Pub Date : 2013-12-12DOI: 10.1109/BioCAS.2013.6679683
Teng-Chieh Huang, Po-Tsang Huang, Shang-Lin Wu, Kuan-Neng Chen, J. Chiou, Kuo-Hua Chen, C. Chiu, H. Tong, C. Chuang, W. Hwang
In this paper, an area-power-efficient 11-bit hybrid analog-to-digital converter (ADC) with delay-line enhanced tuning for neural sensing applications is presented. To reduce the total amount of capacitance, this hybrid ADC is composed of a coarse tune and a fine tune by 3-bit delay-lined-based ADC and 8-bit successive approximation register (SAR) ADC, respectively. The delay-lined-based ADC is designed to detect the three most significant bits by a modified vernier structure. To relax the accuracy requirement of the coarse tune, the lifting-based searching algorithm and re-comparison procedure are proposed for the fine tune. To further achieve energy saving, split capacitor array and self-timed control are utilized in the SAR ADC. Fabricated in TSMC 0.18μm CMOS technology, an ENOB of 10.4-bit at 8KS/s can be achieved with only 0.6μW power consumption and 0.032-mm2 area. The FoM of this ADC is 49.4fJ/conversion-step.
{"title":"Area-power-efficient 11-bit SAR ADC with delay-line enhanced tuning for neural sensing applications","authors":"Teng-Chieh Huang, Po-Tsang Huang, Shang-Lin Wu, Kuan-Neng Chen, J. Chiou, Kuo-Hua Chen, C. Chiu, H. Tong, C. Chuang, W. Hwang","doi":"10.1109/BioCAS.2013.6679683","DOIUrl":"https://doi.org/10.1109/BioCAS.2013.6679683","url":null,"abstract":"In this paper, an area-power-efficient 11-bit hybrid analog-to-digital converter (ADC) with delay-line enhanced tuning for neural sensing applications is presented. To reduce the total amount of capacitance, this hybrid ADC is composed of a coarse tune and a fine tune by 3-bit delay-lined-based ADC and 8-bit successive approximation register (SAR) ADC, respectively. The delay-lined-based ADC is designed to detect the three most significant bits by a modified vernier structure. To relax the accuracy requirement of the coarse tune, the lifting-based searching algorithm and re-comparison procedure are proposed for the fine tune. To further achieve energy saving, split capacitor array and self-timed control are utilized in the SAR ADC. Fabricated in TSMC 0.18μm CMOS technology, an ENOB of 10.4-bit at 8KS/s can be achieved with only 0.6μW power consumption and 0.032-mm2 area. The FoM of this ADC is 49.4fJ/conversion-step.","PeriodicalId":344317,"journal":{"name":"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127893171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-12-12DOI: 10.1109/BioCAS.2013.6679694
K. Fricke, R. Sobot
We present design architecture and the preliminary experimental results of our wireless telemetry system for cardiac monitoring of blood pressure and volume (PV) vital signals from small animal subjects (e.g., rabbits, rats). The system architecture consists of five main modules stacked in a 3D structure that occupies 2.475cm3 volume and weights 4.01g. The collected data is intended for transmission over the short distances through the living tissue and air within the experimental setup. In the sleep mode measured power consumption is 150μW, while in the fully operational mode the average power consumption is 19.95mW.
{"title":"Miniature implantable telemetry system for pressure-volume cardiac monitoring","authors":"K. Fricke, R. Sobot","doi":"10.1109/BioCAS.2013.6679694","DOIUrl":"https://doi.org/10.1109/BioCAS.2013.6679694","url":null,"abstract":"We present design architecture and the preliminary experimental results of our wireless telemetry system for cardiac monitoring of blood pressure and volume (PV) vital signals from small animal subjects (e.g., rabbits, rats). The system architecture consists of five main modules stacked in a 3D structure that occupies 2.475cm3 volume and weights 4.01g. The collected data is intended for transmission over the short distances through the living tissue and air within the experimental setup. In the sleep mode measured power consumption is 150μW, while in the fully operational mode the average power consumption is 19.95mW.","PeriodicalId":344317,"journal":{"name":"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126601586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-12-01DOI: 10.1109/BIOCAS.2013.6679654
Yung-Chi Lin, S. Tseng, P. Chung, C. Yang, Ming-Han Wu, S. Nioka, Yong-Kie Wong
This paper presents a non-invasive device with near-infrared (NIR) light for the analysis of tissue components, particularly the blood oxygen saturation and hemoglobin concentration, by using photon diffusion equation. The device equips with a multispectral (7 wavelengths) LED and multiple sensors of different spatial distances to the LED source. An optimal fitting of the measurement data obtained from these sensors is employed to achieve a more accurate estimation of the concentrations of tissue components, such as hemoglobin, water, and lipid of tissue samples, which are often referred in clinic diagnosis. Besides, Monte Carlo simulation is applied to analyze how photons transmit in tissue under different depth levels. According to the simulation results, the proposal introduces a method for tumor detection to reduce the effect of shallow layer and to increase detection accuracy for deep layer tumors. The device was also evaluated by phantoms and clinical data acquired from the patients with neck tumors. Results indicate that our device is not only sensitive to the presence of neck tumors but also can be applied to study other clinical diseases.
{"title":"Non-invasive tumor detection using NIR light","authors":"Yung-Chi Lin, S. Tseng, P. Chung, C. Yang, Ming-Han Wu, S. Nioka, Yong-Kie Wong","doi":"10.1109/BIOCAS.2013.6679654","DOIUrl":"https://doi.org/10.1109/BIOCAS.2013.6679654","url":null,"abstract":"This paper presents a non-invasive device with near-infrared (NIR) light for the analysis of tissue components, particularly the blood oxygen saturation and hemoglobin concentration, by using photon diffusion equation. The device equips with a multispectral (7 wavelengths) LED and multiple sensors of different spatial distances to the LED source. An optimal fitting of the measurement data obtained from these sensors is employed to achieve a more accurate estimation of the concentrations of tissue components, such as hemoglobin, water, and lipid of tissue samples, which are often referred in clinic diagnosis. Besides, Monte Carlo simulation is applied to analyze how photons transmit in tissue under different depth levels. According to the simulation results, the proposal introduces a method for tumor detection to reduce the effect of shallow layer and to increase detection accuracy for deep layer tumors. The device was also evaluated by phantoms and clinical data acquired from the patients with neck tumors. Results indicate that our device is not only sensitive to the presence of neck tumors but also can be applied to study other clinical diseases.","PeriodicalId":344317,"journal":{"name":"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122456878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-10-01DOI: 10.1109/BioCAS.2013.6679709
Hao-Cheng Tsai, T. Wu, T. Tsai
This paper presents a standard-CMOS-fabricated capacitive tactile sensor with high sensitivity and a sensing circuit with compensation of process variations. Both of the sensor and sensing circuit are fabricated on a single chip by a TSMC 0.35μm CMOS MEMS technology. In order to create high sensitivity of the sensor for sensing circuit, a T-shaped protrusion is proposed. This sensor is constituted by the metal layer and the dielectric layer without extra thin film deposition, and can be completed with few simple post-processing steps. With the fully differential correlated double sampling capacitor-to-voltage converter (CDS-CVC) and reference capacitor correction, process variations are compensated. The measured sensitivity of the sensing circuit is 18mV/fF.
{"title":"A CMOS micromachined capacitive tactile sensor with compensation of process variations","authors":"Hao-Cheng Tsai, T. Wu, T. Tsai","doi":"10.1109/BioCAS.2013.6679709","DOIUrl":"https://doi.org/10.1109/BioCAS.2013.6679709","url":null,"abstract":"This paper presents a standard-CMOS-fabricated capacitive tactile sensor with high sensitivity and a sensing circuit with compensation of process variations. Both of the sensor and sensing circuit are fabricated on a single chip by a TSMC 0.35μm CMOS MEMS technology. In order to create high sensitivity of the sensor for sensing circuit, a T-shaped protrusion is proposed. This sensor is constituted by the metal layer and the dielectric layer without extra thin film deposition, and can be completed with few simple post-processing steps. With the fully differential correlated double sampling capacitor-to-voltage converter (CDS-CVC) and reference capacitor correction, process variations are compensated. The measured sensitivity of the sensing circuit is 18mV/fF.","PeriodicalId":344317,"journal":{"name":"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)","volume":"256 ","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133969739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1900-01-01DOI: 10.1109/BioCAS.2013.6679677
C. Eder, V. Valente, N. Donaldson, A. Demosthenous
This paper presents a modified 1-Wire® based communication architecture between one active and several passive units of a distributed implantable system. The passive slave units are embedded in the electrode array. We focus in particular on the introduction of the physical and data link layer of the communication block, and present post-layout results of simulated data transfer between the hub and one slave in 0.18-μm power management CMOS technology. The communication block has a power consumption of 12.5 μW for a gross bit rate of 11.1 kBit/s. The proposed interface is inherently safe and suitable for exchanging status and sensor data between implants. The possibility to achieve higher symbol rates is discussed.
{"title":"A 1-Wire® communication interface between a control hub and locally powered epidural stimulators","authors":"C. Eder, V. Valente, N. Donaldson, A. Demosthenous","doi":"10.1109/BioCAS.2013.6679677","DOIUrl":"https://doi.org/10.1109/BioCAS.2013.6679677","url":null,"abstract":"This paper presents a modified 1-Wire® based communication architecture between one active and several passive units of a distributed implantable system. The passive slave units are embedded in the electrode array. We focus in particular on the introduction of the physical and data link layer of the communication block, and present post-layout results of simulated data transfer between the hub and one slave in 0.18-μm power management CMOS technology. The communication block has a power consumption of 12.5 μW for a gross bit rate of 11.1 kBit/s. The proposed interface is inherently safe and suitable for exchanging status and sensor data between implants. The possibility to achieve higher symbol rates is discussed.","PeriodicalId":344317,"journal":{"name":"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121271379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}