Pub Date : 2024-08-05DOI: 10.1016/j.ese.2024.100472
Zihan Xu , Ying Wang , Li Xie , Di Shi , Jia He , Yanqing Chen , Chenglian Feng , John P. Giesy , Kenneth M.Y. Leung , Fengchang Wu
Currently, chemicals and waste are recognized as key drivers of habitat degradation and biodiversity loss in aquatic ecosystems. To ensure vibrant habitats for aquatic species and maintain a sustainable aquatic food supply system, Japan promulgated its Environmental Quality Standards for the Conservation of Aquatic Life (EQS-CAL), based on its own aquatic life water quality criteria (ALWQC) derivation method and application mechanism. Here we overview Japan's EQS-CAL framework and highlight their best practices by examining the framework systems and related policies. Key experiences from Japan's EQS-CAL system include: (1) Classifying six types of aquatic organisms according to their adaptability to habitat status; (2) Using a risk-based chemical screening system for three groups of chemical pollutants; (3) Recommending a five-step method for determining ALWQC values based on the most sensitive life stage of the most sensitive species; (4) Applying site-specific implementation mechanisms through a series of Plan-Do-Check-Act loops. This paper offers scientific references for other jurisdictions, aiding in the development of more resilient ALWQC systems that can maintain healthy environments for aquatic life and potentially mitigate ongoing threats to human societies and global aquatic biodiversity.
{"title":"Resilient water quality management: Insights from Japan's environmental quality standards for conserving aquatic life framework","authors":"Zihan Xu , Ying Wang , Li Xie , Di Shi , Jia He , Yanqing Chen , Chenglian Feng , John P. Giesy , Kenneth M.Y. Leung , Fengchang Wu","doi":"10.1016/j.ese.2024.100472","DOIUrl":"10.1016/j.ese.2024.100472","url":null,"abstract":"<div><p>Currently, chemicals and waste are recognized as key drivers of habitat degradation and biodiversity loss in aquatic ecosystems. To ensure vibrant habitats for aquatic species and maintain a sustainable aquatic food supply system, Japan promulgated its <em>Environmental Quality Standards for the Conservation of Aquatic Life</em> (EQS-CAL), based on its own aquatic life water quality criteria (ALWQC) derivation method and application mechanism. Here we overview Japan's EQS-CAL framework and highlight their best practices by examining the framework systems and related policies. Key experiences from Japan's EQS-CAL system include: (1) Classifying six types of aquatic organisms according to their adaptability to habitat status; (2) Using a risk-based chemical screening system for three groups of chemical pollutants; (3) Recommending a five-step method for determining ALWQC values based on the most sensitive life stage of the most sensitive species; (4) Applying site-specific implementation mechanisms through a series of Plan-Do-Check-Act loops. This paper offers scientific references for other jurisdictions, aiding in the development of more resilient ALWQC systems that can maintain healthy environments for aquatic life and potentially mitigate ongoing threats to human societies and global aquatic biodiversity.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"22 ","pages":"Article 100472"},"PeriodicalIF":14.0,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666498424000863/pdfft?md5=e4dda6a9d856a2e57ebd34b846b3310e&pid=1-s2.0-S2666498424000863-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141993870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-03DOI: 10.1016/j.ese.2024.100475
Wenya Zhao , Shikan Zheng , Chengsong Ye , Jianguo Li , Xin Yu
The increase in bacterial antibiotic resistance poses a significant threat to the effectiveness of antibiotics, and there is growing evidence suggesting that global warming may speed up this process. However, the direct influence of temperature on the development of antibiotic resistance and the underlying mechanisms is not yet fully understood. Here we show that antibiotic resistance exhibits a nonlinear response to elevated temperatures under the combined stress of temperatures and antibiotics. We find that the effectiveness of gatifloxacin against Escherichia coli significantly diminishes at 42 °C, while resistance increases 256-fold at 27 °C. Additionally, the increased transcription levels of genes such as marA, ygfA, and ibpB with rising temperatures, along with gene mutations at different sites, explain the observed variability in resistance patterns. These findings highlight the complexity of antibiotic resistance evolution and the urgent need for comprehensive studies to understand and mitigate the effects of global warming on antibiotic resistance.
{"title":"Nonlinear impacts of temperature on antibiotic resistance in Escherichia coli","authors":"Wenya Zhao , Shikan Zheng , Chengsong Ye , Jianguo Li , Xin Yu","doi":"10.1016/j.ese.2024.100475","DOIUrl":"10.1016/j.ese.2024.100475","url":null,"abstract":"<div><p>The increase in bacterial antibiotic resistance poses a significant threat to the effectiveness of antibiotics, and there is growing evidence suggesting that global warming may speed up this process. However, the direct influence of temperature on the development of antibiotic resistance and the underlying mechanisms is not yet fully understood. Here we show that antibiotic resistance exhibits a nonlinear response to elevated temperatures under the combined stress of temperatures and antibiotics. We find that the effectiveness of gatifloxacin against <em>Escherichia coli</em> significantly diminishes at 42 °C, while resistance increases 256-fold at 27 °C. Additionally, the increased transcription levels of genes such as <em>marA</em>, <em>ygfA</em>, and <em>ibpB</em> with rising temperatures, along with gene mutations at different sites, explain the observed variability in resistance patterns. These findings highlight the complexity of antibiotic resistance evolution and the urgent need for comprehensive studies to understand and mitigate the effects of global warming on antibiotic resistance.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"22 ","pages":"Article 100475"},"PeriodicalIF":14.0,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666498424000899/pdfft?md5=7d1fbcc89f1a198116ad25356f02d313&pid=1-s2.0-S2666498424000899-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142096609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-03DOI: 10.1016/j.ese.2024.100471
Ke Xu, Yunyi Wang, Xiao Gao, Zhaolan Wei, Qi Han, Shuxin Wang, Wanting Du, Jian Wan, Cuihong Wan, Mingqing Chen
Microplastics and phthalates are prevalent and emerging pollutants that pose a potential impact on human health. Previous studies suggest that both microplastics and phthalates can adversely affect the reproductive systems of humans and mammals. However, the combined impact of these pollutants on the female reproductive system remains unclear. Here we show the impacts of exposure to polystyrene microplastics (PS-MPs) and di-2-ethylhexyl phthalate (DEHP) on female Sprague-Dawley rats’ reproductive systems. We find that co-exposure to PS-MPs and DEHP results in a marked increase in cystic and atretic follicles, oxidative stress, fibrosis, and dysregulation of serum sex hormone homeostasis in the ovaries of the rats. Proteomic analysis identified differentially expressed proteins that were predominantly enriched in signaling pathways related to fatty acid metabolism and tight junctions, regulated by transforming growth factor β1 (TGF-β1). We further confirm that co-exposure to DEHP and PS-MPs activates the TGF-β1/Smad3 signaling pathway, and inhibiting this pathway alleviates oxidative stress, hormonal dysregulation, and ovarian fibrosis. These results indicate that exposure to the combination of microplastics and phthalates leads to a significant increase in atretic follicles and may increase the risk of polycystic ovary syndrome (PCOS). Our study provides new insights into the reproductive toxicity effects of microplastics and DEHP exposure on female mammals, highlighting the potential link between environmental pollutants and the occurrence of PCOS. These findings highlight the need for comprehensive assessments of the reproductive health risks posed by microplastic pollution to women and contribute to the scientific basis for evaluating such risks.
{"title":"Polystyrene microplastics and di-2-ethylhexyl phthalate co-exposure: Implications for female reproductive health","authors":"Ke Xu, Yunyi Wang, Xiao Gao, Zhaolan Wei, Qi Han, Shuxin Wang, Wanting Du, Jian Wan, Cuihong Wan, Mingqing Chen","doi":"10.1016/j.ese.2024.100471","DOIUrl":"10.1016/j.ese.2024.100471","url":null,"abstract":"<div><p>Microplastics and phthalates are prevalent and emerging pollutants that pose a potential impact on human health. Previous studies suggest that both microplastics and phthalates can adversely affect the reproductive systems of humans and mammals. However, the combined impact of these pollutants on the female reproductive system remains unclear. Here we show the impacts of exposure to polystyrene microplastics (PS-MPs) and di-2-ethylhexyl phthalate (DEHP) on female Sprague-Dawley rats’ reproductive systems. We find that co-exposure to PS-MPs and DEHP results in a marked increase in cystic and atretic follicles, oxidative stress, fibrosis, and dysregulation of serum sex hormone homeostasis in the ovaries of the rats. Proteomic analysis identified differentially expressed proteins that were predominantly enriched in signaling pathways related to fatty acid metabolism and tight junctions, regulated by transforming growth factor β1 (TGF-β1). We further confirm that co-exposure to DEHP and PS-MPs activates the TGF-β1/Smad3 signaling pathway, and inhibiting this pathway alleviates oxidative stress, hormonal dysregulation, and ovarian fibrosis. These results indicate that exposure to the combination of microplastics and phthalates leads to a significant increase in atretic follicles and may increase the risk of polycystic ovary syndrome (PCOS). Our study provides new insights into the reproductive toxicity effects of microplastics and DEHP exposure on female mammals, highlighting the potential link between environmental pollutants and the occurrence of PCOS. These findings highlight the need for comprehensive assessments of the reproductive health risks posed by microplastic pollution to women and contribute to the scientific basis for evaluating such risks.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"22 ","pages":"Article 100471"},"PeriodicalIF":14.0,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666498424000851/pdfft?md5=5f70e2dba1ff77c56689e7612c64ccd3&pid=1-s2.0-S2666498424000851-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141963091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-03DOI: 10.1016/j.ese.2024.100476
Chang Gao , Lin Luo , Yijun Fan , Liyan Guo , Lijuan Guo , Lin Tao , Fangbiao Tao , De-Xiang Xu , Robert A. Gibson , Maria Makrides , Hua Wang , Yichao Huang
Per- and polyfluoroalkyl substances (PFASs) can disrupt lipid metabolism, and changes in cord blood fatty acid composition have been observed in small newborns. Emerging evidence suggests that exposure to PFASs during pregnancy is linked to decreased newborn size, although the evidence is not consistent. The modifying effect of fatty acids on the associations of gestational PFAS exposure with newborn size is still unknown. Here we show that the nutritional status of the fetus, as indicated by the level of fatty acids in the cord blood, mitigates the adverse effects of gestational PFAS exposure on the size of the newborn. Our study confirms the adverse developmental effects of PFASs and identifies emerging short-chain PFASs as the primary drivers of reduced newborn size, despite their lower exposure burden compared to legacy PFASs. Additionally, we find the protective role of cord blood fatty acids, suggesting potential strategies for mitigating the detrimental effects of emerging environmental exposures on human health. Our findings provide new evidence of the potential toxicity of emerging PFASs and call for further toxicity evaluations of these pollutants for regulatory purposes. Future studies should consider the complex interaction between exposure and nutrition within the human body, particularly during the first thousand days of life, to promote lifelong health.
{"title":"Gestational PFAS exposure and newborn size: The modifying effect of cord blood fatty acids","authors":"Chang Gao , Lin Luo , Yijun Fan , Liyan Guo , Lijuan Guo , Lin Tao , Fangbiao Tao , De-Xiang Xu , Robert A. Gibson , Maria Makrides , Hua Wang , Yichao Huang","doi":"10.1016/j.ese.2024.100476","DOIUrl":"10.1016/j.ese.2024.100476","url":null,"abstract":"<div><p>Per- and polyfluoroalkyl substances (PFASs) can disrupt lipid metabolism, and changes in cord blood fatty acid composition have been observed in small newborns. Emerging evidence suggests that exposure to PFASs during pregnancy is linked to decreased newborn size, although the evidence is not consistent. The modifying effect of fatty acids on the associations of gestational PFAS exposure with newborn size is still unknown. Here we show that the nutritional status of the fetus, as indicated by the level of fatty acids in the cord blood, mitigates the adverse effects of gestational PFAS exposure on the size of the newborn. Our study confirms the adverse developmental effects of PFASs and identifies emerging short-chain PFASs as the primary drivers of reduced newborn size, despite their lower exposure burden compared to legacy PFASs. Additionally, we find the protective role of cord blood fatty acids, suggesting potential strategies for mitigating the detrimental effects of emerging environmental exposures on human health. Our findings provide new evidence of the potential toxicity of emerging PFASs and call for further toxicity evaluations of these pollutants for regulatory purposes. Future studies should consider the complex interaction between exposure and nutrition within the human body, particularly during the first thousand days of life, to promote lifelong health.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"22 ","pages":"Article 100476"},"PeriodicalIF":14.0,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666498424000905/pdfft?md5=359cc794b1efdae7c4c8cb025f99cc9b&pid=1-s2.0-S2666498424000905-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141963751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-02DOI: 10.1016/j.ese.2024.100469
Xiaohu Fan , Qiang Fu , Guorui Liu , Hongliang Jia , Xiaolong Dong , Yi-Fan Li , Song Cui
Molecular oxygen (O2) is an environmentally friendly, cost-effective, and non-toxic oxidant. Activation of O2 generates various highly oxidative reactive oxygen species (ROS), which efficiently degrade pollutants with minimal environmental impact. Despite extensive research on the application of O2 activation in environmental remediation, a comprehensive review addressing this topic is currently lacking. This review provides an informative overview of recent advancements in O2 activation, focusing on three primary strategies: photocatalytic activation, chemical activation, and electrochemical activation of O2. We elucidate the respective mechanisms of these activation methods and discuss their advantages and disadvantages. Additionally, we thoroughly analyze the influence of oxygen supply, reactive temperature, and pH on the O2 activation process. From electron transfer and energy transfer perspectives, we explore the pathways for ROS generation during O2 activation. Finally, we address the challenges faced by researchers in this field and discuss future prospects for utilizing O2 activation in pollution control applications. This detailed analysis enhances our understanding and provides valuable insights for the practical implementation of organic pollutant degradation.
{"title":"Applying molecular oxygen for organic pollutant degradation: Strategies, mechanisms, and perspectives","authors":"Xiaohu Fan , Qiang Fu , Guorui Liu , Hongliang Jia , Xiaolong Dong , Yi-Fan Li , Song Cui","doi":"10.1016/j.ese.2024.100469","DOIUrl":"10.1016/j.ese.2024.100469","url":null,"abstract":"<div><p>Molecular oxygen (O<sub>2</sub>) is an environmentally friendly, cost-effective, and non-toxic oxidant. Activation of O<sub>2</sub> generates various highly oxidative reactive oxygen species (ROS), which efficiently degrade pollutants with minimal environmental impact. Despite extensive research on the application of O<sub>2</sub> activation in environmental remediation, a comprehensive review addressing this topic is currently lacking. This review provides an informative overview of recent advancements in O<sub>2</sub> activation, focusing on three primary strategies: photocatalytic activation, chemical activation, and electrochemical activation of O<sub>2</sub>. We elucidate the respective mechanisms of these activation methods and discuss their advantages and disadvantages. Additionally, we thoroughly analyze the influence of oxygen supply, reactive temperature, and pH on the O<sub>2</sub> activation process. From electron transfer and energy transfer perspectives, we explore the pathways for ROS generation during O<sub>2</sub> activation. Finally, we address the challenges faced by researchers in this field and discuss future prospects for utilizing O<sub>2</sub> activation in pollution control applications. This detailed analysis enhances our understanding and provides valuable insights for the practical implementation of organic pollutant degradation.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"22 ","pages":"Article 100469"},"PeriodicalIF":14.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666498424000838/pdfft?md5=e9949a157589462ffcbf394e275668e2&pid=1-s2.0-S2666498424000838-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142048528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-27DOI: 10.1016/j.ese.2024.100459
Aaron Leininger , Sidan Lu , Jinyue Jiang , Yanhong Bian , Harold D. May , Zhiyong Jason Ren
Regulating electron transfer in predominantly fermentative microbiomes has broad implications in environmental, chemical, food, and medical fields. Here we demonstrate electrochemical control in fermenting food waste, digestate, and wastewater to improve lactic acid production. We hypothesize that applying anodic potential will expedite and direct fermentation towards lactic acid. Continued operation that introduced epi/endophytic communities (Lactococcus, Lactobacillus, Weissella) to pure culture Lactiplantibacillus plantarum reactors with static electrodes was associated with the loss of anode-induced process intensification despite 80% L. plantarum retention. Employing fluidized electrodes discouraged biofilm formation and extended electrode influence to planktonic gram-positive fermenters using mediated extracellular electron transfer. While short-term experiments differentially enriched Lactococcus and Klebsiella spp., longer-term operations indicated convergent microbiomes and product spectra. These results highlight a functional resilience of environmental fermentative microbiomes to perturbations in redox potential, underscoring the need to better understand electrode induced polymicrobial interactions and physiological impacts to engineer tunable open-culture or synthetic consortia.
{"title":"The convergence of lactic acid microbiomes and metabolites in long-term electrofermentation","authors":"Aaron Leininger , Sidan Lu , Jinyue Jiang , Yanhong Bian , Harold D. May , Zhiyong Jason Ren","doi":"10.1016/j.ese.2024.100459","DOIUrl":"10.1016/j.ese.2024.100459","url":null,"abstract":"<div><p>Regulating electron transfer in predominantly fermentative microbiomes has broad implications in environmental, chemical, food, and medical fields. Here we demonstrate electrochemical control in fermenting food waste, digestate, and wastewater to improve lactic acid production. We hypothesize that applying anodic potential will expedite and direct fermentation towards lactic acid. Continued operation that introduced epi/endophytic communities (<em>Lactococcus, Lactobacillus, Weissella</em>) to pure culture <em>Lactiplantibacillus plantarum</em> reactors with static electrodes was associated with the loss of anode-induced process intensification despite 80% <em>L. plantarum</em> retention. Employing fluidized electrodes discouraged biofilm formation and extended electrode influence to planktonic gram-positive fermenters using mediated extracellular electron transfer. While short-term experiments differentially enriched <em>Lactococcus</em> and <em>Klebsiella</em> spp., longer-term operations indicated convergent microbiomes and product spectra. These results highlight a functional resilience of environmental fermentative microbiomes to perturbations in redox potential, underscoring the need to better understand electrode induced polymicrobial interactions and physiological impacts to engineer tunable open-culture or synthetic consortia.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"22 ","pages":"Article 100459"},"PeriodicalIF":14.0,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666498424000735/pdfft?md5=5dcfc11c9ef5c249c1effd34b40ce3f7&pid=1-s2.0-S2666498424000735-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141847230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-18DOI: 10.1016/j.ese.2024.100458
Eunho Jang , Ki-Tae Park , Young Jun Yoon , Kyoung-Soon Jang , Min Sung Kim , Kitae Kim , Hyun Young Chung , Mauro Mazzola , David Cappelletti , Bang Yong Lee
Organic matter is crucial in aerosol–climate interactions, yet the physicochemical properties and origins of organic aerosols remain poorly understood. Here we show the seasonal characteristics of submicron organic aerosols in Arctic Svalbard during spring and summer, emphasizing their connection to transport patterns and particle size distribution. Microbial-derived organic matter (MOM) and terrestrial-derived organic matter (TOM) accounted for over 90% of the total organic mass in Arctic aerosols during these seasons, comprising carbohydrate/protein-like and lignin/tannin-like compounds, respectively. In spring, aerosols showed high TOM and low MOM intensities due to biomass-burning influx in the central Arctic. In contrast, summer exhibited elevated MOM intensity, attributed to the shift in predominant atmospheric transport from the central Arctic to the biologically active Greenland Sea. MOM and TOM were associated with Aitken mode particles (<100 nm diameter) and accumulation mode particles (>100 nm diameter), respectively. This association is linked to the molecular size of biomolecules, impacting the number concentrations of corresponding aerosol classes. These findings highlight the importance of considering seasonal atmospheric transport patterns and organic source-dependent particle size distributions in assessing aerosol properties in the changing Arctic.
有机物在气溶胶与气候的相互作用中至关重要,但人们对有机气溶胶的物理化学特性和来源仍然知之甚少。在这里,我们展示了北极斯瓦尔巴群岛春夏季亚微米有机气溶胶的季节性特征,强调了它们与传输模式和粒径分布的联系。在这些季节中,微生物衍生有机物(MOM)和陆地衍生有机物(TOM)占北极气溶胶中有机物总量的 90% 以上,分别由碳水化合物/蛋白质类化合物和木质素/单宁类化合物组成。春季,由于北极中部生物质燃烧的涌入,气溶胶显示出较高的 TOM 强度和较低的 MOM 强度。相比之下,夏季的 MOM 强度较高,这是因为主要的大气传输从北极中部转移到了生物活跃的格陵兰海。MOM 和 TOM 分别与艾特肯模式颗粒(直径 100 nm)和累积模式颗粒(直径 100 nm)有关。这种关联与生物分子的分子大小有关,会影响相应气溶胶类别的数量浓度。这些发现突出表明,在评估不断变化的北极地区的气溶胶特性时,考虑季节性大气传输模式和取决于有机源的颗粒大小分布非常重要。
{"title":"Seasonal dynamics of airborne biomolecules influence the size distribution of Arctic aerosols","authors":"Eunho Jang , Ki-Tae Park , Young Jun Yoon , Kyoung-Soon Jang , Min Sung Kim , Kitae Kim , Hyun Young Chung , Mauro Mazzola , David Cappelletti , Bang Yong Lee","doi":"10.1016/j.ese.2024.100458","DOIUrl":"10.1016/j.ese.2024.100458","url":null,"abstract":"<div><p>Organic matter is crucial in aerosol–climate interactions, yet the physicochemical properties and origins of organic aerosols remain poorly understood. Here we show the seasonal characteristics of submicron organic aerosols in Arctic Svalbard during spring and summer, emphasizing their connection to transport patterns and particle size distribution. Microbial-derived organic matter (MOM) and terrestrial-derived organic matter (TOM) accounted for over 90% of the total organic mass in Arctic aerosols during these seasons, comprising carbohydrate/protein-like and lignin/tannin-like compounds, respectively. In spring, aerosols showed high TOM and low MOM intensities due to biomass-burning influx in the central Arctic. In contrast, summer exhibited elevated MOM intensity, attributed to the shift in predominant atmospheric transport from the central Arctic to the biologically active Greenland Sea. MOM and TOM were associated with Aitken mode particles (<100 nm diameter) and accumulation mode particles (>100 nm diameter), respectively. This association is linked to the molecular size of biomolecules, impacting the number concentrations of corresponding aerosol classes. These findings highlight the importance of considering seasonal atmospheric transport patterns and organic source-dependent particle size distributions in assessing aerosol properties in the changing Arctic.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"22 ","pages":"Article 100458"},"PeriodicalIF":14.0,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666498424000723/pdfft?md5=3505770fbefa83fd1bf2dbb0ff240959&pid=1-s2.0-S2666498424000723-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141850079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-18DOI: 10.1016/j.ese.2024.100457
Guizhou Xu , Lin Sun , Yizhou Tu , Xiaolei Teng , Yumeng Qi , Yaoyao Wang , Aimin Li , Xianchuan Xie , Xueyuan Gu
Nanoscale zerovalent iron (nZVI) has garnered significant attention as an efficient advanced oxidation activator, but its practical application is hindered by aggregation and oxidation. Coating nZVI with carbon can effectively addresses these issues. A simple and scalable production method for carbon-coated nZVI composite is highly desirable. The anti-oxidation and catalytic performance of carbon-coated nZVI composite merit in-depth research. In this study, a highly stable carbon-coated core-shell nZVI composite (Fe0@RF-C) was successfully prepared using a simple method combining phenolic resin embedding and carbothermal reduction. Fe0@RF-C was employed as a heterogeneous persulfate (PS) activator for degrading 2,4-dihydroxybenzophenone (BP-1), an emerging contaminant. Compared to commercial nZVI, Fe0@RF-C exhibited superior PS activation performance and oxidation resistance. Nearly 95% of BP-1 was removed within 10 min in the Fe0@RF-C/PS system. The carbon layer promotes the enrichment of BP-1 and accelerates its degradation through singlet oxygen oxidation and direct electron transfer processes. This study provides a straightforward approach for designing highly stable carbon-coated nZVI composite and elucidates the enhanced catalytic performance mechanism by carbon layers.
{"title":"Highly stable carbon-coated nZVI composite Fe0@RF-C for efficient degradation of emerging contaminants","authors":"Guizhou Xu , Lin Sun , Yizhou Tu , Xiaolei Teng , Yumeng Qi , Yaoyao Wang , Aimin Li , Xianchuan Xie , Xueyuan Gu","doi":"10.1016/j.ese.2024.100457","DOIUrl":"10.1016/j.ese.2024.100457","url":null,"abstract":"<div><p>Nanoscale zerovalent iron (nZVI) has garnered significant attention as an efficient advanced oxidation activator, but its practical application is hindered by aggregation and oxidation. Coating nZVI with carbon can effectively addresses these issues. A simple and scalable production method for carbon-coated nZVI composite is highly desirable. The anti-oxidation and catalytic performance of carbon-coated nZVI composite merit in-depth research. In this study, a highly stable carbon-coated core-shell nZVI composite (Fe<sup>0</sup>@RF-C) was successfully prepared using a simple method combining phenolic resin embedding and carbothermal reduction. Fe<sup>0</sup>@RF-C was employed as a heterogeneous persulfate (PS) activator for degrading 2,4-dihydroxybenzophenone (BP-1), an emerging contaminant. Compared to commercial nZVI, Fe<sup>0</sup>@RF-C exhibited superior PS activation performance and oxidation resistance. Nearly 95% of BP-1 was removed within 10 min in the Fe<sup>0</sup>@RF-C/PS system. The carbon layer promotes the enrichment of BP-1 and accelerates its degradation through singlet oxygen oxidation and direct electron transfer processes. This study provides a straightforward approach for designing highly stable carbon-coated nZVI composite and elucidates the enhanced catalytic performance mechanism by carbon layers.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"22 ","pages":"Article 100457"},"PeriodicalIF":14.0,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666498424000711/pdfft?md5=736bc4cf5607e09101117207810ee427&pid=1-s2.0-S2666498424000711-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141847651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-17DOI: 10.1016/j.ese.2024.100456
Weiwei Song , Mengying Wang , Yixuan Zhao , Yu Bo , Wanying Yao , Ruihan Chen , Xianshi Wang , Xiaoyan Wang , Chunhui Li , Kebin He
The application of low-condensation diesel in cold regions with extremely low ambient temperatures (−14 to −29 °C) has enabled the operation of diesel vehicles. Still, it may contribute to heavy haze pollution in cold regions during winter. Here we examine pollutant emissions from low-condensation diesel in China. We measure the emissions of elemental carbon (EC), organic carbon (OC), and elements, including heavy metals such as arsenic (As). Our results show that low-condensation diesel increased EC and OC emissions by 2.5 and 2.6 times compared to normal diesel fuel, respectively. Indicators of vehicular sources, including EC, As, lead (Pb), cadmium (Cd), chromium (Cr), nickel (Ni), and manganese (Mn), increased by approximately 20.2–162.5% when using low-condensation diesel. Seasonal variation of vehicular source indicators, observed at road site ambient environments revealed the enhancement of PM2.5 pollution by the application of low-condensation diesel in winter. These findings suggest that −35# diesel, a low-cetane index diesel, may enhance air pollution in winter, according to a dynamometer test conducted in laboratory. It raises questions about whether higher emissions are released if −35# diesel is applied to running vehicles in real-world cold ambient environments.
{"title":"Low-condensation diesel use contributes to winter haze in cold regions of China","authors":"Weiwei Song , Mengying Wang , Yixuan Zhao , Yu Bo , Wanying Yao , Ruihan Chen , Xianshi Wang , Xiaoyan Wang , Chunhui Li , Kebin He","doi":"10.1016/j.ese.2024.100456","DOIUrl":"10.1016/j.ese.2024.100456","url":null,"abstract":"<div><p>The application of low-condensation diesel in cold regions with extremely low ambient temperatures (−14 to −29 °C) has enabled the operation of diesel vehicles. Still, it may contribute to heavy haze pollution in cold regions during winter. Here we examine pollutant emissions from low-condensation diesel in China. We measure the emissions of elemental carbon (EC), organic carbon (OC), and elements, including heavy metals such as arsenic (As). Our results show that low-condensation diesel increased EC and OC emissions by 2.5 and 2.6 times compared to normal diesel fuel, respectively. Indicators of vehicular sources, including EC, As, lead (Pb), cadmium (Cd), chromium (Cr), nickel (Ni), and manganese (Mn), increased by approximately 20.2–162.5% when using low-condensation diesel. Seasonal variation of vehicular source indicators, observed at road site ambient environments revealed the enhancement of PM<sub>2.5</sub> pollution by the application of low-condensation diesel in winter. These findings suggest that −35# diesel, a low-cetane index diesel, may enhance air pollution in winter, according to a dynamometer test conducted in laboratory. It raises questions about whether higher emissions are released if −35# diesel is applied to running vehicles in real-world cold ambient environments.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"22 ","pages":"Article 100456"},"PeriodicalIF":14.0,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266649842400070X/pdfft?md5=6e24ddbac6855fccc8eb1dd27d09a7c6&pid=1-s2.0-S266649842400070X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141848160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-09DOI: 10.1016/j.ese.2024.100454
Mengdan Zhao , Yang Xie , Meng Xu , Zhixiong Weng , Tatsuya Hanaoka , Yuqiang Zhang , Dan Tong
Carbon mitigation technologies lead to air quality improvement and health co-benefits, while the practical effects of the technologies are dependent on the energy composition, technological advancements, and economic development. In China, mitigation technologies such as end-of-pipe treatment, renewable energy adoption, carbon capture and storage (CCS), and sector electrification demonstrate significant promise in meeting carbon reduction targets. However, the optimization of these technologies for maximum co-benefits remains unclear. Here, we employ an integrated assessment model (AIM/enduse, CAM-chem, IMED|HEL) to analyze air quality shifts and their corresponding health and economic impacts at the provincial level in China within the two-degree target. Our findings reveal that a combination of end-of-pipe technology, renewable energy utilization, and electrification yields the most promising results in air quality improvement, with a reduction of fine particulate matter (PM2.5) by −34.6 μg m−3 and ozone by −18.3 ppb in 2050 compared to the reference scenario. In contrast, CCS technology demonstrates comparatively modest improvements in air quality (−9.4 μg m−3 for PM2.5 and −2.4 ppb for ozone) and cumulative premature deaths reduction (−3.4 million from 2010 to 2050) compared to the end-of-pipe scenario. Notably, densely populated regions such as Henan, Hebei, Shandong, and Sichuan experience the most health and economic benefits. This study aims to project effective future mitigation technologies and climate policies on air quality improvement and carbon mitigation. Furthermore, it seeks to delineate detailed provincial-level air pollution control strategies, offering valuable guidance for policymakers and stakeholders in pursuing sustainable and health-conscious environmental management.
{"title":"Optimizing air quality and health Co-benefits of mitigation technologies in China: An integrated assessment","authors":"Mengdan Zhao , Yang Xie , Meng Xu , Zhixiong Weng , Tatsuya Hanaoka , Yuqiang Zhang , Dan Tong","doi":"10.1016/j.ese.2024.100454","DOIUrl":"10.1016/j.ese.2024.100454","url":null,"abstract":"<div><p>Carbon mitigation technologies lead to air quality improvement and health co-benefits, while the practical effects of the technologies are dependent on the energy composition, technological advancements, and economic development. In China, mitigation technologies such as end-of-pipe treatment, renewable energy adoption, carbon capture and storage (CCS), and sector electrification demonstrate significant promise in meeting carbon reduction targets. However, the optimization of these technologies for maximum co-benefits remains unclear. Here, we employ an integrated assessment model (AIM/enduse, CAM-chem, IMED|HEL) to analyze air quality shifts and their corresponding health and economic impacts at the provincial level in China within the two-degree target. Our findings reveal that a combination of end-of-pipe technology, renewable energy utilization, and electrification yields the most promising results in air quality improvement, with a reduction of fine particulate matter (PM<sub>2.5</sub>) by −34.6 μg m<sup>−3</sup> and ozone by −18.3 ppb in 2050 compared to the reference scenario. In contrast, CCS technology demonstrates comparatively modest improvements in air quality (−9.4 μg m<sup>−3</sup> for PM<sub>2.5</sub> and −2.4 ppb for ozone) and cumulative premature deaths reduction (−3.4 million from 2010 to 2050) compared to the end-of-pipe scenario. Notably, densely populated regions such as Henan, Hebei, Shandong, and Sichuan experience the most health and economic benefits. This study aims to project effective future mitigation technologies and climate policies on air quality improvement and carbon mitigation. Furthermore, it seeks to delineate detailed provincial-level air pollution control strategies, offering valuable guidance for policymakers and stakeholders in pursuing sustainable and health-conscious environmental management.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"22 ","pages":"Article 100454"},"PeriodicalIF":14.0,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666498424000681/pdfft?md5=6d217de308e16a7f801b64dbbe1d5def&pid=1-s2.0-S2666498424000681-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141692674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}