Pub Date : 2024-09-23DOI: 10.1109/OJAP.2024.3466472
Panagiotis Petroutsos;Stavros Koulouridis
We present a hybrid multilayer slot array antenna, targeting next-generation wireless communication systems, particularly in mmWave bands like the Ka-band. The hybrid structure utilizes a high-performance metal Groove Gap Waveguide (GGW) feeding network and facilitates the practical manufacturing of slotted antennas and dielectric substrate metasurfaces using printed circuit boards. The proposed antenna incorporates a hybrid glide symmetric holey metasurface into the GGW feeding. This integration addresses assembly challenges between metal and dielectric layers, avoiding delicate welding techniques. It prevents energy leakage between the two different materials, even when a small air gap is maintained between them. The antenna also involves a printed periodic surface comprising ‘Mushrooms’ type cells on a thin dielectric substrate. As an effect, this design reduces mutual coupling between parallel slotted array antennas and provides a more compact structure compared to alternative decoupling methods such as vertical corrugation slots, or horn types. The textured ‘Mushroom’ surface enhances the antenna directivity by 3.4 dB and reduces the level of sidelobes by up to 6.2 dB. Measurement results demonstrate an achieved impedance bandwidth ($S_{11} lt -$ 10 dB) of 8.15% within the frequency range of 37.88 GHz to 40.98 GHz. Additionally, the antenna achieves a gain of up to 16.55 dB over the frequency of interest.
{"title":"A Metallo-Dielectric Groove Gap Waveguide Slotted Array Antenna With Hybrid Glide-Symmetric Holes & “Mushroom”-Type Metasurfaces","authors":"Panagiotis Petroutsos;Stavros Koulouridis","doi":"10.1109/OJAP.2024.3466472","DOIUrl":"https://doi.org/10.1109/OJAP.2024.3466472","url":null,"abstract":"We present a hybrid multilayer slot array antenna, targeting next-generation wireless communication systems, particularly in mmWave bands like the Ka-band. The hybrid structure utilizes a high-performance metal Groove Gap Waveguide (GGW) feeding network and facilitates the practical manufacturing of slotted antennas and dielectric substrate metasurfaces using printed circuit boards. The proposed antenna incorporates a hybrid glide symmetric holey metasurface into the GGW feeding. This integration addresses assembly challenges between metal and dielectric layers, avoiding delicate welding techniques. It prevents energy leakage between the two different materials, even when a small air gap is maintained between them. The antenna also involves a printed periodic surface comprising ‘Mushrooms’ type cells on a thin dielectric substrate. As an effect, this design reduces mutual coupling between parallel slotted array antennas and provides a more compact structure compared to alternative decoupling methods such as vertical corrugation slots, or horn types. The textured ‘Mushroom’ surface enhances the antenna directivity by 3.4 dB and reduces the level of sidelobes by up to 6.2 dB. Measurement results demonstrate an achieved impedance bandwidth (<inline-formula> <tex-math>$S_{11} lt -$ </tex-math></inline-formula>10 dB) of 8.15% within the frequency range of 37.88 GHz to 40.98 GHz. Additionally, the antenna achieves a gain of up to 16.55 dB over the frequency of interest.","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":"6 1","pages":"25-37"},"PeriodicalIF":3.5,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10689327","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143107124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-23DOI: 10.1109/OJAP.2024.3466234
Matti Kuosmanen;Sten E. Gunnarsson;Johan Malmström;Juha Ala-Laurinaho;Jari Holopainen;Ville Viikari
This paper investigates a thin low-pass filtering antenna array based on dual-polarized Vivaldi elements. The low-pass filtering in the antenna elements reduces the requirement for the front-end filtering between the antenna and the microwave electronics, resulting in improved overall out-of-band suppression, size reduction, and lower cost. The array employs a novel stacked-PCB structure, where simple two-sided PCBs are stacked on top of each other. The via-connected metal layers of all PCBs form a tapered slotline along the surface normal of the PCBs. The filtering effect is realized by corrugating the tapered slotlines, which provides effective, space-saving integration of the filters that fit into a half-wavelength lattice. According to unit-cell simulations, the proposed antenna array operates at 6–18.5 GHz, and the stopband extends from 21 GHz to 37 GHz. The antenna array provides a −10-dB active reflection coefficient (ARC) with beam-steering angles within ±60° in E- and D-planes, and −6 dB within ±55° in the H-plane. At stopband frequencies, the attenuation with respect to simulated total efficiency is at least 20 dB. The operation of the proposed antenna array is confirmed by measurements of an $11times 12$ antenna array prototype, which show that the gain suppression level in the stopband is more than 30 dB up to 37 GHz, and more than 20 dB up to 40 GHz.
{"title":"Dual-Polarized Wideband Filtering Antenna Array Based on Stacked-PCB Structure","authors":"Matti Kuosmanen;Sten E. Gunnarsson;Johan Malmström;Juha Ala-Laurinaho;Jari Holopainen;Ville Viikari","doi":"10.1109/OJAP.2024.3466234","DOIUrl":"https://doi.org/10.1109/OJAP.2024.3466234","url":null,"abstract":"This paper investigates a thin low-pass filtering antenna array based on dual-polarized Vivaldi elements. The low-pass filtering in the antenna elements reduces the requirement for the front-end filtering between the antenna and the microwave electronics, resulting in improved overall out-of-band suppression, size reduction, and lower cost. The array employs a novel stacked-PCB structure, where simple two-sided PCBs are stacked on top of each other. The via-connected metal layers of all PCBs form a tapered slotline along the surface normal of the PCBs. The filtering effect is realized by corrugating the tapered slotlines, which provides effective, space-saving integration of the filters that fit into a half-wavelength lattice. According to unit-cell simulations, the proposed antenna array operates at 6–18.5 GHz, and the stopband extends from 21 GHz to 37 GHz. The antenna array provides a −10-dB active reflection coefficient (ARC) with beam-steering angles within ±60° in E- and D-planes, and −6 dB within ±55° in the H-plane. At stopband frequencies, the attenuation with respect to simulated total efficiency is at least 20 dB. The operation of the proposed antenna array is confirmed by measurements of an <inline-formula> <tex-math>$11times 12$ </tex-math></inline-formula> antenna array prototype, which show that the gain suppression level in the stopband is more than 30 dB up to 37 GHz, and more than 20 dB up to 40 GHz.","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":"6 1","pages":"38-50"},"PeriodicalIF":3.5,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10689344","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143107003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-23DOI: 10.1109/OJAP.2024.3459235
{"title":"IEEE Open Journal of Antennas and Propagation Instructions for authors","authors":"","doi":"10.1109/OJAP.2024.3459235","DOIUrl":"https://doi.org/10.1109/OJAP.2024.3459235","url":null,"abstract":"","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":"5 5","pages":"C3-C3"},"PeriodicalIF":3.5,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10689478","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142313108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study presents a compact dual-band dual-sense circularly polarized (CP) fragmental patch antenna that advanced by an improved simulated-annealing-based optimization algorithm. This design replaces truncated corners of traditional truncated patch antennas with fragmental structures, generating dual-band dual-CP radiation with a small frequency ratio and a high front-to-back ratio. The proposed optimized framework tackles the multi-objective optimization problem through hierarchical optimization to achieve an optimal balance among various performance metrics. Furthermore, the simulated annealing is improved using a matrix-based dynamic step-size perturbation mechanism and a nested cyclic process, averting premature convergence and ensuring multifaceted objective enhancement. The measurement results reveal that the proposed antenna can operate with a small frequency ratio of 1.07, providing left-hand CP radiation from 4.99 to 5.02 GHz and right-hand CP radiation 5.34 to 5.41 GHz, respectively. This compact cost-efficient design demonstrates potential for diverse antenna applications.
{"title":"Compact Dual-Band Dual-Sense Circularly Polarized Fragmental Patch Antenna Optimized by Improved Simulated-Annealing-Based Algorithm","authors":"Tianyu Shu;Bowen Feng;Long Zhang;Chuyue Chen;Hui Chen;Yaling Chen;Qinyu Zhang","doi":"10.1109/OJAP.2024.3463794","DOIUrl":"https://doi.org/10.1109/OJAP.2024.3463794","url":null,"abstract":"This study presents a compact dual-band dual-sense circularly polarized (CP) fragmental patch antenna that advanced by an improved simulated-annealing-based optimization algorithm. This design replaces truncated corners of traditional truncated patch antennas with fragmental structures, generating dual-band dual-CP radiation with a small frequency ratio and a high front-to-back ratio. The proposed optimized framework tackles the multi-objective optimization problem through hierarchical optimization to achieve an optimal balance among various performance metrics. Furthermore, the simulated annealing is improved using a matrix-based dynamic step-size perturbation mechanism and a nested cyclic process, averting premature convergence and ensuring multifaceted objective enhancement. The measurement results reveal that the proposed antenna can operate with a small frequency ratio of 1.07, providing left-hand CP radiation from 4.99 to 5.02 GHz and right-hand CP radiation 5.34 to 5.41 GHz, respectively. This compact cost-efficient design demonstrates potential for diverse antenna applications.","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":"5 6","pages":"1847-1853"},"PeriodicalIF":3.5,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10684264","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142691799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Engineered electromagnetic surfaces enable enhancing the strength of a signal in the desired direction(s) using anomalous reflection/transmission. However, to boost the gain of the conventional surfaces, the common solution is to increase its aperture size where this method limits the gain performance for limited space in scenarios for large-distance communication. This paper proposes a gain-controlled beam-steering polarization-engineered transmissive surface to tackle this challenge. To implement such a functionality, a transmissive unit cell properly integrated with transistors and phase shifters is introduced with the ability of simultaneous manipulation of phase, amplitude (reduction and amplification), and polarization. Then, a supercell including the array of unit cells with desired linear phase gradient is designed and analyzed using Floquet approach to tilt the transmitted beam. Finally, to verify the proposed idea, a surface including $12times 12$