Pub Date : 2024-06-27DOI: 10.1016/j.ese.2024.100445
Lluís Bertrans-Tubau , Sergio Martínez-Campos , Julio Lopez-Doval , Meritxell Abril , Sergio Ponsá , Victoria Salvadó , Manuela Hidalgo , Anna Pico-Tomàs , Jose Luis Balcazar , Lorenzo Proia
The overuse and misuse of antibiotics have accelerated the selection of antibiotic-resistant bacteria, significantly impacting human, animal, and environmental health. As aquatic environments are vulnerable to antibiotic resistance, suitable management practices should be adopted to tackle this phenomenon. Here we show an effective, nature-based solution for reducing antibiotic resistance from actual wastewater. We utilize a bioreactor that relies on benthic (biofilms) and planktonic microbial communities to treat secondary effluent from a small urban wastewater treatment plant (<10,000 population equivalent). This treated effluent is eventually released into the local aquatic ecosystem. We observe high removal efficiency for genes that provide resistance to commonly used antibiotic families, as well as for mobile genetic elements that could potentially aid in their spread. Importantly, we notice a buildup of sulfonamide (sul1 and sul2) and tetracycline (tet(C), tet(G), and tetR) resistance genes specifically in biofilms. This advancement marks the initial step in considering this bioreactor as a nature-based, cost-effective tertiary treatment option for small UWWTPs facing antibiotic resistance challenges.
{"title":"Nature-based bioreactors: Tackling antibiotic resistance in urban wastewater treatment","authors":"Lluís Bertrans-Tubau , Sergio Martínez-Campos , Julio Lopez-Doval , Meritxell Abril , Sergio Ponsá , Victoria Salvadó , Manuela Hidalgo , Anna Pico-Tomàs , Jose Luis Balcazar , Lorenzo Proia","doi":"10.1016/j.ese.2024.100445","DOIUrl":"https://doi.org/10.1016/j.ese.2024.100445","url":null,"abstract":"<div><p>The overuse and misuse of antibiotics have accelerated the selection of antibiotic-resistant bacteria, significantly impacting human, animal, and environmental health. As aquatic environments are vulnerable to antibiotic resistance, suitable management practices should be adopted to tackle this phenomenon. Here we show an effective, nature-based solution for reducing antibiotic resistance from actual wastewater. We utilize a bioreactor that relies on benthic (biofilms) and planktonic microbial communities to treat secondary effluent from a small urban wastewater treatment plant (<10,000 population equivalent). This treated effluent is eventually released into the local aquatic ecosystem. We observe high removal efficiency for genes that provide resistance to commonly used antibiotic families, as well as for mobile genetic elements that could potentially aid in their spread. Importantly, we notice a buildup of sulfonamide (<em>sul1</em> and <em>sul2</em>) and tetracycline (<em>tet(C)</em>, <em>tet(G)</em>, and <em>tetR</em>) resistance genes specifically in biofilms. This advancement marks the initial step in considering this bioreactor as a nature-based, cost-effective tertiary treatment option for small UWWTPs facing antibiotic resistance challenges.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"22 ","pages":"Article 100445"},"PeriodicalIF":14.0,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666498424000590/pdfft?md5=1ef9cea825e211b8c0b97200670d6d4a&pid=1-s2.0-S2666498424000590-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141542010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The strong metal-support interaction (SMSI) in supported catalysts plays a dominant role in catalytic degradation, upgrading, and remanufacturing of environmental pollutants. Previous studies have shown that SMSI is crucial in supported catalysts' activity and stability. However, for redox reactions catalyzed in environmental catalysis, the enhancement mechanism of SMSI-induced oxygen vacancy and electron transfer needs to be clarified. Additionally, the precise control of SMSI interface sites remains to be fully understood. Here we provide a systematic review of SMSI's catalytic mechanisms and control strategies in purifying gaseous pollutants, treating organic wastewater, and valorizing biomass solid waste. We explore the adsorption and activation mechanisms of SMSI in redox reactions by examining interfacial electron transfer, interfacial oxygen vacancy, and interfacial acidic sites. Furthermore, we develop a precise regulation strategy of SMSI from systematical perspectives of interface effect, crystal facet effect, size effect, guest ion doping, and modification effect. Importantly, we point out the drawbacks and breakthrough directions for SMSI regulation in environmental catalysis, including partial encapsulation strategy, size optimization strategy, interface oxygen vacancy strategy, and multi-component strategy. This review article provides the potential applications of SMSI and offers guidance for its controlled regulation in environmental catalysis.
{"title":"Strong metal-support interaction (SMSI) in environmental catalysis: Mechanisms, application, regulation strategies, and breakthroughs","authors":"Fuyuan Qi, Jianfei Peng, Zilu Liang, Jiliang Guo, Jiayuan Liu, Tiange Fang, Hongjun Mao","doi":"10.1016/j.ese.2024.100443","DOIUrl":"10.1016/j.ese.2024.100443","url":null,"abstract":"<div><p>The strong metal-support interaction (SMSI) in supported catalysts plays a dominant role in catalytic degradation, upgrading, and remanufacturing of environmental pollutants. Previous studies have shown that SMSI is crucial in supported catalysts' activity and stability. However, for redox reactions catalyzed in environmental catalysis, the enhancement mechanism of SMSI-induced oxygen vacancy and electron transfer needs to be clarified. Additionally, the precise control of SMSI interface sites remains to be fully understood. Here we provide a systematic review of SMSI's catalytic mechanisms and control strategies in purifying gaseous pollutants, treating organic wastewater, and valorizing biomass solid waste. We explore the adsorption and activation mechanisms of SMSI in redox reactions by examining interfacial electron transfer, interfacial oxygen vacancy, and interfacial acidic sites. Furthermore, we develop a precise regulation strategy of SMSI from systematical perspectives of interface effect, crystal facet effect, size effect, guest ion doping, and modification effect. Importantly, we point out the drawbacks and breakthrough directions for SMSI regulation in environmental catalysis, including partial encapsulation strategy, size optimization strategy, interface oxygen vacancy strategy, and multi-component strategy. This review article provides the potential applications of SMSI and offers guidance for its controlled regulation in environmental catalysis.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"22 ","pages":"Article 100443"},"PeriodicalIF":14.0,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666498424000577/pdfft?md5=6ba288c77ca3ac4caff084f5d2614e8a&pid=1-s2.0-S2666498424000577-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141951399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-19DOI: 10.1016/j.ese.2024.100442
Yi-ping Chen , Kai-bo Wang , Bo-jie Fu , Yan-fen Wang , Han-wen Tian , Yi Wang , Yi Zhang
Global temperatures will continue to increase in the future. The ∼640,000-km2 Loess Plateau (LP) is a typical arid and semi-arid region in China. Similar regions cover ∼41% of the Earth, and its soils are some of the most severely eroded anywhere in the world. It is very important to understand the vegetation change and its ecological threshold under climate change on the LP for the sustainable development in the Yellow River Basin. However, little is known about how vegetation on the LP will respond to climate change and what is the sustainable threshold level of vegetation cover on the LP. Here we show that the temperature on the LP has risen 0.27 °C per decade over the past 50 years, a rate that is 30% higher than the average warming rate across China. During historical times, vegetation change was regulated by environmental factors and anthropogenic activities. Vegetation coverage was about 53% on the LP from the Xia Dynasty to the Spring and Autumn and Warring States period. Over the past 70 years, however, the environment has gradually improved and the vegetation cover had increased to ∼65% by 2021. We forecast future changes of vegetation cover on the LP in 2030s, in 2050s and in 2070s using SDM (Species Distribution Model) under Low-emission scenarios, Medium-emission scenarios and High-emission scenarios. An average value of vegetation cover under the three emission scenarios will be 64.67%, 62.70% and 61.47%, respectively. According to the historical record and SDM forecasts, the threshold level of vegetation cover on the LP is estimated to be 53–65%. Currently, vegetation cover on the LP has increased to the upper limit of the threshold value (∼65%). We conclude that the risk of ecosystem collapse on the LP will increase with further temperature increases once the vegetated area and density exceed the threshold value. It is urgent to adopt sustainable strategies such as stopping expanding vegetation area and scientifically optimizing the vegetation structure on the LP to improve the ecological sustainability of the Yellow River Basin.
{"title":"65% cover is the sustainable vegetation threshold on the Loess Plateau","authors":"Yi-ping Chen , Kai-bo Wang , Bo-jie Fu , Yan-fen Wang , Han-wen Tian , Yi Wang , Yi Zhang","doi":"10.1016/j.ese.2024.100442","DOIUrl":"https://doi.org/10.1016/j.ese.2024.100442","url":null,"abstract":"<div><p>Global temperatures will continue to increase in the future. The ∼640,000-km<sup>2</sup> Loess Plateau (LP) is a typical arid and semi-arid region in China. Similar regions cover ∼41% of the Earth, and its soils are some of the most severely eroded anywhere in the world. It is very important to understand the vegetation change and its ecological threshold under climate change on the LP for the sustainable development in the Yellow River Basin. However, little is known about how vegetation on the LP will respond to climate change and what is the sustainable threshold level of vegetation cover on the LP. Here we show that the temperature on the LP has risen 0.27 °C per decade over the past 50 years, a rate that is 30% higher than the average warming rate across China. During historical times, vegetation change was regulated by environmental factors and anthropogenic activities. Vegetation coverage was about 53% on the LP from the Xia Dynasty to the Spring and Autumn and Warring States period. Over the past 70 years, however, the environment has gradually improved and the vegetation cover had increased to ∼65% by 2021. We forecast future changes of vegetation cover on the LP in 2030s, in 2050s and in 2070s using SDM (Species Distribution Model) under Low-emission scenarios, Medium-emission scenarios and High-emission scenarios. An average value of vegetation cover under the three emission scenarios will be 64.67%, 62.70% and 61.47%, respectively. According to the historical record and SDM forecasts, the threshold level of vegetation cover on the LP is estimated to be 53–65%. Currently, vegetation cover on the LP has increased to the upper limit of the threshold value (∼65%). We conclude that the risk of ecosystem collapse on the LP will increase with further temperature increases once the vegetated area and density exceed the threshold value. It is urgent to adopt sustainable strategies such as stopping expanding vegetation area and scientifically optimizing the vegetation structure on the LP to improve the ecological sustainability of the Yellow River Basin.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"22 ","pages":"Article 100442"},"PeriodicalIF":14.0,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666498424000565/pdfft?md5=1c264a25cf8cb314b35525a445a21dab&pid=1-s2.0-S2666498424000565-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141483422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-14DOI: 10.1016/j.ese.2024.100439
Carlo Moscariello, Silvio Matassa, Francesco Pirozzi, Giovanni Esposito, Stefano Papirio
The production of single cell protein (SCP) using lignocellulosic materials stands out as a promising route in the circular bioeconomy transition. However, multiple steps are necessary for lignocellulosics-to-SCP processes, involving chemical pretreatments and specific aerobic cultures. Whereas there are no studies that investigated the SCP production from lignocellulosics by using only biological processes and microbial biomass able to work both anaerobically and aerobically. In this view, the valorisation of industrial hemp (Cannabis sativa L.) biomass residues (HBRs), specifically hurds and a mix of leaves and inflorescences, combined with cheese whey (CW) was investigated through a semi-continuous acidogenic co-fermentation process (co-AF). The aim of this study was to maximise HBRs conversion into VFAs to be further used as carbon-rich substrates for SCP production. Different process conditions were tested by either removing CW or increasing the amount of HBRs in terms of VS (i.e., two and four times) to evaluate the performance of the co-AF process. Increasing HBRs resulted in a proportional increase in VFA production up to 3115 mg HAc L−1, with experimental production nearly 40% higher than theoretical predictions. The synergy between HBRs and CW was demonstrated, proving the latter as essential to improve the biodegradability of the former. The produced VFAs were subsequently tested as substrates for SCP synthesis in batch aerobic tests. A biomass concentration of 2.43 g TSS L−1 was achieved with a C/N ratio of 5.0 and a pH of 9.0 after two days of aerobic fermentation, reaching a protein content of 42% (g protein per g TSS). These results demonstrate the overall feasibility of the VFA-mediated HBR-to-SCP valorisation process.
{"title":"Valorisation of industrial hemp (Cannabis sativa L.) residues and cheese whey into volatile fatty acids for single cell protein production","authors":"Carlo Moscariello, Silvio Matassa, Francesco Pirozzi, Giovanni Esposito, Stefano Papirio","doi":"10.1016/j.ese.2024.100439","DOIUrl":"10.1016/j.ese.2024.100439","url":null,"abstract":"<div><p>The production of single cell protein (SCP) using lignocellulosic materials stands out as a promising route in the circular bioeconomy transition. However, multiple steps are necessary for lignocellulosics-to-SCP processes, involving chemical pretreatments and specific aerobic cultures. Whereas there are no studies that investigated the SCP production from lignocellulosics by using only biological processes and microbial biomass able to work both anaerobically and aerobically. In this view, the valorisation of industrial hemp (<em>Cannabis sativa</em> L.) biomass residues (HBRs), specifically hurds and a mix of leaves and inflorescences, combined with cheese whey (CW) was investigated through a semi-continuous acidogenic co-fermentation process (co-AF). The aim of this study was to maximise HBRs conversion into VFAs to be further used as carbon-rich substrates for SCP production. Different process conditions were tested by either removing CW or increasing the amount of HBRs in terms of VS (i.e., two and four times) to evaluate the performance of the co-AF process. Increasing HBRs resulted in a proportional increase in VFA production up to 3115 mg HAc L<sup>−1</sup>, with experimental production nearly 40% higher than theoretical predictions. The synergy between HBRs and CW was demonstrated, proving the latter as essential to improve the biodegradability of the former. The produced VFAs were subsequently tested as substrates for SCP synthesis in batch aerobic tests. A biomass concentration of 2.43 g TSS L<sup>−1</sup> was achieved with a C/N ratio of 5.0 and a pH of 9.0 after two days of aerobic fermentation, reaching a protein content of 42% (g protein per g TSS). These results demonstrate the overall feasibility of the VFA-mediated HBR-to-SCP valorisation process.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"21 ","pages":"Article 100439"},"PeriodicalIF":14.0,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266649842400053X/pdfft?md5=889e81d50253791b102694b88e119cc2&pid=1-s2.0-S266649842400053X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141413557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-13DOI: 10.1016/j.ese.2024.100438
Cheng-Cheng Dang , Yin-Zhu Jin , Xin Tan , Wen-Bo Nie , Yang Lu , Bing-Feng Liu , De-Feng Xing , Nan-Qi Ren , Guo-Jun Xie
Ethane, the second most abundant gaseous hydrocarbon in vast anoxic environments, is an overlooked greenhouse gas. Microbial anaerobic oxidation of ethane can be driven by available electron acceptors such as sulfate and nitrate. However, despite nitrite being a more thermodynamically feasible electron acceptor than sulfate or nitrate, little is known about nitrite-driven anaerobic ethane oxidation. In this study, a microbial culture capable of nitrite-driven anaerobic ethane oxidation was enriched through the long-term operation of a nitrite-and-ethane-fed bioreactor. During continuous operation, the nitrite removal rate and the theoretical ethane oxidation rate remained stable at approximately 25.0 mg NO2–N L−1 d−1 and 11.48 mg C2H6 L−1 d−1, respectively. Batch tests demonstrated that ethane is essential for nitrite removal in this microbial culture. Metabolic function analysis revealed that a species affiliated with a novel genus within the family Rhodocyclaceae, designated as 'Candidatus Alkanivoras nitrosoreducens', may perform the nitrite-driven anaerobic ethane oxidation. In the proposed metabolic model, despite the absence of known genes for ethane conversion to ethyl-succinate and succinate-CoA ligase, 'Ca. A. nitrosoreducens' encodes a prospective fumarate addition pathway for anaerobic ethane oxidation and a complete denitrification pathway for nitrite reduction to nitrogen. These findings advance our understanding of nitrite-driven anaerobic ethane oxidation, highlighting the previously overlooked impact of anaerobic ethane oxidation in natural ecosystems.
{"title":"Nitrite-driven anaerobic ethane oxidation","authors":"Cheng-Cheng Dang , Yin-Zhu Jin , Xin Tan , Wen-Bo Nie , Yang Lu , Bing-Feng Liu , De-Feng Xing , Nan-Qi Ren , Guo-Jun Xie","doi":"10.1016/j.ese.2024.100438","DOIUrl":"10.1016/j.ese.2024.100438","url":null,"abstract":"<div><p>Ethane, the second most abundant gaseous hydrocarbon in vast anoxic environments, is an overlooked greenhouse gas. Microbial anaerobic oxidation of ethane can be driven by available electron acceptors such as sulfate and nitrate. However, despite nitrite being a more thermodynamically feasible electron acceptor than sulfate or nitrate, little is known about nitrite-driven anaerobic ethane oxidation. In this study, a microbial culture capable of nitrite-driven anaerobic ethane oxidation was enriched through the long-term operation of a nitrite-and-ethane-fed bioreactor. During continuous operation, the nitrite removal rate and the theoretical ethane oxidation rate remained stable at approximately 25.0 mg NO<sub>2</sub><sup>–</sup>N L<sup>−1</sup> d<sup>−1</sup> and 11.48 mg C<sub>2</sub>H<sub>6</sub> L<sup>−1</sup> d<sup>−1</sup>, respectively. Batch tests demonstrated that ethane is essential for nitrite removal in this microbial culture. Metabolic function analysis revealed that a species affiliated with a novel genus within the family Rhodocyclaceae, designated as '<em>Candidatus</em> Alkanivoras nitrosoreducens', may perform the nitrite-driven anaerobic ethane oxidation. In the proposed metabolic model, despite the absence of known genes for ethane conversion to ethyl-succinate and succinate-CoA ligase, '<em>Ca</em>. A. nitrosoreducens' encodes a prospective fumarate addition pathway for anaerobic ethane oxidation and a complete denitrification pathway for nitrite reduction to nitrogen. These findings advance our understanding of nitrite-driven anaerobic ethane oxidation, highlighting the previously overlooked impact of anaerobic ethane oxidation in natural ecosystems.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"21 ","pages":"Article 100438"},"PeriodicalIF":14.0,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666498424000528/pdfft?md5=dfae899e89f6f60f9a583213ab0f39ec&pid=1-s2.0-S2666498424000528-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141396370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-11DOI: 10.1016/j.ese.2024.100436
Yang Liu , Mei-Po Kwan , Jianying Wang , Jiannan Cai
Excessive urbanization leads to considerable nature deficiency and abundant artificial infrastructure in urban areas, which triggered intensive discussions on people's exposure to green space and outdoor artificial light at night (ALAN). Recent academic progress highlights that people's exposure to green space and outdoor ALAN may be confounders of each other but lacks systematic investigations. This study investigates the associations between people's exposure to green space and outdoor ALAN by adopting the three most used research paradigms: population-level residence-based, individual-level residence-based, and individual-level mobility-oriented paradigms. We employed the green space and outdoor ALAN data of 291 Tertiary Planning Units in Hong Kong for population-level analysis. We also used data from 940 participants in six representative communities for individual-level analyses. Hong Kong green space and outdoor ALAN were derived from high-resolution remote sensing data. The total exposures were derived using the spatiotemporally weighted approaches. Our results confirm that the negative associations between people's exposure to green space and outdoor ALAN are universal across different research paradigms, spatially non-stationary, and consistent among different socio-demographic groups. We also observed that mobility-oriented measures may lead to stronger negative associations than residence-based measures by mitigating the contextual errors of residence-based measures. Our results highlight the potential confounding associations between people's exposure to green space and outdoor ALAN, and we strongly recommend relevant studies to consider both of them in modeling people's health outcomes, especially for those health outcomes impacted by the co-exposure to them.
过度城市化导致城市地区自然缺失严重,人工基础设施丰富,引发了人们对绿地和夜间室外人工光(ALAN)暴露的深入讨论。近年来的学术研究表明,人们的绿地暴露和室外夜间人造光暴露可能相互影响,但缺乏系统的研究。本研究采用三种最常用的研究范式:基于人群居住水平的范式、基于个人居住水平的范式和基于个人移动水平的范式,研究人们的绿地暴露与户外ALAN之间的关联。我们采用了香港 291 个三级规划单位的绿地和户外 ALAN 数据进行人口层面的分析。我们还使用了六个代表性社区中 940 名参与者的数据进行个人层面的分析。香港的绿地和户外ALAN数据来自高分辨率遥感数据。总暴露量采用时空加权法得出。我们的研究结果证实,在不同的研究范式中,人们暴露于绿地和室外 ALAN 之间的负相关是普遍存在的,在空间上是非稳态的,并且在不同的社会人口群体中是一致的。我们还发现,与基于居住地的测量方法相比,以流动性为导向的测量方法可能会通过减少基于居住地的测量方法的情境误差而导致更强的负相关。我们的研究结果凸显了人们暴露于绿地和户外 ALAN 之间可能存在的混杂关联,我们强烈建议相关研究在建立人们的健康结果模型时同时考虑这两个因素,特别是对于那些受这两个因素共同影响的健康结果。
{"title":"Confounding associations between green space and outdoor artificial light at night: Systematic investigations and implications for urban health","authors":"Yang Liu , Mei-Po Kwan , Jianying Wang , Jiannan Cai","doi":"10.1016/j.ese.2024.100436","DOIUrl":"10.1016/j.ese.2024.100436","url":null,"abstract":"<div><p>Excessive urbanization leads to considerable nature deficiency and abundant artificial infrastructure in urban areas, which triggered intensive discussions on people's exposure to green space and outdoor artificial light at night (ALAN). Recent academic progress highlights that people's exposure to green space and outdoor ALAN may be confounders of each other but lacks systematic investigations. This study investigates the associations between people's exposure to green space and outdoor ALAN by adopting the three most used research paradigms: population-level residence-based, individual-level residence-based, and individual-level mobility-oriented paradigms. We employed the green space and outdoor ALAN data of 291 Tertiary Planning Units in Hong Kong for population-level analysis. We also used data from 940 participants in six representative communities for individual-level analyses. Hong Kong green space and outdoor ALAN were derived from high-resolution remote sensing data. The total exposures were derived using the spatiotemporally weighted approaches. Our results confirm that the negative associations between people's exposure to green space and outdoor ALAN are universal across different research paradigms, spatially non-stationary, and consistent among different socio-demographic groups. We also observed that mobility-oriented measures may lead to stronger negative associations than residence-based measures by mitigating the contextual errors of residence-based measures. Our results highlight the potential confounding associations between people's exposure to green space and outdoor ALAN, and we strongly recommend relevant studies to consider both of them in modeling people's health outcomes, especially for those health outcomes impacted by the co-exposure to them.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"21 ","pages":"Article 100436"},"PeriodicalIF":14.0,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666498424000504/pdfft?md5=678dc38e07c3792a4fce3dc4e699c58f&pid=1-s2.0-S2666498424000504-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141392824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-11DOI: 10.1016/j.ese.2024.100440
Xingxing Zhang , Pengbo Jiao , Yiwei Wang , Yinying Dai , Ming Zhang , Peng Wu , Liping Ma
Anaerobic digestion (AD) plays a significant role in renewable energy recovery. Upgrading AD from thermophilic (50–57 °C) to mesophilic (30–38 °C) conditions to enhance process stability and reduce energy input remains challenging due to the high sensitivity of thermophilic microbiomes to temperature fluctuations. Here we compare the effects of two decreasing-temperature modes from 55 to 35 °C on cell viability, microbial dynamics, and interspecies interactions. A sharp transition (ST) is a one-step transition by 20 °C d−1, while a mild transition (MT) is a stepwise transition by 1 °C d−1. We find a greater decrease in methane production with ST (88.8%) compared to MT (38.9%) during the transition period. ST mode overproduced reactive oxygen species by 1.6-fold, increased membrane permeability by 2.2-fold, and downregulated microbial energy metabolism by 25.1%, leading to increased apoptosis of anaerobes by 1.9-fold and release of intracellular substances by 2.9-fold, further constraining methanogenesis. The higher (1.6 vs. 1.1 copies per gyrA) metabolic activity of acetate-dependent methanogenesis implied more efficient methane production in a steady mesophilic, MT-mediated system. Metagenomic binning and network analyses indicated that ST induced dysbiosis in keystone species and greatly enhanced microbial functional redundancy, causing loss of microbial syntrophic interactions and redundant metabolic pathways. In contrast, the greater microbial interconnections (average degrees 44.9 vs. 22.1) in MT at a steady mesophilic state suggested that MT could better maintain necessary system functionality and stability through microbial syntrophy or specialized pathways. Adopting MT to transform thermophilic digesters into mesophilic digesters is feasible and could potentially enhance the further optimization and broader application of practical anaerobic engineering.
{"title":"Optimizing anaerobic digestion: Benefits of mild temperature transition from thermophilic to mesophilic conditions","authors":"Xingxing Zhang , Pengbo Jiao , Yiwei Wang , Yinying Dai , Ming Zhang , Peng Wu , Liping Ma","doi":"10.1016/j.ese.2024.100440","DOIUrl":"10.1016/j.ese.2024.100440","url":null,"abstract":"<div><p>Anaerobic digestion (AD) plays a significant role in renewable energy recovery. Upgrading AD from thermophilic (50–57 °C) to mesophilic (30–38 °C) conditions to enhance process stability and reduce energy input remains challenging due to the high sensitivity of thermophilic microbiomes to temperature fluctuations. Here we compare the effects of two decreasing-temperature modes from 55 to 35 °C on cell viability, microbial dynamics, and interspecies interactions. A sharp transition (ST) is a one-step transition by 20 °C d<sup>−1</sup>, while a mild transition (MT) is a stepwise transition by 1 °C d<sup>−1</sup>. We find a greater decrease in methane production with ST (88.8%) compared to MT (38.9%) during the transition period. ST mode overproduced reactive oxygen species by 1.6-fold, increased membrane permeability by 2.2-fold, and downregulated microbial energy metabolism by 25.1%, leading to increased apoptosis of anaerobes by 1.9-fold and release of intracellular substances by 2.9-fold, further constraining methanogenesis. The higher (1.6 vs. 1.1 copies per <em>gyr</em>A) metabolic activity of acetate-dependent methanogenesis implied more efficient methane production in a steady mesophilic, MT-mediated system. Metagenomic binning and network analyses indicated that ST induced dysbiosis in keystone species and greatly enhanced microbial functional redundancy, causing loss of microbial syntrophic interactions and redundant metabolic pathways. In contrast, the greater microbial interconnections (average degrees 44.9 vs. 22.1) in MT at a steady mesophilic state suggested that MT could better maintain necessary system functionality and stability through microbial syntrophy or specialized pathways. Adopting MT to transform thermophilic digesters into mesophilic digesters is feasible and could potentially enhance the further optimization and broader application of practical anaerobic engineering.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"21 ","pages":"Article 100440"},"PeriodicalIF":12.6,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666498424000541/pdfft?md5=1e3a5fe99d8cb02cc135ef6228bedee4&pid=1-s2.0-S2666498424000541-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141391364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-11DOI: 10.1016/j.ese.2024.100441
Yan Zhang , Yu Qiu , Kai Liu , Wenjun Zhong , Jianghua Yang , Florian Altermatt , Xiaowei Zhang
The monitoring and management of aquatic ecosystems depend on precise estimates of biodiversity. Metabarcoding analyses of environmental nucleic acids (eNAs), including environmental DNA (eDNA) and environmental RNA (eRNA), have garnered attention for their cost-effective and non-invasive biomonitoring capabilities. However, the accuracy of biodiversity estimates obtained through eNAs can vary among different organismal groups. Here we evaluate the performance of eDNA and eRNA metabarcoding across nine organismal groups, ranging from bacteria to terrestrial vertebrates, in three cross-sections of the Yangtze River, China. We observe robust complementarity between eDNA and eRNA data. The relative detectability of eNAs was notably influenced by major taxonomic groups and organismal sizes, with eDNA providing more robust signals for larger organisms. Both eDNA and eRNA exhibited similar cross-sectional and longitudinal patterns. However, the detectability of larger organisms declined in eRNA metabarcoding, possibly due to differential RNA release and decay among different organismal groups or sizes. While underscoring the potential of eDNA and eRNA in large river biomonitoring, we emphasize the need for differential interpretation of eDNA versus eRNA data. This highlights the importance of careful method selection and interpretation in biomonitoring studies.
{"title":"Evaluating eDNA and eRNA metabarcoding for aquatic biodiversity assessment: From bacteria to vertebrates","authors":"Yan Zhang , Yu Qiu , Kai Liu , Wenjun Zhong , Jianghua Yang , Florian Altermatt , Xiaowei Zhang","doi":"10.1016/j.ese.2024.100441","DOIUrl":"10.1016/j.ese.2024.100441","url":null,"abstract":"<div><p>The monitoring and management of aquatic ecosystems depend on precise estimates of biodiversity. Metabarcoding analyses of environmental nucleic acids (eNAs), including environmental DNA (eDNA) and environmental RNA (eRNA), have garnered attention for their cost-effective and non-invasive biomonitoring capabilities. However, the accuracy of biodiversity estimates obtained through eNAs can vary among different organismal groups. Here we evaluate the performance of eDNA and eRNA metabarcoding across nine organismal groups, ranging from bacteria to terrestrial vertebrates, in three cross-sections of the Yangtze River, China. We observe robust complementarity between eDNA and eRNA data. The relative detectability of eNAs was notably influenced by major taxonomic groups and organismal sizes, with eDNA providing more robust signals for larger organisms. Both eDNA and eRNA exhibited similar cross-sectional and longitudinal patterns. However, the detectability of larger organisms declined in eRNA metabarcoding, possibly due to differential RNA release and decay among different organismal groups or sizes. While underscoring the potential of eDNA and eRNA in large river biomonitoring, we emphasize the need for differential interpretation of eDNA versus eRNA data. This highlights the importance of careful method selection and interpretation in biomonitoring studies.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"21 ","pages":"Article 100441"},"PeriodicalIF":14.0,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666498424000553/pdfft?md5=602bc0204e43a15a656d11559d2ea870&pid=1-s2.0-S2666498424000553-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141389831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-10DOI: 10.1016/j.ese.2024.100437
Zhenglu Wang , Jindong Xu , Wei Du
The coexistence of caffeine (CF) and ketamine (KET) in surface waters across Asia has been widely reported. Previous studies have implied that CF and KET may share a mechanism of action. However, the combined toxicity of these two chemicals on aquatic organisms remains unclear at environmental levels, and the underlying mechanisms are not well understood. Here we demonstrate that KET antagonizes the adverse effects of CF on zebrafish larvae by modulating the gamma-aminobutyric acid (GABA)ergic synapse pathway. Specifically, KET (10–250 ng L−1) ameliorates the locomotor hyperactivity and impaired circadian rhythms in zebrafish larvae induced by 2 mg L−1 of CF, showing a dose-dependent relationship. Additionally, the developmental abnormalities in zebrafish larvae exposed to CF are mitigated by KET, with an incidence rate reduced from 26.7% to 6.7%. The competition between CF and KET for binding sites on the GABA-A receptor (in situ and in silico) elucidates the antagonistic interactions between the two chemicals. Following a seven-day recovery period, the adverse outcomes of CF exposure persist in the fish, whereas the changes observed in the CF + KET groups are significantly alleviated, especially with KET at 10 ng L−1. Based on these results, it is imperative to further assess the environmental risks associated with CF and KET co-pollution. This pilot study underscores the utility of systems toxicology approaches in estimating the combined toxicity of environmental chemicals on aquatic organisms. Moreover, the nighttime behavioral functions of fish could serve as a sensitive biomarker for evaluating the toxicity of psychoactive substances.
亚洲各地地表水中同时存在咖啡因(CF)和氯胺酮(KET)的现象已被广泛报道。以往的研究表明,咖啡因和氯胺酮可能具有相同的作用机制。然而,这两种化学物质在环境水平上对水生生物的综合毒性仍不清楚,其潜在机制也不甚明了。在这里,我们证明 KET 可通过调节γ-氨基丁酸(GABA)能突触通路来拮抗 CF 对斑马鱼幼体的不利影响。具体来说,KET(10-250 ng L-1)可改善 2 mg L-1 CF 诱导的斑马鱼幼体的运动机能亢进和昼夜节律失调,两者呈剂量依赖关系。此外,KET 还可减轻暴露于 CF 的斑马鱼幼体的发育异常,发病率从 26.7% 降至 6.7%。CF和KET对GABA-A受体结合位点的竞争(原位和模拟)阐明了这两种化学物质之间的拮抗相互作用。经过七天的恢复期后,CF 暴露对鱼类的不利影响依然存在,而在 CF + KET 组中观察到的变化则明显减轻,尤其是在 KET 为 10 纳克/升的情况下。基于这些结果,必须进一步评估与 CF 和 KET 共同污染相关的环境风险。这项试验研究强调了系统毒理学方法在评估环境化学物质对水生生物的综合毒性方面的实用性。此外,鱼类的夜间行为功能可以作为评估精神活性物质毒性的灵敏生物标志物。
{"title":"Antagonistic interaction between caffeine and ketamine in zebrafish: Implications for aquatic toxicity","authors":"Zhenglu Wang , Jindong Xu , Wei Du","doi":"10.1016/j.ese.2024.100437","DOIUrl":"10.1016/j.ese.2024.100437","url":null,"abstract":"<div><p>The coexistence of caffeine (CF) and ketamine (KET) in surface waters across Asia has been widely reported. Previous studies have implied that CF and KET may share a mechanism of action. However, the combined toxicity of these two chemicals on aquatic organisms remains unclear at environmental levels, and the underlying mechanisms are not well understood. Here we demonstrate that KET antagonizes the adverse effects of CF on zebrafish larvae by modulating the gamma-aminobutyric acid (GABA)ergic synapse pathway. Specifically, KET (10–250 ng L<sup>−1</sup>) ameliorates the locomotor hyperactivity and impaired circadian rhythms in zebrafish larvae induced by 2 mg L<sup>−1</sup> of CF, showing a dose-dependent relationship. Additionally, the developmental abnormalities in zebrafish larvae exposed to CF are mitigated by KET, with an incidence rate reduced from 26.7% to 6.7%. The competition between CF and KET for binding sites on the GABA-A receptor (<em>in situ</em> and <em>in silico</em>) elucidates the antagonistic interactions between the two chemicals. Following a seven-day recovery period, the adverse outcomes of CF exposure persist in the fish, whereas the changes observed in the CF + KET groups are significantly alleviated, especially with KET at 10 ng L<sup>−1</sup>. Based on these results, it is imperative to further assess the environmental risks associated with CF and KET co-pollution. This pilot study underscores the utility of systems toxicology approaches in estimating the combined toxicity of environmental chemicals on aquatic organisms. Moreover, the nighttime behavioral functions of fish could serve as a sensitive biomarker for evaluating the toxicity of psychoactive substances.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"21 ","pages":"Article 100437"},"PeriodicalIF":12.6,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666498424000516/pdfft?md5=b727c9d9e14b1922c4d10b39c40c3940&pid=1-s2.0-S2666498424000516-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141414912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-28DOI: 10.1016/j.ese.2024.100435
Jinnan Wang, Yixuan Zheng
{"title":"Drawing a synergetic roadmap of carbon neutrality and clean air for China — Introduction to the new column synergetic roadmap","authors":"Jinnan Wang, Yixuan Zheng","doi":"10.1016/j.ese.2024.100435","DOIUrl":"https://doi.org/10.1016/j.ese.2024.100435","url":null,"abstract":"","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"20 ","pages":"Article 100435"},"PeriodicalIF":12.6,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666498424000498/pdfft?md5=e8259225fe666c057dec41a210967eb7&pid=1-s2.0-S2666498424000498-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141303235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}