Feng Bao , Mingjun Huang

Low-dielectric polymers face prominent development challenges at high frequency. Particularly, the relationship between the high-frequency dielectric loss and polymer structures remains not clear enough. Besides, the strategies for achieving low dielectric loss usually have to scarify other important materials properties, e.g., heat resistance or dimensional stability. Herein, fluorine-containing aromatic polyimides were systematically investigated. Among them, simple fluorine atom (-F) substituted polyimides exhibit remarkable low dielectric loss at high frequency (10 GHz) as well as comprehensive advantages, including near-zero thermal expansion coefficient, extremely high thermal decomposition stability, high optical transmittance and excellent mechanical properties. The fundamental mechanisms of low dielectric loss are fully discussed. Benefiting from the unique electric effect and compact size of -F group, -F substituted polyimides display low dipolar density and strongly restricted dipolar motion, contributing to a reduced permanent dipolar polarization loss. Moreover, the concept of induced dipolar polarization was introduced to illustrate the nontrivial impact of F-substituted effect on conjugated electron cloud polarization loss in aromatic polymer system. This work not only provides valuable insights for understanding the mechanism of dielectric loss at high frequency for aromatic polymers, but also opens up broader application possibilities of polyimides in microelectronic and wireless communications industries.

低介电聚合物在高频领域面临着突出的开发挑战。特别是,高频介电损耗与聚合物结构之间的关系仍然不够清晰。此外,实现低介电损耗的策略通常需要牺牲材料的其他重要特性,如耐热性或尺寸稳定性。在此,我们对含氟芳香族聚酰亚胺进行了系统研究。其中,简单氟原子(-F)取代的聚酰亚胺在高频率(10 GHz)下具有显著的低介电损耗,同时还具有综合优势,包括近乎零的热膨胀系数、极高的热分解稳定性、高透光率和优异的机械性能。本文充分讨论了低介电损耗的基本机制。得益于 -F 基团独特的电效应和紧凑的尺寸,-F 取代的聚酰亚胺显示出较低的偶极密度和较强的偶极运动限制,从而降低了永久偶极极化损耗。此外,还引入了诱导偶极极化的概念,以说明 F 取代效应对芳香族聚合物体系中共轭电子云极化损耗的非同一般的影响。这项研究不仅为理解芳香族聚合物高频介电损耗的机理提供了宝贵的见解,还为聚酰亚胺在微电子和无线通信行业的应用提供了更广阔的可能性。
{"title":"Fluorine atom substituted aromatic polyimides: Unlocking extraordinary dielectric performance and comprehensive advantages","authors":"Weifeng Peng ,&nbsp;Huanyu Lei ,&nbsp;Bingyu Zou ,&nbsp;Luhao Qiu ,&nbsp;Yaohao Song ,&nbsp;Xiang Huang ,&nbsp;Fan Ye ,&nbsp;Feng Bao ,&nbsp;Mingjun Huang","doi":"10.1016/j.giant.2024.100262","DOIUrl":"https://doi.org/10.1016/j.giant.2024.100262","url":null,"abstract":"<div><p>Low-dielectric polymers face prominent development challenges at high frequency. Particularly, the relationship between the high-frequency dielectric loss and polymer structures remains not clear enough. Besides, the strategies for achieving low dielectric loss usually have to scarify other important materials properties, e.g., heat resistance or dimensional stability. Herein, fluorine-containing aromatic polyimides were systematically investigated. Among them, simple fluorine atom (-F) substituted polyimides exhibit remarkable low dielectric loss at high frequency (10 GHz) as well as comprehensive advantages, including near-zero thermal expansion coefficient, extremely high thermal decomposition stability, high optical transmittance and excellent mechanical properties. The fundamental mechanisms of low dielectric loss are fully discussed. Benefiting from the unique electric effect and compact size of -F group, -F substituted polyimides display low dipolar density and strongly restricted dipolar motion, contributing to a reduced permanent dipolar polarization loss. Moreover, the concept of induced dipolar polarization was introduced to illustrate the nontrivial impact of F-substituted effect on conjugated electron cloud polarization loss in aromatic polymer system. This work not only provides valuable insights for understanding the mechanism of dielectric loss at high frequency for aromatic polymers, but also opens up broader application possibilities of polyimides in microelectronic and wireless communications industries.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000274/pdfft?md5=f12fe99a2912ae3460cda2bd3c93df18&pid=1-s2.0-S2666542524000274-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140542799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solvent-free conversion of CO2 in carbonates through a sustainable macroporous catalyst 通过可持续大孔催化剂实现碳酸盐中二氧化碳的无溶剂转化
IF 7 1区 化学 Q1 Materials Science Pub Date : 2024-04-04 DOI: 10.1016/j.giant.2024.100258
Sandro Dattilo , Chiara Zagni , Tommaso Mecca , Vincenzo Patamia , Giuseppe Floresta , Pietro Nicotra , Sabrina C. Carroccio , Antonio Rescifina

The novelty of this work consists of synthesizing and exploiting a heterogeneous catalyst containing ammonium chloride as part of the polymeric sponge sites for CO2 capture. To this aim, the polymerization of 2-acryloyl(oxyethyl)trimethylammonium chloride was performed in cryo-condition, in the presence of a crosslinking agent, obtaining a lightweight macroporous freestanding material. Its efficiency in converting aromatic and aliphatic epoxides to the corresponding carbonates was successfully proved by using proton Nuclear Magnetic Resonance (1H NMR). Remarkably, the conversion of styrene oxide (SO) to styrene carbonate (SC) reached a yield of 99 % after 24 h of reaction. The calculated yield versus the aliphatic cyclohexene oxide is 71 %. Similar results were obtained by substituting the resin counter anion with Br, although the conversion kinetic was slower than the chloride. It is worth noticing that reactions took place in the mixture without adding the tetrabutylammonium bromide (TBAB), typically used as a co-catalyst to convert epoxides into carbonates. The recyclability of the as-prepared catalyst was evaluated for four reaction cycles, evidencing stable properties without significant depletion of CO2 capture efficiency. Most importantly, the post-cleaning of the catalytic sponge is not required to be reused. Finally, the green chemistry metrics applied to the process demonstrated that our approach significantly mitigates risks and reduces environmental impact, thus elevating the overall cleanliness of our proof of concept.

这项工作的新颖之处在于合成和利用了一种含有氯化铵的异相催化剂,作为用于捕获二氧化碳的聚合物海绵的一部分。为此,在交联剂的存在下,在低温条件下对 2-丙烯酰(氧乙基)三甲基氯化铵进行了聚合,从而获得了一种轻质大孔独立材料。质子核磁共振(1H NMR)成功证明了它将芳香族和脂肪族环氧化物转化为相应碳酸盐的效率。值得注意的是,反应 24 小时后,氧化苯乙烯(SO)转化为碳酸苯乙烯(SC)的产率达到 99%。脂肪族环己烯氧化物的计算收率为 71%。用 Br- 替代树脂反阴离子也得到了类似的结果,尽管转化动力学比氯化物慢。值得注意的是,反应是在混合物中进行的,没有添加通常用作将环氧化物转化为碳酸盐的辅助催化剂的四丁基溴化铵(TBAB)。对制备的催化剂进行了四个反应周期的可回收性评估,结果表明该催化剂性能稳定,二氧化碳捕获效率没有明显下降。最重要的是,催化海绵的后期清洁工作无需重复使用。最后,应用于该工艺的绿色化学指标表明,我们的方法大大降低了风险,减少了对环境的影响,从而提升了概念验证的整体清洁度。
{"title":"Solvent-free conversion of CO2 in carbonates through a sustainable macroporous catalyst","authors":"Sandro Dattilo ,&nbsp;Chiara Zagni ,&nbsp;Tommaso Mecca ,&nbsp;Vincenzo Patamia ,&nbsp;Giuseppe Floresta ,&nbsp;Pietro Nicotra ,&nbsp;Sabrina C. Carroccio ,&nbsp;Antonio Rescifina","doi":"10.1016/j.giant.2024.100258","DOIUrl":"https://doi.org/10.1016/j.giant.2024.100258","url":null,"abstract":"<div><p>The novelty of this work consists of synthesizing and exploiting a heterogeneous catalyst containing ammonium chloride as part of the polymeric sponge sites for CO<sub>2</sub> capture. To this aim, the polymerization of 2-acryloyl(oxyethyl)trimethylammonium chloride was performed in cryo-condition, in the presence of a crosslinking agent, obtaining a lightweight macroporous freestanding material. Its efficiency in converting aromatic and aliphatic epoxides to the corresponding carbonates was successfully proved by using proton Nuclear Magnetic Resonance (<sup>1</sup>H NMR). Remarkably, the conversion of styrene oxide (SO) to styrene carbonate (SC) reached a yield of 99 % after 24 h of reaction. The calculated yield versus the aliphatic cyclohexene oxide is 71 %. Similar results were obtained by substituting the resin counter anion with Br<sup>−</sup>, although the conversion kinetic was slower than the chloride. It is worth noticing that reactions took place in the mixture without adding the tetrabutylammonium bromide (TBAB), typically used as a co-catalyst to convert epoxides into carbonates. The recyclability of the as-prepared catalyst was evaluated for four reaction cycles, evidencing stable properties without significant depletion of CO<sub>2</sub> capture efficiency. Most importantly, the post-cleaning of the catalytic sponge is not required to be reused. Finally, the green chemistry metrics applied to the process demonstrated that our approach significantly mitigates risks and reduces environmental impact, thus elevating the overall cleanliness of our proof of concept.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000237/pdfft?md5=30a42f121cc921ad375eece1b4b67236&pid=1-s2.0-S2666542524000237-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140545777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reticular liquid crystal design: Controlling complex self-assembly of p-terphenyl rods by side-chain engineering and chirality 网状液晶设计:通过侧链工程和手性控制对三联苯棒的复杂自组装
IF 7 1区 化学 Q1 Materials Science Pub Date : 2024-04-01 DOI: 10.1016/j.giant.2024.100254
Silvio Poppe , Anne Lehmann , Matthias Steimecke , Marko Prehm , Yangyang Zhao , Changlong Chen , Yu Cao , Feng Liu , Carsten Tschierske

A series of K-shaped bolapolyphiles, consisting of a p-terphenyl core, two polar glycerol end-groups and a swallow-tailed alkyl side-chain were synthesized and investigated. By increasing the side-chain volume an astonishing variety of very different liquid crystalline (LC) phases was observed, ranging from a rectangular (Colrec/c2mm) and a square honeycomb (Colsqu/p4mm) via a highly complex zeolite-like octagon/pentagon honeycomb filled with additional strings of rod-bundles (ColrecZ/c2mm), a new 3D-hexagonal (R3c) double network phase, a double and even a single network cubic phase (double gyroid Cub/Ia3d and single diamond Cub/Fd3m, respectively) to a correlated lamellar phase (LamSm/c2mm). Though these LC structures are highly complex and there is a delicate balance of steric and geometric frustration determining the phase formation, there is only a small effect of permanent molecular chirality in the glycerol groups ((R,R)-configuration) on them, which is attributed to a slightly different packing density of uniformly chiral and racemic glycerols, but not to an effect of induced helicity. Compared to related T-shaped bolapolyphiles with a single linear n-alkyl side-chain, which form exclusively honeycomb phases, the complexity of self-assembly is enhanced for the K-shaped compounds due to a competition between the requirements of space filling, chain stretching and geometric frustration, and affected by the shape of the polar glycerol domains at the junctions.

我们合成并研究了一系列由对三联苯核心、两个极性甘油端基和一个燕尾烷基侧链组成的 K 型硼烷多聚物。通过增加侧链的体积,观察到了多种不同的液晶(LC)相,从矩形(Colrec/c2mm)和方形蜂窝(Colsqu/p4mm)到高度复杂的沸石状八角形/五角形蜂窝,其中还填充了额外的杆束串(ColrecZ/c2mm)、新的三维六边形(R3‾c)双网络相、双网络立方相甚至单网络立方相(分别为双陀螺 Cub/Ia3‾d 和单金刚石 Cub/Fd3‾m)到相关片状相(LamSm/c2mm)。虽然这些 LC 结构非常复杂,而且决定相形成的立体和几何挫折之间存在微妙的平衡,但甘油基团中的永久分子手性((R,R)-构型)对它们的影响很小,这归因于均匀手性甘油和外消旋甘油的堆积密度略有不同,而不是诱导螺旋的影响。与具有单一线性正烷基侧链的 T 型波拉苯并酞化合物相比,K 型化合物的自组装复杂性更高,这是由于空间填充、链伸展和几何挫折等要求之间的竞争造成的,并受到交界处极性甘油域形状的影响。
{"title":"Reticular liquid crystal design: Controlling complex self-assembly of p-terphenyl rods by side-chain engineering and chirality","authors":"Silvio Poppe ,&nbsp;Anne Lehmann ,&nbsp;Matthias Steimecke ,&nbsp;Marko Prehm ,&nbsp;Yangyang Zhao ,&nbsp;Changlong Chen ,&nbsp;Yu Cao ,&nbsp;Feng Liu ,&nbsp;Carsten Tschierske","doi":"10.1016/j.giant.2024.100254","DOIUrl":"https://doi.org/10.1016/j.giant.2024.100254","url":null,"abstract":"<div><p>A series of K-shaped bolapolyphiles, consisting of a <em>p</em>-terphenyl core, two polar glycerol end-groups and a swallow-tailed alkyl side-chain were synthesized and investigated. By increasing the side-chain volume an astonishing variety of very different liquid crystalline (LC) phases was observed, ranging from a rectangular (Col<sub>rec</sub>/<em>c</em>2<em>mm</em>) and a square honeycomb (Col<sub>squ</sub>/<em>p</em>4<em>mm</em>) via a highly complex zeolite-like octagon/pentagon honeycomb filled with additional strings of rod-bundles (Col<sub>rec</sub><sup>Z</sup>/<em>c</em>2<em>mm</em>), a new 3D-hexagonal (<em>R</em><span><math><mover><mrow><mn>3</mn></mrow><mo>‾</mo></mover></math></span><em>c</em>) double network phase, a double and even a single network cubic phase (double gyroid Cub/<em>Ia</em><span><math><mover><mrow><mn>3</mn></mrow><mo>‾</mo></mover></math></span><em>d</em> and single diamond Cub/<em>Fd</em><span><math><mover><mrow><mn>3</mn></mrow><mo>‾</mo></mover></math></span><em>m</em>, respectively) to a correlated lamellar phase (Lam<sub>Sm</sub>/<em>c</em>2<em>mm</em>). Though these LC structures are highly complex and there is a delicate balance of steric and geometric frustration determining the phase formation, there is only a small effect of permanent molecular chirality in the glycerol groups ((<em>R,R</em>)-configuration) on them, which is attributed to a slightly different packing density of uniformly chiral and racemic glycerols, but not to an effect of induced helicity. Compared to related T-shaped bolapolyphiles with a single linear <em>n</em>-alkyl side-chain, which form exclusively honeycomb phases, the complexity of self-assembly is enhanced for the K-shaped compounds due to a competition between the requirements of space filling, chain stretching and geometric frustration, and affected by the shape of the polar glycerol domains at the junctions.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000195/pdfft?md5=ac442a6a9533db3122bfd99fc86aa7cc&pid=1-s2.0-S2666542524000195-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140559146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-regulated secretory materials for long-term icephobicity 自我调节分泌物促进长期恐冰症
IF 7 1区 化学 Q1 Materials Science Pub Date : 2024-04-01 DOI: 10.1016/j.giant.2024.100260
Xinhong Xiong , Songzi Xu , Li Yang , Hong Wang , Guifeng Xia , Qiucheng Yang , Qian Wu , Jiaxi Cui

Passive icephobic coatings attract increasing attention due to their harmless strategy for preventing undesirable ice accumulation. Slippery liquid-infused surfaces display extremely low ice adhesion (τice) but are argued for their poor stabilities and longevities due to inevitable liquid consumption. Herein we reported a class of lubricated polysiloxane coatings that can maintain low τice (∼2.2 kPa) for a long time (>800 icing/deicing cycle). The coatings have slippery lubricated surfaces and switchable porous matrices loading a large amount of liquid in isolated porevoids. Such droplet-embedded structure allows the surfaces to continuously maintain highly swelling states in a self-adaptive manner, i.e., only in the conditions icing or oil consumption occur dose oil is released, and thus show excellent long-term icephobicity. Besides, these materials exhibit good mechanical properties, antifatigue, and substrate adhesion. Because the coatings can be prepared via facile and green method from cheap starting materials, we foresee their broad application prospect in many fields.

被动疏冰涂层因其无害的防冰策略而受到越来越多的关注。注入液体的防滑表面具有极低的冰附着力(τ冰),但由于不可避免的液体消耗,其稳定性和使用寿命较差。在此,我们报告了一类润滑聚硅氧烷涂层,该涂层可长时间(800 个结冰/除冰周期)保持低τ冰(∼2.2 kPa)。涂层具有光滑的润滑表面和可切换的多孔基质,可在孤立的孔隙中装载大量液体。这种液滴嵌入式结构使表面能够以自适应的方式持续保持高膨胀状态,即只有在结冰或耗油的情况下才释放油剂量,从而表现出优异的长期憎冰性。此外,这些材料还具有良好的机械性能、抗疲劳性和基底附着力。由于这些涂层可以用廉价的起始材料通过简便、绿色的方法制备,我们可以预见它们在许多领域都有广阔的应用前景。
{"title":"Self-regulated secretory materials for long-term icephobicity","authors":"Xinhong Xiong ,&nbsp;Songzi Xu ,&nbsp;Li Yang ,&nbsp;Hong Wang ,&nbsp;Guifeng Xia ,&nbsp;Qiucheng Yang ,&nbsp;Qian Wu ,&nbsp;Jiaxi Cui","doi":"10.1016/j.giant.2024.100260","DOIUrl":"https://doi.org/10.1016/j.giant.2024.100260","url":null,"abstract":"<div><p>Passive icephobic coatings attract increasing attention due to their harmless strategy for preventing undesirable ice accumulation. Slippery liquid-infused surfaces display extremely low ice adhesion (τ<sub>ice</sub>) but are argued for their poor stabilities and longevities due to inevitable liquid consumption. Herein we reported a class of lubricated polysiloxane coatings that can maintain low τice (∼2.2 kPa) for a long time (&gt;800 icing/deicing cycle). The coatings have slippery lubricated surfaces and switchable porous matrices loading a large amount of liquid in isolated porevoids. Such droplet-embedded structure allows the surfaces to continuously maintain highly swelling states in a self-adaptive manner, i.e., only in the conditions icing or oil consumption occur dose oil is released, and thus show excellent long-term icephobicity. Besides, these materials exhibit good mechanical properties, antifatigue, and substrate adhesion. Because the coatings can be prepared via facile and green method from cheap starting materials, we foresee their broad application prospect in many fields.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000250/pdfft?md5=4ae31894cafaa4b0ab94c482c01113ae&pid=1-s2.0-S2666542524000250-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140351175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emerging polymer ferroelectrics with liquid crystalline order 具有液晶阶的新兴聚合物铁电体
IF 7 1区 化学 Q1 Materials Science Pub Date : 2024-03-31 DOI: 10.1016/j.giant.2024.100257
Jiahao Huang , Man-Hin Kwok , Bin Zhao , Lei Zhu

For liquid crystals (LCs) and liquid crystalline polymers (LCPs), a chiral smectic C (SmC*) phase has been mandatory for breaking the symmetry and achieving ferroelectricity. However, this SmC* phase leads to rather low spontaneous polarization (Ps, 0.1–5 mC/m2), which has limited their usage in various electronic and electro-optical applications. In this mini-review, we highlight three new types of ferroelectric LCPs with high Ps values reported in the last decade. The first system refers to the ferroelectric nematic LCs and LCPs. The large dipole moment (>9 Debye or D) and oblique molecular shape induce a polar packing of calamitic nematics. The Ps can reach as high as 40 mC/m2. The second example is a ferroelectric supramolecular LCP, in which the highly polar cyano groups in the core lead to a polar structure of the hexagonal columnar phase after electric poling. The Ps can reach ∼ 20 mC/m2. The third system utilizes highly dipolar sulfonyl groups (dipole moment ∼4.5 D) in the side chains of mesogen-free comb-shaped LCPs. By combining finely tuned dipolar interactions and mobile LC order, these mesogen-free comb-like LCPs have shown good potential for ferroelectricity with high Ps. These ferroelectric LCPs with high Ps will enable new electronic and electro-optical applications in the future.

对于液晶(LC)和液晶聚合物(LCP)来说,手性 Smectic C(SmC*)相是打破对称性和实现铁电性的必备条件。然而,这种 SmC* 相会导致相当低的自发极化(Ps,0.1-5 mC/m2),从而限制了它们在各种电子和电光应用中的使用。在这篇微型综述中,我们将重点介绍近十年来报道的三种新型高 Ps 值铁电 LCP。第一个系统指的是铁电向列型 LC 和 LCP。大偶极矩(>9 Debye 或 D)和倾斜的分子形状诱导了钙钛矿向列化合物的极性堆积。Ps 可高达 40 mC/m2。第二个例子是铁电超分子 LCP,其核心中的高极性氰基在电极化后导致六方柱状相的极性结构。Ps 可以达到 ∼ 20 mC/m2。第三种体系利用无介质梳状低聚物侧链中的高偶极性磺酰基(偶极矩∼4.5 D)。这些不含介质的梳状 LCP 结合了微调偶极相互作用和流动 LC 有序性,显示出具有高 Ps 的铁电性的良好潜力。
{"title":"Emerging polymer ferroelectrics with liquid crystalline order","authors":"Jiahao Huang ,&nbsp;Man-Hin Kwok ,&nbsp;Bin Zhao ,&nbsp;Lei Zhu","doi":"10.1016/j.giant.2024.100257","DOIUrl":"10.1016/j.giant.2024.100257","url":null,"abstract":"<div><p>For liquid crystals (LCs) and liquid crystalline polymers (LCPs), a chiral smectic C (SmC*) phase has been mandatory for breaking the symmetry and achieving ferroelectricity. However, this SmC* phase leads to rather low spontaneous polarization (<em>P</em><sub>s</sub>, 0.1–5 mC/m<sup>2</sup>), which has limited their usage in various electronic and electro-optical applications. In this mini-review, we highlight three new types of ferroelectric LCPs with high <em>P<sub>s</sub></em> values reported in the last decade. The first system refers to the ferroelectric nematic LCs and LCPs. The large dipole moment (&gt;9 Debye or D) and oblique molecular shape induce a polar packing of calamitic nematics. The <em>P<sub>s</sub></em> can reach as high as 40 mC/m<sup>2</sup>. The second example is a ferroelectric supramolecular LCP, in which the highly polar cyano groups in the core lead to a polar structure of the hexagonal columnar phase after electric poling. The <em>P<sub>s</sub></em> can reach ∼ 20 mC/m<sup>2</sup>. The third system utilizes highly dipolar sulfonyl groups (dipole moment ∼4.5 D) in the side chains of mesogen-free comb-shaped LCPs. By combining finely tuned dipolar interactions and mobile LC order, these mesogen-free comb-like LCPs have shown good potential for ferroelectricity with high <em>P<sub>s</sub></em>. These ferroelectric LCPs with high <em>P<sub>s</sub></em> will enable new electronic and electro-optical applications in the future.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000225/pdfft?md5=f893e876c0ee292018325f531a83476e&pid=1-s2.0-S2666542524000225-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140402314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced contrast imaging with polyamide 6/Fe(OH)3 nanofibrous scaffolds: A focus on high T1 relaxivity 使用聚酰胺 6/Fe(OH)3 纳米纤维支架增强对比成像:聚焦高 T1 弛豫性
IF 7 1区 化学 Q1 Materials Science Pub Date : 2024-03-30 DOI: 10.1016/j.giant.2024.100259
Congyi Yang , Yifan Jia , Weiwen Yuan , Guoxing Liao , Qianqian Yu , Zhe Tang , Yuan Ji , Guanghui Liu , Fangrong Tan , Paul D. Topham , LinGe Wang

Nanofibers serve as widely employed tissue engineering scaffolds in diverse biomedical applications. When implanted in vivo, it is crucial for tissue engineering scaffolds to be visualizable, enabling the monitoring of their shape, position, and performance. This capability facilitates the effective assessment of implant deformations, displacements, degradations, and functionalities. However, in many biomedical imaging techniques such as magnetic resonance imaging (MRI), the contrast of tissue engineering scaffolds is often inadequate. MRI is particularly notable for its effectiveness in imaging soft tissues. Previous endeavors to enhance the contrast of tissue engineering scaffolds in MRI have involved the use of negative contrast agents (CAs). Nonetheless, negative CAs can result in artifacts, thus favoring the preference for positive CAs due to their ability to generate clearer boundaries. In this study, we successfully prepared composite polyamide 6 nanofibrous scaffolds with ultrafine dispersion Fe(OH)3 nanoparticles using electrospinning and in-situ growth techniques. The relaxation properties of the magnetic nanofibrous scaffolds confirmed the successful production of scaffolds suitable for positive imaging. In vitro cell seeding experiments demonstrated the efficient proliferation and adhesion of endothelial cells and fibroblasts. In vivo studies further revealed the biocompatibility and functionality of the scaffolds. These findings indicate that the prepared PA6/Fe(OH)3 composite nanofibrous scaffolds can enable straightforward, safe, and efficient in vivo positive contrast MRI monitoring, thereby playing a pivotal role in the integration of diagnosis and treatment within tissue engineering scaffolds.

纳米纤维是广泛应用于各种生物医学领域的组织工程支架。在体内植入时,组织工程支架必须是可视的,这样才能监测其形状、位置和性能。这种功能有助于有效评估植入物的变形、位移、退化和功能。然而,在磁共振成像(MRI)等许多生物医学成像技术中,组织工程支架的对比度往往不足。核磁共振成像在软组织成像方面的效果尤为显著。以前为增强组织工程支架在核磁共振成像中的对比度,曾使用过负性造影剂(CA)。然而,阴性造影剂会产生伪影,因此人们更倾向于使用阳性造影剂,因为它们能产生更清晰的边界。在这项研究中,我们利用电纺丝和原位生长技术成功制备了带有超细分散 Fe(OH)3 纳米粒子的复合聚酰胺 6 纳米纤维支架。磁性纳米纤维支架的弛豫特性证实成功制备了适用于正向成像的支架。体外细胞播种实验表明,内皮细胞和成纤维细胞能有效增殖和粘附。体内研究进一步揭示了支架的生物相容性和功能性。这些研究结果表明,所制备的 PA6/Fe(OH)3复合纳米纤维支架可实现直接、安全和高效的体内正向对比核磁共振成像监测,从而在组织工程支架的诊断和治疗一体化中发挥关键作用。
{"title":"Enhanced contrast imaging with polyamide 6/Fe(OH)3 nanofibrous scaffolds: A focus on high T1 relaxivity","authors":"Congyi Yang ,&nbsp;Yifan Jia ,&nbsp;Weiwen Yuan ,&nbsp;Guoxing Liao ,&nbsp;Qianqian Yu ,&nbsp;Zhe Tang ,&nbsp;Yuan Ji ,&nbsp;Guanghui Liu ,&nbsp;Fangrong Tan ,&nbsp;Paul D. Topham ,&nbsp;LinGe Wang","doi":"10.1016/j.giant.2024.100259","DOIUrl":"https://doi.org/10.1016/j.giant.2024.100259","url":null,"abstract":"<div><p>Nanofibers serve as widely employed tissue engineering scaffolds in diverse biomedical applications. When implanted <em>in vivo</em>, it is crucial for tissue engineering scaffolds to be visualizable, enabling the monitoring of their shape, position, and performance. This capability facilitates the effective assessment of implant deformations, displacements, degradations, and functionalities. However, in many biomedical imaging techniques such as magnetic resonance imaging (MRI), the contrast of tissue engineering scaffolds is often inadequate. MRI is particularly notable for its effectiveness in imaging soft tissues. Previous endeavors to enhance the contrast of tissue engineering scaffolds in MRI have involved the use of negative contrast agents (CAs). Nonetheless, negative CAs can result in artifacts, thus favoring the preference for positive CAs due to their ability to generate clearer boundaries. In this study, we successfully prepared composite polyamide 6 nanofibrous scaffolds with ultrafine dispersion Fe(OH)<sub>3</sub> nanoparticles using electrospinning and <em>in-situ</em> growth techniques. The relaxation properties of the magnetic nanofibrous scaffolds confirmed the successful production of scaffolds suitable for positive imaging. <em>In vitro</em> cell seeding experiments demonstrated the efficient proliferation and adhesion of endothelial cells and fibroblasts. <em>In vivo</em> studies further revealed the biocompatibility and functionality of the scaffolds. These findings indicate that the prepared PA6/Fe(OH)<sub>3</sub> composite nanofibrous scaffolds can enable straightforward, safe, and efficient <em>in vivo</em> positive contrast MRI monitoring, thereby playing a pivotal role in the integration of diagnosis and treatment within tissue engineering scaffolds.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000249/pdfft?md5=7b4f97a2bbd01d00ff50de3dfe931ee4&pid=1-s2.0-S2666542524000249-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140345441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recyclable ionic liquid-mediated synthesis of quinazolin-4(3H)-ones under metal-free and solvent-free conditions 在无金属和无溶剂条件下以可回收离子液体为媒介合成喹唑啉-4(3H)-酮类化合物
IF 7 1区 化学 Q1 Materials Science Pub Date : 2024-03-27 DOI: 10.1016/j.giant.2024.100255
Xue Ma, Peng Li, Xuerou Chen, Siqi Li, Wuji Sun, Qidi Zhong

A metal-free and solvent-free method for the synthesis of quinazolin-4(3H)-ones is proposed by condensation cyclization of 2-aminobenzamides and aldehydes using 1-butyl-3-methylimida-zolium tetrafluoride ([Bmim]BF4) as ionic liquid catalyst. In this reaction, [Bmim]BF4 acts as both a catalyst and a solvent without need for additional catalysts and solvents. This method exhibits favorable functional group tolerance in substrates and affords a series of desired products in moderate to excellent yields. In addition, it is noteworthy that the reaction yield is still as high as 87% after [Bmim]BF4 is recycled at least four times.

以 1-丁基-3-甲基四氟化亚氨基唑([Bmim]BF4)为离子液体催化剂,通过 2-氨基苯甲酰胺和醛的缩合环化反应,提出了一种无金属、无溶剂的喹唑啉-4(3H)-酮合成方法。在该反应中,[Bmim]BF4 既是催化剂又是溶剂,无需额外的催化剂和溶剂。这种方法对底物中的官能团具有良好的耐受性,并能以中等到极高的产率得到一系列所需的产物。此外,值得注意的是,[Bmim]BF4 循环使用至少四次后,反应产率仍高达 87%。
{"title":"Recyclable ionic liquid-mediated synthesis of quinazolin-4(3H)-ones under metal-free and solvent-free conditions","authors":"Xue Ma,&nbsp;Peng Li,&nbsp;Xuerou Chen,&nbsp;Siqi Li,&nbsp;Wuji Sun,&nbsp;Qidi Zhong","doi":"10.1016/j.giant.2024.100255","DOIUrl":"https://doi.org/10.1016/j.giant.2024.100255","url":null,"abstract":"<div><p>A metal-free and solvent-free method for the synthesis of quinazolin-4(3<em>H</em>)-ones is proposed by condensation cyclization of 2-aminobenzamides and aldehydes using 1-butyl-3-methylimida-zolium tetrafluoride ([Bmim]BF<sub>4</sub>) as ionic liquid catalyst. In this reaction, [Bmim]BF<sub>4</sub> acts as both a catalyst and a solvent without need for additional catalysts and solvents. This method exhibits favorable functional group tolerance in substrates and affords a series of desired products in moderate to excellent yields. In addition, it is noteworthy that the reaction yield is still as high as 87% after [Bmim]BF<sub>4</sub> is recycled at least four times.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000201/pdfft?md5=cb66995979f1c6c7d115a4402a2e6423&pid=1-s2.0-S2666542524000201-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140342493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Carrier-free nanomedicines: Mechanisms of formation and biomedical applications 无载体纳米药物:形成机制和生物医学应用
IF 7 1区 化学 Q1 Materials Science Pub Date : 2024-03-26 DOI: 10.1016/j.giant.2024.100256
Xinrui Dong , Hu Liu , Haibao Liu , Xiaoqin Zhang , Xiaoran Deng

In recent years, significant advancements in nanotechnology have yielded remarkable improvements in biomedical applications. Nanocarriers, harnessed from the principles of nanotechnology, have garnered widespread utilization in medicine delivery and diagnostics. However, the progression of nanocarriers has been hindered by two key challenges: low drug loading capacity and the potential for carrier-induced toxicity. To surmount these obstacles, the rapid development and expansion of carrier-free drug delivery systems (CFDDSs) composed of pure drugs and prodrugs have emerged as a promising solution. Extensive endeavors have been undertaken to explore novel excipients, therapeutic agents, self-assembly processes, and therapeutic mechanisms, aimed at expanding the horizons of CFDDSs and enhancing their therapeutic efficacy. This comprehensive review provides an overview of CFDDSs, elucidating their self-assembly mechanisms. Additionally, we examine their diverse biomedical applications while shedding light on the challenges ahead for the future development and clinical implementation of CFDDSs. This review serves to enhance our understanding of the intricate mechanisms governing drug nanoassembly formation and fosters the advancement of CFDDSs in the expansive realm of biomedical research.

近年来,纳米技术的巨大进步为生物医学应用带来了显著改善。利用纳米技术原理制成的纳米载体在药物输送和诊断方面得到了广泛应用。然而,纳米载体的发展一直受到两个关键挑战的阻碍:药物负载能力低和载体诱导毒性的可能性。为了克服这些障碍,由纯药物和原药组成的无载体给药系统(CFDDSs)迅速发展壮大,成为一种前景广阔的解决方案。人们一直在努力探索新型辅料、治疗药物、自组装过程和治疗机制,旨在拓展无载体给药系统的视野并提高其疗效。本综述概述了 CFDDSs,阐明了它们的自组装机制。此外,我们还研究了它们的各种生物医学应用,同时阐明了 CFDDSs 未来发展和临床应用所面临的挑战。这篇综述有助于加深我们对药物纳米组装形成的复杂机制的理解,并促进 CFDDSs 在广阔的生物医学研究领域中的发展。
{"title":"Carrier-free nanomedicines: Mechanisms of formation and biomedical applications","authors":"Xinrui Dong ,&nbsp;Hu Liu ,&nbsp;Haibao Liu ,&nbsp;Xiaoqin Zhang ,&nbsp;Xiaoran Deng","doi":"10.1016/j.giant.2024.100256","DOIUrl":"https://doi.org/10.1016/j.giant.2024.100256","url":null,"abstract":"<div><p>In recent years, significant advancements in nanotechnology have yielded remarkable improvements in biomedical applications. Nanocarriers, harnessed from the principles of nanotechnology, have garnered widespread utilization in medicine delivery and diagnostics. However, the progression of nanocarriers has been hindered by two key challenges: low drug loading capacity and the potential for carrier-induced toxicity. To surmount these obstacles, the rapid development and expansion of carrier-free drug delivery systems (CFDDSs) composed of pure drugs and prodrugs have emerged as a promising solution. Extensive endeavors have been undertaken to explore novel excipients, therapeutic agents, self-assembly processes, and therapeutic mechanisms, aimed at expanding the horizons of CFDDSs and enhancing their therapeutic efficacy. This comprehensive review provides an overview of CFDDSs, elucidating their self-assembly mechanisms. Additionally, we examine their diverse biomedical applications while shedding light on the challenges ahead for the future development and clinical implementation of CFDDSs. This review serves to enhance our understanding of the intricate mechanisms governing drug nanoassembly formation and fosters the advancement of CFDDSs in the expansive realm of biomedical research.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000213/pdfft?md5=b9e4ba90f3133f3bf0ca392b0b3cc3de&pid=1-s2.0-S2666542524000213-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140339044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Facile fabrication of high-strength biocomposite through Mg2+-enhanced bonding in bamboo fiber 通过 Mg2+ 增强竹纤维粘合力,轻松制备高强度生物复合材料
IF 7 1区 化学 Q1 Materials Science Pub Date : 2024-03-19 DOI: 10.1016/j.giant.2024.100253
Shengbo Ge , Guiyang Zheng , Yang Shi , Zhongfeng Zhang , Abdullatif Jazzar , Ximin He , Saddick Donkor , Zhanhu Guo , Ding Wang , Ben Bin Xu

The emerging interests in high-performance biocomposites grows significantly driven by their superior environmental sustainability. This study proposes a unique biocomposite strategy by implementing an acetic and ball-milled treatment to disrupt the bamboo cell wall structure, thereby facilitating further processing by effectively increasing the active sites and specific surface area in the bamboo fiber. The fibers are subsequently carboxymethylated to introduce carboxyl groups which facilitate physical bonding between the fibers and Mg2+ ions that are added to the system. These ions form metal-coordination bonds with the carboxyl groups, acting as ion bridges that significantly strengthen the inter-fiber bonding. The resulted biocomposite exhibits impressive mechanical properties, including a high tensile strength (94.24 MPa) and flexural strength (104.14 MPa), not only that, changes in elastic modulus also highlight changes in fiber bonding, the flexural modulus is 21.29 GPa and the tensile modulus is 7.01 GPa. Moreover, it maintains a low water uptake capacity of only 6.8 % despite being submerged for 12 h. The thermal conductivity and fire retardancy have also been improved. The synergic bonding ability between the cellulose and lignin in the fibers, coupled with the glue-free thermoforming process, enhances the material performance and renders it fully recyclable, thus reducing environmental pollution and providing cost-effective engineering materials to society.

高性能生物复合材料因其卓越的环境可持续性而备受关注。本研究提出了一种独特的生物复合材料策略,即通过醋酸和球磨处理来破坏竹细胞壁结构,从而通过有效增加竹纤维中的活性位点和比表面积来促进进一步加工。随后对纤维进行羧甲基化处理,以引入羧基,从而促进纤维与添加到系统中的 Mg2+ 离子之间的物理结合。这些离子与羧基形成金属配位键,起到离子桥的作用,大大加强了纤维间的结合力。由此产生的生物复合材料表现出令人印象深刻的机械性能,包括较高的拉伸强度(94.24 兆帕)和弯曲强度(104.14 兆帕),不仅如此,弹性模量的变化也突显了纤维结合的变化,弯曲模量为 21.29 GPa,拉伸模量为 7.01 GPa。此外,尽管浸泡了 12 小时,它的吸水率仍然很低,仅为 6.8%。纤维中的纤维素和木质素之间的协同粘合能力,加上无胶热成型工艺,提高了材料的性能,并使其完全可回收,从而减少了环境污染,为社会提供了具有成本效益的工程材料。
{"title":"Facile fabrication of high-strength biocomposite through Mg2+-enhanced bonding in bamboo fiber","authors":"Shengbo Ge ,&nbsp;Guiyang Zheng ,&nbsp;Yang Shi ,&nbsp;Zhongfeng Zhang ,&nbsp;Abdullatif Jazzar ,&nbsp;Ximin He ,&nbsp;Saddick Donkor ,&nbsp;Zhanhu Guo ,&nbsp;Ding Wang ,&nbsp;Ben Bin Xu","doi":"10.1016/j.giant.2024.100253","DOIUrl":"10.1016/j.giant.2024.100253","url":null,"abstract":"<div><p>The emerging interests in high-performance biocomposites grows significantly driven by their superior environmental sustainability. This study proposes a unique biocomposite strategy by implementing an acetic and ball-milled treatment to disrupt the bamboo cell wall structure, thereby facilitating further processing by effectively increasing the active sites and specific surface area in the bamboo fiber. The fibers are subsequently carboxymethylated to introduce carboxyl groups which facilitate physical bonding between the fibers and Mg<sup>2+</sup> ions that are added to the system. These ions form metal-coordination bonds with the carboxyl groups, acting as ion bridges that significantly strengthen the inter-fiber bonding. The resulted biocomposite exhibits impressive mechanical properties, including a high tensile strength (94.24 MPa) and flexural strength (104.14 MPa), not only that, changes in elastic modulus also highlight changes in fiber bonding, the flexural modulus is 21.29 GPa and the tensile modulus is 7.01 GPa. Moreover, it maintains a low water uptake capacity of only 6.8 % despite being submerged for 12 h. The thermal conductivity and fire retardancy have also been improved. The synergic bonding ability between the cellulose and lignin in the fibers, coupled with the glue-free thermoforming process, enhances the material performance and renders it fully recyclable, thus reducing environmental pollution and providing cost-effective engineering materials to society.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000183/pdfft?md5=b14ce1af812666a7cbb5cbf4d664d0e3&pid=1-s2.0-S2666542524000183-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140268892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computer-aided automated flow chemical synthesis of polymers 聚合物的计算机辅助自动流动化学合成
IF 7 1区 化学 Q1 Materials Science Pub Date : 2024-03-15 DOI: 10.1016/j.giant.2024.100252
Li Yu , Baiyang Chen , Ziying Li , Yue Su , Xuesong Jiang , Zeguang Han , Yongfeng Zhou , Deyue Yan , Xinyuan Zhu , Ruijiao Dong

Synthetic chemistry has played a vital role in miscellaneous fields of human civilization over the past century. The synthetic stage yet remains time-consuming and labor-intensive. To overcome these limitations, automation has been introduced to transform synthetic chemistry, leading to the development of high-throughput methods for molecular discovery. Automated flow chemical synthesis (AFCS) has recently emerged as a promising candidate, offering improved efficiency, scalability, and sustainability over the well-known automated solid-phase peptide synthesis. To further advance AFCS, elements like artificial intelligence-based computer-aided structure design and synthesis planning, autonomously assembled compatible synthesis with enhanced automated process control, and autonomous optimization can be considered. This review focuses on recent advances in computer-aided automated flow chemical synthesis (CAAFCS) of polymers in living polymerization and iterative synthesis strategy. The current challenges and outlook are finally discussed for developing more powerful CAAFCS systems and expanding their applicability across numerous fields, potentially providing brand-new perspectives and guidelines for future developments in this field.

在过去的一个世纪里,合成化学在人类文明的各个领域发挥了重要作用。然而,合成阶段仍然耗时耗力。为了克服这些局限性,人们引入了自动化技术来改变合成化学,从而开发出用于分子发现的高通量方法。与众所周知的自动化固相肽合成相比,自动化流动化学合成(AFCS)具有更高的效率、可扩展性和可持续性,最近已成为一种有前途的候选方法。为了进一步推动 AFCS 的发展,可以考虑采用基于人工智能的计算机辅助结构设计和合成规划、具有增强型自动过程控制功能的自主组装兼容合成以及自主优化等要素。本综述重点介绍活聚合和迭代合成策略中聚合物计算机辅助自动流动化学合成(CAAFCS)的最新进展。最后讨论了当前的挑战和前景,以开发功能更强大的 CAAFCS 系统,并扩大其在众多领域的适用性,从而为该领域的未来发展提供全新的视角和指导方针。
{"title":"Computer-aided automated flow chemical synthesis of polymers","authors":"Li Yu ,&nbsp;Baiyang Chen ,&nbsp;Ziying Li ,&nbsp;Yue Su ,&nbsp;Xuesong Jiang ,&nbsp;Zeguang Han ,&nbsp;Yongfeng Zhou ,&nbsp;Deyue Yan ,&nbsp;Xinyuan Zhu ,&nbsp;Ruijiao Dong","doi":"10.1016/j.giant.2024.100252","DOIUrl":"10.1016/j.giant.2024.100252","url":null,"abstract":"<div><p>Synthetic chemistry has played a vital role in miscellaneous fields of human civilization over the past century. The synthetic stage yet remains time-consuming and labor-intensive. To overcome these limitations, automation has been introduced to transform synthetic chemistry, leading to the development of high-throughput methods for molecular discovery. Automated flow chemical synthesis (AFCS) has recently emerged as a promising candidate, offering improved efficiency, scalability, and sustainability over the well-known automated solid-phase peptide synthesis. To further advance AFCS, elements like artificial intelligence-based computer-aided structure design and synthesis planning, autonomously assembled compatible synthesis with enhanced automated process control, and autonomous optimization can be considered. This review focuses on recent advances in computer-aided automated flow chemical synthesis (CAAFCS) of polymers in living polymerization and iterative synthesis strategy. The current challenges and outlook are finally discussed for developing more powerful CAAFCS systems and expanding their applicability across numerous fields, potentially providing brand-new perspectives and guidelines for future developments in this field.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000171/pdfft?md5=587ecd8af97aad0e89d35b6f2c949f02&pid=1-s2.0-S2666542524000171-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140150355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
GIANT
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1