首页 > 最新文献

GIANT最新文献

英文 中文
Biopolymer networks packed with microgels combine strain stiffening and shape programmability 含有微凝胶的生物聚合物网络兼具应变刚性和形状可编程性
IF 7 1区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-06-03 DOI: 10.1016/j.giant.2024.100297
Vignesh Subramaniam , Abhishek M. Shetty , Steven J. Chisolm , Taylor R. Lansberry , Anjana Balachandar , Cameron D. Morley , Thomas E. Angelini

Biomaterials that can be reversibly stiffened and shaped could be useful in broad biomedical applications where form-fitting scaffolds are needed. Here we investigate the combination of strong non-linear elasticity in biopolymer networks with the reconfigurability of packed hydrogel particles within a composite biomaterial. By packing microgels into collagen-1 networks and characterizing their linear and non-linear material properties, we empirically determine a scaling relationship that describes the synergistic dependence of the material's linear elastic shear modulus on the concentration of both components. We perform high-strain rheological tests and find that the materials strain stiffen and also exhibit a form of programmability, where no applied stress is required to maintain stiffened states of deformation after large strains are applied. We demonstrate that this non-linear rheological behavior can be used to shape samples that do not spontaneously relax large-scale bends, holding their deformed shapes for days. Detailed analysis of the frequency-dependent rheology reveals an unexpected connection to the rheology of living cells, where models of soft glasses capture their low-frequency behaviors and polymer elasticity models capture their high-frequency behaviors.

可以可逆地硬化和塑形的生物材料可广泛应用于需要塑形支架的生物医学领域。在这里,我们研究了生物聚合物网络中的强非线性弹性与复合生物材料中包装水凝胶颗粒的可重构性的结合。通过将微凝胶填充到胶原蛋白-1 网络中并表征其线性和非线性材料特性,我们根据经验确定了一种比例关系,该关系描述了材料的线性弹性剪切模量对两种成分浓度的协同依赖性。我们进行了高应变流变测试,发现材料在应变变硬的同时,还表现出一种可编程性,即在施加大应变后,无需施加应力即可维持变硬的变形状态。我们证明,这种非线性流变行为可用于塑造不会自发松弛大规模弯曲的样品,使其变形形状保持数天之久。对频率相关流变学的详细分析揭示了与活细胞流变学之间意想不到的联系,其中软玻璃模型捕捉了它们的低频行为,而聚合物弹性模型则捕捉了它们的高频行为。
{"title":"Biopolymer networks packed with microgels combine strain stiffening and shape programmability","authors":"Vignesh Subramaniam ,&nbsp;Abhishek M. Shetty ,&nbsp;Steven J. Chisolm ,&nbsp;Taylor R. Lansberry ,&nbsp;Anjana Balachandar ,&nbsp;Cameron D. Morley ,&nbsp;Thomas E. Angelini","doi":"10.1016/j.giant.2024.100297","DOIUrl":"10.1016/j.giant.2024.100297","url":null,"abstract":"<div><p>Biomaterials that can be reversibly stiffened and shaped could be useful in broad biomedical applications where form-fitting scaffolds are needed. Here we investigate the combination of strong non-linear elasticity in biopolymer networks with the reconfigurability of packed hydrogel particles within a composite biomaterial. By packing microgels into collagen-1 networks and characterizing their linear and non-linear material properties, we empirically determine a scaling relationship that describes the synergistic dependence of the material's linear elastic shear modulus on the concentration of both components. We perform high-strain rheological tests and find that the materials strain stiffen and also exhibit a form of programmability, where no applied stress is required to maintain stiffened states of deformation after large strains are applied. We demonstrate that this non-linear rheological behavior can be used to shape samples that do not spontaneously relax large-scale bends, holding their deformed shapes for days. Detailed analysis of the frequency-dependent rheology reveals an unexpected connection to the rheology of living cells, where models of soft glasses capture their low-frequency behaviors and polymer elasticity models capture their high-frequency behaviors.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"19 ","pages":"Article 100297"},"PeriodicalIF":7.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000614/pdfft?md5=dbf98b7d3c75238d9d4aea341989ecfa&pid=1-s2.0-S2666542524000614-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141279286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Skin-like breathable wound dressings with antimicrobial and hemostatic properties 具有抗菌和止血功能的类肤透气伤口敷料
IF 7 1区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-06-03 DOI: 10.1016/j.giant.2024.100300
Hanbai Wu , Chuanwei Zhi , Yuhan Chen , Xiong Zhou , Cong Wang , Raymond H.W. Lam , Tingwu Qin , Guibing Fu , Zhu Xiong , Kaisong Huang , Jia-Horng Lin , Shuo Shi , Jinlian Hu

Wound healing requires a contamination-free, sterile, and breathable environment. However, to develop an ideal wound dressing with all these functionalities simultaneously poses significant challenges. In this study, we designed a wound dressing that mimics the structure of skin with good breathability and protective functions. The wound dressing consists of a hydrophilic Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P34HB) membrane coated with zinc oxide nanoparticles and a hydrophobic polyvinylidene fluoride (PVDF) membrane. Meanwhile, plasma treatment was also utilized to bond the two layers, resulting in an enhancement of 60 % in mechanical properties. The crosslinked fibrous membranes exhibited uniform stress distribution when stretching. Due to the unique structures of the wound dressing, it demonstrates wound exudate management, antibacterial functions, and hemostatic properties. The hydrophobic layer guided wound exudate towards the hydrophilic layer and the zinc oxide nanoparticles acted as a barrier against external bacteria and released zinc ions to inhibit bacterial growth in the exudate. Moreover, the water vapor transmission rate (WVTR) was measured to be over 86.55 kg/m2/day, the hemolysis rate was 2.38 %, and an impressive 81.98 % healing rate was recorded during in vitro wound healing. This skin-mimicking wound dressing shows great potential as a promising solution for the therapy of chronic wounds and infections.

伤口愈合需要一个无污染、无菌和透气的环境。然而,要开发一种同时具备所有这些功能的理想伤口敷料却面临着巨大的挑战。在这项研究中,我们设计了一种模仿皮肤结构、具有良好透气性和保护功能的伤口敷料。该伤口敷料由亲水性聚(3-羟基丁酸-4-羟基丁酸)(P34HB)膜和疏水性聚偏二氟乙烯(PVDF)膜组成,前者涂有纳米氧化锌颗粒。同时,还利用等离子处理将两层膜粘合在一起,从而使机械性能提高了 60%。交联纤维膜在拉伸时表现出均匀的应力分布。由于伤口敷料的独特结构,它具有伤口渗液管理、抗菌和止血功能。疏水层能引导伤口渗出物流向亲水层,而纳米氧化锌颗粒则能阻挡外部细菌,并释放锌离子抑制渗出物中的细菌生长。此外,经测量,水蒸气透过率(WVTR)超过 86.55 千克/平方米/天,溶血率为 2.38%,体外伤口愈合率高达 81.98%。这种仿皮伤口敷料显示出巨大的潜力,是治疗慢性伤口和感染的理想解决方案。
{"title":"Skin-like breathable wound dressings with antimicrobial and hemostatic properties","authors":"Hanbai Wu ,&nbsp;Chuanwei Zhi ,&nbsp;Yuhan Chen ,&nbsp;Xiong Zhou ,&nbsp;Cong Wang ,&nbsp;Raymond H.W. Lam ,&nbsp;Tingwu Qin ,&nbsp;Guibing Fu ,&nbsp;Zhu Xiong ,&nbsp;Kaisong Huang ,&nbsp;Jia-Horng Lin ,&nbsp;Shuo Shi ,&nbsp;Jinlian Hu","doi":"10.1016/j.giant.2024.100300","DOIUrl":"10.1016/j.giant.2024.100300","url":null,"abstract":"<div><p>Wound healing requires a contamination-free, sterile, and breathable environment. However, to develop an ideal wound dressing with all these functionalities simultaneously poses significant challenges. In this study, we designed a wound dressing that mimics the structure of skin with good breathability and protective functions. The wound dressing consists of a hydrophilic Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P34HB) membrane coated with zinc oxide nanoparticles and a hydrophobic polyvinylidene fluoride (PVDF) membrane. Meanwhile, plasma treatment was also utilized to bond the two layers, resulting in an enhancement of 60 % in mechanical properties. The crosslinked fibrous membranes exhibited uniform stress distribution when stretching. Due to the unique structures of the wound dressing, it demonstrates wound exudate management, antibacterial functions, and hemostatic properties. The hydrophobic layer guided wound exudate towards the hydrophilic layer and the zinc oxide nanoparticles acted as a barrier against external bacteria and released zinc ions to inhibit bacterial growth in the exudate. Moreover, the water vapor transmission rate (WVTR) was measured to be over 86.55 kg/m<sup>2</sup>/day, the hemolysis rate was 2.38 %, and an impressive 81.98 % healing rate was recorded during in vitro wound healing. This skin-mimicking wound dressing shows great potential as a promising solution for the therapy of chronic wounds and infections.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"19 ","pages":"Article 100300"},"PeriodicalIF":7.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266654252400064X/pdfft?md5=aca2c6568e1d3af723d9eaa731161789&pid=1-s2.0-S266654252400064X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141276137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Marine biomaterials for sustainable bone regeneration 用于可持续骨再生的海洋生物材料
IF 7 1区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-06-03 DOI: 10.1016/j.giant.2024.100298
Haowei Wang , Xinyu Li , Mingcheng Xuan , Ren Yang , Jianhui Zhang , Jinke Chang

The field of bone regeneration has witnessed significant advancements with the exploration and incorporation of marine biomaterials, offering promising avenues for orthopaedic and dental applications. Marine environments are a rich source of biological materials with unique properties conducive to bone healing and regeneration. Repurposing and reusing some waste by-products of marine products for bone regeneration not only contribute to environmental protection but also drives the development of the marine economy, thereby achieving sustainable development. Moreover, the lower production costs associated with the abundant availability and easy processing of marine biomaterials make bone regeneration therapies more accessible to a broader population, enhancing global health equity. By exploring the current research progressions on marine biomaterials and recounting their sources, properties, mechanisms of action, and applications in bone regeneration research, this review provides a comprehensive overview of the potential and challenges of marine biomaterials for future bone healing and regeneration applications.

随着海洋生物材料的探索和应用,骨再生领域取得了重大进展,为整形外科和牙科应用提供了前景广阔的途径。海洋环境中蕴藏着丰富的生物材料,其独特的特性有利于骨骼的愈合和再生。将海洋产品的一些废弃副产品再利用和再循环用于骨再生,不仅有助于环境保护,还能推动海洋经济的发展,从而实现可持续发展。此外,由于海洋生物材料丰富且易于加工,生产成本较低,因此骨再生疗法更容易被更多人接受,从而提高了全球健康公平性。本综述通过探讨当前海洋生物材料的研究进展,阐述其来源、特性、作用机制以及在骨再生研究中的应用,全面概述了海洋生物材料在未来骨愈合和再生应用中的潜力和挑战。
{"title":"Marine biomaterials for sustainable bone regeneration","authors":"Haowei Wang ,&nbsp;Xinyu Li ,&nbsp;Mingcheng Xuan ,&nbsp;Ren Yang ,&nbsp;Jianhui Zhang ,&nbsp;Jinke Chang","doi":"10.1016/j.giant.2024.100298","DOIUrl":"10.1016/j.giant.2024.100298","url":null,"abstract":"<div><p>The field of bone regeneration has witnessed significant advancements with the exploration and incorporation of marine biomaterials, offering promising avenues for orthopaedic and dental applications. Marine environments are a rich source of biological materials with unique properties conducive to bone healing and regeneration. Repurposing and reusing some waste by-products of marine products for bone regeneration not only contribute to environmental protection but also drives the development of the marine economy, thereby achieving sustainable development. Moreover, the lower production costs associated with the abundant availability and easy processing of marine biomaterials make bone regeneration therapies more accessible to a broader population, enhancing global health equity. By exploring the current research progressions on marine biomaterials and recounting their sources, properties, mechanisms of action, and applications in bone regeneration research, this review provides a comprehensive overview of the potential and challenges of marine biomaterials for future bone healing and regeneration applications.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"19 ","pages":"Article 100298"},"PeriodicalIF":7.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000626/pdfft?md5=a03d96aa25308d97417bfcb70ff6819e&pid=1-s2.0-S2666542524000626-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141277351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sustainable foams from hemp, lignin, xylan, pectin, and glycerol: tunable via reversible citric acid crosslinking for absorption and insulation applications 由大麻、木质素、木聚糖、果胶和甘油制成的可持续泡沫:可通过可逆柠檬酸交联进行调节,用于吸收和隔热应用
IF 7 1区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-05-30 DOI: 10.1016/j.giant.2024.100295
Sergejs Beluns , Oskars Platnieks , Maksims Jurinovs , Rinalds Buss , Sergejs Gaidukovs , Liga Orlova , Olesja Starkova , Vijay Kumar Thakur

This study investigates the development of sustainable multifunctional foams utilizing hemp stalk waste, lignin, xylan, pectin, glycerol, and citric acid. Using the freeze-drying method for foam formation in combination with industrial waste products and renewable resources, we emphasize a green, scalable material development approach. In total, 25 distinct formulations were prepared and methodically examined, mainly focusing on the roles of citric acid, pectin, and glycerol. Thermal crosslinking, conducted at 140°C, was analyzed using FTIR, confirming the formation of ester bonds. The microstructural characterization of the foams revealed distinct variations from nanofibrillar to microfibrillar structures based on composition. The bulk density of the foams ranged from 13 to 152 mg/cm3, and porosity values varied from 97 % to 99 % for most of the compositions. Foams showed up to 50 g/g water, 51 g/g rapeseed oil, and 46 g/g kerosine absorption. Foam absorption capacity changes were examined through 10 iterative cycles in water, demonstrating that most compositions retained near-original absorption capacities. Adding glycerol conferred exceptional hydrophobic properties to the foam surfaces, as evidenced by water contact angles ranging between 140° and 150°. The thermal conductivity of foams ranged from 0.040 to 0.046 W/mK. The mechanical properties of foams were assessed using compression testing, which showed highly tunable structures ranging from soft to rigid. This study illustrates the broad applicability of these foams, emphasizing their utility in thermal insulation, filtration systems, and environmental cleanup, among other potential uses.

本研究调查了利用麻杆废料、木质素、木聚糖、果胶、甘油和柠檬酸开发可持续多功能泡沫的情况。我们采用冷冻干燥法形成泡沫,并结合工业废品和可再生资源,强调一种绿色、可扩展的材料开发方法。我们总共制备了 25 种不同的配方并进行了方法学研究,主要侧重于柠檬酸、果胶和甘油的作用。利用傅立叶变换红外光谱分析了在 140°C 温度下进行的热交联,确认了酯键的形成。泡沫的微观结构特征显示,根据成分的不同,从纳米纤丝结构到微纤丝结构存在明显的差异。泡沫的体积密度从 13 到 152 mg/cm3 不等,大多数成分的孔隙率从 97% 到 99% 不等。泡沫对水、菜籽油和煤油的吸收率分别高达 50 克/克、51 克/克和 46 克/克。通过在水中反复循环 10 次,对泡沫吸收能力的变化进行了检测,结果表明大多数成分都保持了接近原始的吸收能力。添加甘油可使泡沫表面具有特殊的疏水特性,水接触角在 140° 和 150° 之间就是证明。泡沫的导热系数在 0.040 到 0.046 W/mK 之间。通过压缩测试评估了泡沫的机械性能,结果表明泡沫结构从柔软到坚硬,具有很强的可调性。这项研究说明了这些泡沫的广泛适用性,强调了它们在隔热、过滤系统和环境清洁等方面的用途。
{"title":"Sustainable foams from hemp, lignin, xylan, pectin, and glycerol: tunable via reversible citric acid crosslinking for absorption and insulation applications","authors":"Sergejs Beluns ,&nbsp;Oskars Platnieks ,&nbsp;Maksims Jurinovs ,&nbsp;Rinalds Buss ,&nbsp;Sergejs Gaidukovs ,&nbsp;Liga Orlova ,&nbsp;Olesja Starkova ,&nbsp;Vijay Kumar Thakur","doi":"10.1016/j.giant.2024.100295","DOIUrl":"https://doi.org/10.1016/j.giant.2024.100295","url":null,"abstract":"<div><p>This study investigates the development of sustainable multifunctional foams utilizing hemp stalk waste, lignin, xylan, pectin, glycerol, and citric acid. Using the freeze-drying method for foam formation in combination with industrial waste products and renewable resources, we emphasize a green, scalable material development approach. In total, 25 distinct formulations were prepared and methodically examined, mainly focusing on the roles of citric acid, pectin, and glycerol. Thermal crosslinking, conducted at 140°C, was analyzed using FTIR, confirming the formation of ester bonds. The microstructural characterization of the foams revealed distinct variations from nanofibrillar to microfibrillar structures based on composition. The bulk density of the foams ranged from 13 to 152 mg/cm<sup>3</sup>, and porosity values varied from 97 % to 99 % for most of the compositions. Foams showed up to 50 g/g water, 51 g/g rapeseed oil, and 46 g/g kerosine absorption. Foam absorption capacity changes were examined through 10 iterative cycles in water, demonstrating that most compositions retained near-original absorption capacities. Adding glycerol conferred exceptional hydrophobic properties to the foam surfaces, as evidenced by water contact angles ranging between 140° and 150°. The thermal conductivity of foams ranged from 0.040 to 0.046 W/mK. The mechanical properties of foams were assessed using compression testing, which showed highly tunable structures ranging from soft to rigid. This study illustrates the broad applicability of these foams, emphasizing their utility in thermal insulation, filtration systems, and environmental cleanup, among other potential uses.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"19 ","pages":"Article 100295"},"PeriodicalIF":7.0,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000596/pdfft?md5=d4389efb52dbf3b33684d3bea4ec53ac&pid=1-s2.0-S2666542524000596-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141291433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Converting “sliding” to “rolling” design for high-performance lubricating hydrogel 将高性能润滑水凝胶的 "滑动 "设计转变为 "滚动 "设计
IF 7 1区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-05-29 DOI: 10.1016/j.giant.2024.100296
Fangbin Fan , Jinrui Han , Li Zhao , Bo Yu , Meirong Cai , Xiaowei Pei , Zhizhi Zhang , Shuanhong Ma , Yanfei Ma , Feng Zhou

Despite the excellent lubricity of conventional hydrogel materials due to their wet-soft properties, they produce severe mechanical elastic deformation at higher interfacial contact stresses. Balancing the load-bearing capacity and lubricating properties of hydrogel material is the difficulty of the current research work for articular cartilage substitutes. Great progress has been made in developing bionic joint materials with high load-bearing and low-friction hydrogels based on gradient designs. However, most bionic materials are based on sliding friction greatly limiting the improvement of lubrication performance. Herein, we designed and prepared a new hydrogel material with high load-bearing capacity and stable lubrication performance, breaking through the traditional friction method and turning to “sliding” for “rolling”. The network on the hydrogel surface was dissociated by UV irradiation and the pores on the surface were filled with SiO2 nanoparticles. The dense network structure of the underlying layer endows the hydrogel material with good load-bearing properties, while the high degree of hydration of the surface layer and the rolling friction effect of SiO2 nanoparticles greatly enhance the lubrication property. With the synergistic effect of these designs, the multi-layered hydrogel with nanoparticles on the surface achieved an ultra-low average coefficient of friction (COF) of ∼0.00809 at a high load of 50 N during 30,000 cycles. This idea of hydrogel material design provides a new strategy for the replacement of biomimetic articular cartilage materials.

尽管传统的水凝胶材料因其湿软特性而具有极佳的润滑性,但在较高的界面接触应力下会产生严重的机械弹性变形。如何平衡水凝胶材料的承重能力和润滑特性,是目前关节软骨替代品研究工作的难点。基于梯度设计的高承重、低摩擦水凝胶仿生关节材料的开发取得了很大进展。然而,大多数仿生材料都是基于滑动摩擦,大大限制了润滑性能的提高。在此,我们设计制备了一种具有高承载能力和稳定润滑性能的新型水凝胶材料,突破了传统的摩擦方式,变 "滑动 "为 "滚动"。通过紫外线照射,水凝胶表面的网络被解离,表面的孔隙被二氧化硅纳米颗粒填充。底层致密的网络结构赋予了水凝胶材料良好的承重性能,而表层的高水合度和 SiO2 纳米粒子的滚动摩擦效应则大大增强了其润滑性能。在这些设计的协同作用下,表面含有纳米颗粒的多层水凝胶在 30,000 次循环中承受 50 N 的高负载时,实现了 0.00809 ∼ 0.00809 的超低平均摩擦系数(COF)。这种水凝胶材料设计理念为替代仿生物关节软骨材料提供了一种新策略。
{"title":"Converting “sliding” to “rolling” design for high-performance lubricating hydrogel","authors":"Fangbin Fan ,&nbsp;Jinrui Han ,&nbsp;Li Zhao ,&nbsp;Bo Yu ,&nbsp;Meirong Cai ,&nbsp;Xiaowei Pei ,&nbsp;Zhizhi Zhang ,&nbsp;Shuanhong Ma ,&nbsp;Yanfei Ma ,&nbsp;Feng Zhou","doi":"10.1016/j.giant.2024.100296","DOIUrl":"https://doi.org/10.1016/j.giant.2024.100296","url":null,"abstract":"<div><p>Despite the excellent lubricity of conventional hydrogel materials due to their wet-soft properties, they produce severe mechanical elastic deformation at higher interfacial contact stresses. Balancing the load-bearing capacity and lubricating properties of hydrogel material is the difficulty of the current research work for articular cartilage substitutes. Great progress has been made in developing bionic joint materials with high load-bearing and low-friction hydrogels based on gradient designs. However, most bionic materials are based on sliding friction greatly limiting the improvement of lubrication performance. Herein, we designed and prepared a new hydrogel material with high load-bearing capacity and stable lubrication performance, breaking through the traditional friction method and turning to “sliding” for “rolling”. The network on the hydrogel surface was dissociated by UV irradiation and the pores on the surface were filled with SiO<sub>2</sub> nanoparticles. The dense network structure of the underlying layer endows the hydrogel material with good load-bearing properties, while the high degree of hydration of the surface layer and the rolling friction effect of SiO<sub>2</sub> nanoparticles greatly enhance the lubrication property. With the synergistic effect of these designs, the multi-layered hydrogel with nanoparticles on the surface achieved an ultra-low average coefficient of friction (COF) of ∼0.00809 at a high load of 50 N during 30,000 cycles. This idea of hydrogel material design provides a new strategy for the replacement of biomimetic articular cartilage materials.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"19 ","pages":"Article 100296"},"PeriodicalIF":7.0,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000602/pdfft?md5=9e948d92c08290c6a4a291f202e87a66&pid=1-s2.0-S2666542524000602-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141263810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
n-Type polythiophene as a hole-blocking layer in inverted organic photodetectors 在倒置有机光电探测器中用作空穴阻挡层的 n 型聚噻吩
IF 7 1区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-05-28 DOI: 10.1016/j.giant.2024.100291
Jiahui Wang , Sihui Deng , Jun Ma , Junli Hu , Jun Liu

Organic photodetectors (OPDs) own unique advantages such as light weight, flexibility, low production cost, tunable detection wavelength, and thus are promising for a variety of applications. The lack of hole-blocking layer (HBL) materials impedes the reduction of dark current density and the enhancement of the performance of OPDs. Herein, we employed an n-type polythiophene n-PT1 as a HBL material for inverted OPDs. The specific solubility of n-PT1 in o-dichlorobenzene facilitates solution processing and enables multilayer device fabrication. The ultradeep-lying highest occupied molecular orbital energy level ensures a large hole injection barrier between cathode and active layer that suppresses dark current. As a result, compared to the control devices without n-PT1, the inverted OPD devices with n-PT1 as HBL demonstrate a two-order-of-magnitude reduction in dark current density and a one-order-of-magnitude increase in specific detectivity. To the best of our knowledge, this is the first solution processable HBL material for inverted OPDs.

有机光电探测器(OPD)具有重量轻、灵活性强、生产成本低、探测波长可调等独特优势,因此在各种应用中大有可为。由于缺乏阻孔层(HBL)材料,阻碍了 OPD 暗电流密度的降低和性能的提高。在此,我们采用 n 型聚噻吩 n-PT1 作为反相 OPD 的 HBL 材料。n-PT1 在邻二氯苯中的特异溶解性有利于溶液加工,并可实现多层器件制造。超深层的最高占据分子轨道能级确保了阴极和活性层之间的大空穴注入势垒,从而抑制了暗电流。因此,与不使用 n-PT1 的对照器件相比,使用 n-PT1 作为 HBL 的反相 OPD 器件的暗电流密度降低了两个数量级,而特定检测率则提高了一个数量级。据我们所知,这是第一种用于倒置 OPD 的可溶液加工 HBL 材料。
{"title":"n-Type polythiophene as a hole-blocking layer in inverted organic photodetectors","authors":"Jiahui Wang ,&nbsp;Sihui Deng ,&nbsp;Jun Ma ,&nbsp;Junli Hu ,&nbsp;Jun Liu","doi":"10.1016/j.giant.2024.100291","DOIUrl":"https://doi.org/10.1016/j.giant.2024.100291","url":null,"abstract":"<div><p>Organic photodetectors (OPDs) own unique advantages such as light weight, flexibility, low production cost, tunable detection wavelength, and thus are promising for a variety of applications. The lack of hole-blocking layer (HBL) materials impedes the reduction of dark current density and the enhancement of the performance of OPDs. Herein, we employed an n-type polythiophene n-PT1 as a HBL material for inverted OPDs. The specific solubility of n-PT1 in <em>o</em>-dichlorobenzene facilitates solution processing and enables multilayer device fabrication. The ultradeep-lying highest occupied molecular orbital energy level ensures a large hole injection barrier between cathode and active layer that suppresses dark current. As a result, compared to the control devices without n-PT1, the inverted OPD devices with n-PT1 as HBL demonstrate a two-order-of-magnitude reduction in dark current density and a one-order-of-magnitude increase in specific detectivity. To the best of our knowledge, this is the first solution processable HBL material for inverted OPDs.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"19 ","pages":"Article 100291"},"PeriodicalIF":7.0,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000559/pdfft?md5=00a8df932071896f4695480d271d09fc&pid=1-s2.0-S2666542524000559-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141263900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistically manipulating the shape of alkyl-chain and asymmetric side groups of non-fullerene acceptors enables organic solar cells to reach 18.5% efficiency 协同操纵非富勒烯受体的烷基链和不对称侧基的形状,使有机太阳能电池的效率达到 18.5%
IF 7 1区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-05-23 DOI: 10.1016/j.giant.2024.100294
Xinyu Tong , Zhenyu Chen , Jingyu Shi , Jinfeng Ge , Wei Song , Yuanyuan Meng , Ziyi Ge

Side-chain modification and asymmetric design for non-fullerene acceptors (NFAs) have been proven to be effective methods for harvesting high-performance organic solar cells (OSCs). Combining the two molecular design strategies, we adopted phenyl chain and alkyl chains with different shapes to develop two novel asymmetric NFAs, named BTP-P2EHC11 and BTP-P2EHC2C4. Compared with BTP-P2EHC2C4 attached 2-ethylhexyl side chain, BTP-P2EHC11 with linear alkyl side chain have slightly red-shifted absorption and intensive absorption strength. Moreover, the PM6:BTP-P2EHC11 blend film presents higher and more balanced charge mobilities, reducing charge recombination, tighter intermolecular packing and more favorable fibrous network morphology with appropriate phase separation than PM6:BTP-P2EHC2C4, which lead to significantly enhanced short-circuit current density (JSC) of PM6:BTP-P2EHC11-based devices. Thus, the OSCs based on PM6:BTP-P2EHC11 achieve a superior power conversion efficiency (PCE) of 18.50% with a good trade-off among open-circuit voltage (VOC) of 0.876 V, JSC of 26.85 mA cm−2 and fill factor (FF) of 78.65%, while PM6:BTP-P2EHC2C4-based device exhibits a lower PCE of 17.49%. Our investigation elucidates that the combination of finely optimizing the shape of alkyl-chain and asymmetric side groups of NFAs could pave a promising avenue toward morphology optimization and performance promotion of OSCs.

非富勒烯受体(NFAs)的侧链修饰和不对称设计已被证明是获得高性能有机太阳能电池(OSCs)的有效方法。结合这两种分子设计策略,我们采用不同形状的苯基链和烷基链开发了两种新型不对称非富勒烯受体,分别命名为 BTP-P2EHC11 和 BTP-P2EHC2C4。与带有 2-乙基己基侧链的 BTP-P2EHC2C4 相比,带有线性烷基侧链的 BTP-P2EHC11 的吸收率略有红移,吸收强度较大。此外,与 PM6:BTP-P2EHC2C4 相比,PM6:BTP-P2EHC11 混合薄膜具有更高更均衡的电荷迁移率、更低的电荷重组、更紧密的分子间堆积和更有利的纤维状网络形态以及适当的相分离,从而显著提高了基于 PM6:BTP-P2EHC11 器件的短路电流密度(JSC)。因此,基于 PM6:BTP-P2EHC11 的 OSC 在开路电压 (VOC) 0.876 V、短路电流密度 (JSC) 26.85 mA cm-2 和填充因子 (FF) 78.65% 之间实现了 18.50% 的出色功率转换效率 (PCE),而基于 PM6:BTP-P2EHC2C4 的器件则表现出 17.49% 的较低 PCE。我们的研究阐明,将烷基链的形状和 NFA 的不对称侧基进行精细优化相结合,可以为 OSC 的形态优化和性能提升铺平道路。
{"title":"Synergistically manipulating the shape of alkyl-chain and asymmetric side groups of non-fullerene acceptors enables organic solar cells to reach 18.5% efficiency","authors":"Xinyu Tong ,&nbsp;Zhenyu Chen ,&nbsp;Jingyu Shi ,&nbsp;Jinfeng Ge ,&nbsp;Wei Song ,&nbsp;Yuanyuan Meng ,&nbsp;Ziyi Ge","doi":"10.1016/j.giant.2024.100294","DOIUrl":"10.1016/j.giant.2024.100294","url":null,"abstract":"<div><p>Side-chain modification and asymmetric design for non-fullerene acceptors (NFAs) have been proven to be effective methods for harvesting high-performance organic solar cells (OSCs). Combining the two molecular design strategies, we adopted phenyl chain and alkyl chains with different shapes to develop two novel asymmetric NFAs, named BTP-P2EH<img>C11 and BTP-P2EH<img>C2C4. Compared with BTP-P2EH<img>C2C4 attached 2-ethylhexyl side chain, BTP-P2EH<img>C11 with linear alkyl side chain have slightly red-shifted absorption and intensive absorption strength. Moreover, the PM6:BTP-P2EH<img>C11 blend film presents higher and more balanced charge mobilities, reducing charge recombination, tighter intermolecular packing and more favorable fibrous network morphology with appropriate phase separation than PM6:BTP-P2EH<img>C2C4, which lead to significantly enhanced short-circuit current density (<em>J</em><sub>SC</sub>) of PM6:BTP-P2EH<img>C11-based devices. Thus, the OSCs based on PM6:BTP-P2EH<img>C11 achieve a superior power conversion efficiency (PCE) of 18.50% with a good trade-off among open-circuit voltage (<em>V</em><sub>OC</sub>) of 0.876 V, <em>J</em><sub>SC</sub> of 26.85 mA cm<sup>−2</sup> and fill factor (FF) of 78.65%, while PM6:BTP-P2EH<img>C2C4-based device exhibits a lower PCE of 17.49%. Our investigation elucidates that the combination of finely optimizing the shape of alkyl-chain and asymmetric side groups of NFAs could pave a promising avenue toward morphology optimization and performance promotion of OSCs.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"19 ","pages":"Article 100294"},"PeriodicalIF":7.0,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000584/pdfft?md5=fa4baf84a06e851e2e43996b95063119&pid=1-s2.0-S2666542524000584-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141139680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Raining-inspired method for construction of porous film material 受雨水启发的多孔薄膜材料构建方法
IF 7 1区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-05-23 DOI: 10.1016/j.giant.2024.100293
Xiaomin Wang , Heyi Pan , Lin Lian , Xiangjun Gong , Yang Wang , Chaoqun Zhang

The low-temperature environment caused by solvent evaporation leads to the condensation of water vapor into water droplets that remain on the surface of the film to form breath figure patterns. The conventional approach to regulate the pore morphology in the breath figure process is to optimize the ambient temperature, humidity, and solution concentration. However, realizing a wide adjustable window of pore size and uniform distribution of the pore are still challenges. Here, inspired by the rainfall phenomenon, we proposed a simple and efficient method called the “raining boxing method” (RBM) for preparing porous films based on exogenously given water droplets as templates. The RBM broadened the adjustable window of pore size (0.6–225 µm in this work) and solved the inherent problem of radial reduction of pore size from the film center to the edge caused by the significant difference in low-temperature duration at different locations accompanying the solvent evaporation process. Furthermore, this method could realize multi-types porous films, including surface porous films, spongy porous films, and honeycomb porous films, and could be universally applied in the casting process of various polymer solutions.

溶剂蒸发造成的低温环境会导致水蒸气凝结成水滴,这些水滴留在薄膜表面,形成呼吸图纹。调节透气图形过程中孔隙形态的传统方法是优化环境温度、湿度和溶液浓度。然而,实现孔隙大小的宽可调窗口和孔隙的均匀分布仍然是一个挑战。在此,我们受降雨现象的启发,提出了一种简单而高效的方法,即 "降雨拳法"(RBM),用于以外加水滴为模板制备多孔薄膜。RBM 拓宽了孔径的可调窗口(本研究中为 0.6-225 µm),解决了溶剂蒸发过程中不同位置低温持续时间的显著差异导致孔径从薄膜中心向边缘径向减小的固有问题。此外,该方法可实现多类型多孔薄膜,包括表面多孔薄膜、海绵状多孔薄膜和蜂窝状多孔薄膜,可普遍应用于各种聚合物溶液的浇铸过程。
{"title":"Raining-inspired method for construction of porous film material","authors":"Xiaomin Wang ,&nbsp;Heyi Pan ,&nbsp;Lin Lian ,&nbsp;Xiangjun Gong ,&nbsp;Yang Wang ,&nbsp;Chaoqun Zhang","doi":"10.1016/j.giant.2024.100293","DOIUrl":"10.1016/j.giant.2024.100293","url":null,"abstract":"<div><p>The low-temperature environment caused by solvent evaporation leads to the condensation of water vapor into water droplets that remain on the surface of the film to form breath figure patterns. The conventional approach to regulate the pore morphology in the breath figure process is to optimize the ambient temperature, humidity, and solution concentration. However, realizing a wide adjustable window of pore size and uniform distribution of the pore are still challenges. Here, inspired by the rainfall phenomenon, we proposed a simple and efficient method called the “raining boxing method” (RBM) for preparing porous films based on exogenously given water droplets as templates. The RBM broadened the adjustable window of pore size (0.6–225 µm in this work) and solved the inherent problem of radial reduction of pore size from the film center to the edge caused by the significant difference in low-temperature duration at different locations accompanying the solvent evaporation process. Furthermore, this method could realize multi-types porous films, including surface porous films, spongy porous films, and honeycomb porous films, and could be universally applied in the casting process of various polymer solutions.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"19 ","pages":"Article 100293"},"PeriodicalIF":7.0,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000572/pdfft?md5=6f318d42175150e218508c27aab69e8e&pid=1-s2.0-S2666542524000572-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141145227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fatigue failure of soft adhesive systems: A state-of-the-art review 软粘合剂系统的疲劳失效:最新技术综述
IF 7 1区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-05-23 DOI: 10.1016/j.giant.2024.100292
Chengbin Yao , Yan Xia , Zhuoran Yang , Zhongmeng Zhu , Zheyu Li , Han Jiang

Soft adhesive systems (SASs), which consist of a soft adhesive layer and/or soft adherends, have been extensively applied in advanced fields such as biomedicine, flexible electronics, and soft robotics. Understanding the fatigue failure of SASs is crucial for ensuring their structural safety and functional stability, as they are often subjected to fatigue loading. This paper systematically reviews the fatigue failure of SASs, aiming to provide a comprehensive understanding and contribute to the study of fatigue failure mechanisms and lifetime prediction of SASs. The review starts by introducing classical research methods for fatigue failure of adhesive systems, with a focus on total fatigue lifetime and fatigue crack growth (FCG). After summarizing the complexity of fatigue failure in SASs, it provides an overview of fatigue research for the three types of SASs: “soft interface”, “soft adherend”, and “soft-soft” adhesive systems. Then, the relations between the fatigue failure and energy dissipation of various SASs are specifically discussed noting that significant energy dissipation accompanying the cyclic deformation of SASs during fatigue loading can substantially affect the final fatigue failure of SASs. Finally, the current unresolved issues and challenges in this field are presented.

软粘合系统(SAS)由软粘合层和/或软粘合剂组成,已广泛应用于生物医学、柔性电子和软机器人等先进领域。由于 SAS 经常承受疲劳载荷,因此了解 SAS 的疲劳失效对于确保其结构安全和功能稳定性至关重要。本文对 SAS 的疲劳失效进行了系统综述,旨在提供一个全面的理解,为 SAS 的疲劳失效机制研究和寿命预测做出贡献。综述首先介绍了粘合剂系统疲劳失效的经典研究方法,重点是总疲劳寿命和疲劳裂纹增长(FCG)。在总结了 SAS 疲劳破坏的复杂性后,综述了三种类型 SAS 的疲劳研究:"软界面"、"软粘合剂 "和 "软-软 "粘合剂系统。然后,具体讨论了各种 SAS 的疲劳失效与能量耗散之间的关系,指出在疲劳加载过程中伴随 SAS 循环变形的大量能量耗散会对 SAS 的最终疲劳失效产生重大影响。最后,介绍了该领域目前尚未解决的问题和面临的挑战。
{"title":"Fatigue failure of soft adhesive systems: A state-of-the-art review","authors":"Chengbin Yao ,&nbsp;Yan Xia ,&nbsp;Zhuoran Yang ,&nbsp;Zhongmeng Zhu ,&nbsp;Zheyu Li ,&nbsp;Han Jiang","doi":"10.1016/j.giant.2024.100292","DOIUrl":"10.1016/j.giant.2024.100292","url":null,"abstract":"<div><p>Soft adhesive systems (SASs), which consist of a soft adhesive layer and/or soft adherends, have been extensively applied in advanced fields such as biomedicine, flexible electronics, and soft robotics. Understanding the fatigue failure of SASs is crucial for ensuring their structural safety and functional stability, as they are often subjected to fatigue loading. This paper systematically reviews the fatigue failure of SASs, aiming to provide a comprehensive understanding and contribute to the study of fatigue failure mechanisms and lifetime prediction of SASs. The review starts by introducing classical research methods for fatigue failure of adhesive systems, with a focus on total fatigue lifetime and fatigue crack growth (FCG). After summarizing the complexity of fatigue failure in SASs, it provides an overview of fatigue research for the three types of SASs: “soft interface”, “soft adherend”, and “soft-soft” adhesive systems. Then, the relations between the fatigue failure and energy dissipation of various SASs are specifically discussed noting that significant energy dissipation accompanying the cyclic deformation of SASs during fatigue loading can substantially affect the final fatigue failure of SASs. Finally, the current unresolved issues and challenges in this field are presented.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"19 ","pages":"Article 100292"},"PeriodicalIF":7.0,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000560/pdfft?md5=aad0e74ea6f71b9ca50d483c6a2a3d45&pid=1-s2.0-S2666542524000560-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141133596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Room temperature stable twist-bend nematic materials without crystallization over 1 year 室温下稳定扭弯向列材料 1 年不结晶
IF 7 1区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-05-22 DOI: 10.1016/j.giant.2024.100290
Conglong Yuan , Yuxing Zhan , Huixian Liu , Zhaoyi Wang , Ning Shen , Binghui Liu , Honglong Hu , Zhigang Zheng

The twist-bend nematic (NTB) phase of achiral liquid crystals (LCs) manifests a unique self-assembled heliconical structure with nanometer-scale pitch length, mirroring the chiral symmetry-breaking phenomena in nature, thus sparking widespread research interest. However, the ingenious NTB phase is only stable at high temperatures within a very limited temperature interval, often undergoing inevitable crystallization at low temperatures. Herein, room temperature supercooled NTB material systems composed of meticulously designed LC dimer mixtures with varying molecular curvatures and central flexibility were developed, resulting in complete resistance to crystallization even after 1 year of storage. Furthermore, the proposed NTB material systems demonstrated exceptional compatibility with common nematic LCs, facilitating the tailoring of overall physical parameters, particularly to achieve a sufficiently low bend elastic constant with excellent stability. This work represents a paradigmatic advancement forward in realizing stable NTB phase materials with a broad temperature range and resistance to crystallization, thereby tackling the enduring and seemingly insurmountable challenge while providing impetus for further exploration of their applications in soft matter, crystallography, and advanced photonics.

非手性液晶(LCs)的扭转弯曲向列(NTB)相表现出独特的自组装螺旋结构,其间距长度达到纳米级,反映了自然界中的手性对称破缺现象,因此引发了广泛的研究兴趣。然而,巧妙的 NTB 相只能在非常有限的温度区间内的高温下保持稳定,在低温下往往会发生不可避免的结晶。在此,我们开发了由精心设计的具有不同分子曲率和中心柔性的低聚物二聚体混合物组成的室温过冷 NTB 材料体系,即使在储存一年后也能完全防止结晶。此外,所提出的 NTB 材料体系与普通向列低聚物具有出色的兼容性,有助于定制整体物理参数,特别是实现足够低的弯曲弹性常数和出色的稳定性。这项工作代表了在实现具有宽温度范围和抗结晶性的稳定 NTB 相材料方面取得的典范性进展,从而解决了看似难以克服的持久挑战,同时为进一步探索其在软物质、晶体学和先进光子学中的应用提供了动力。
{"title":"Room temperature stable twist-bend nematic materials without crystallization over 1 year","authors":"Conglong Yuan ,&nbsp;Yuxing Zhan ,&nbsp;Huixian Liu ,&nbsp;Zhaoyi Wang ,&nbsp;Ning Shen ,&nbsp;Binghui Liu ,&nbsp;Honglong Hu ,&nbsp;Zhigang Zheng","doi":"10.1016/j.giant.2024.100290","DOIUrl":"10.1016/j.giant.2024.100290","url":null,"abstract":"<div><p>The twist-bend nematic (N<sub>TB</sub>) phase of achiral liquid crystals (LCs) manifests a unique self-assembled heliconical structure with nanometer-scale pitch length, mirroring the chiral symmetry-breaking phenomena in nature, thus sparking widespread research interest. However, the ingenious N<sub>TB</sub> phase is only stable at high temperatures within a very limited temperature interval, often undergoing inevitable crystallization at low temperatures. Herein, room temperature supercooled N<sub>TB</sub> material systems composed of meticulously designed LC dimer mixtures with varying molecular curvatures and central flexibility were developed, resulting in complete resistance to crystallization even after 1 year of storage. Furthermore, the proposed N<sub>TB</sub> material systems demonstrated exceptional compatibility with common nematic LCs, facilitating the tailoring of overall physical parameters, particularly to achieve a sufficiently low bend elastic constant with excellent stability. This work represents a paradigmatic advancement forward in realizing stable N<sub>TB</sub> phase materials with a broad temperature range and resistance to crystallization, thereby tackling the enduring and seemingly insurmountable challenge while providing impetus for further exploration of their applications in soft matter, crystallography, and advanced photonics.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"19 ","pages":"Article 100290"},"PeriodicalIF":7.0,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000547/pdfft?md5=ffedc8eea5fda2ed3e0b8c09e2c5379d&pid=1-s2.0-S2666542524000547-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141141847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
GIANT
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1