首页 > 最新文献

Advances in Industrial and Manufacturing Engineering最新文献

英文 中文
An inline point-tracking approach for the real-time monitoring of the free-form bending process 用于实时监控自由曲面弯曲过程的在线点跟踪方法
IF 3.9 Q2 ENGINEERING, INDUSTRIAL Pub Date : 2024-08-22 DOI: 10.1016/j.aime.2024.100150
Lorenzo Scandola, Viktor Böhm, Daniel Maier, Jeremias Tschannerl, Florian Steinlehner, Christoph Hartmann, Wolfram Volk

In order to make free-form bending a process of choice for the manufacturing of structural components, a robust strategy for process monitoring is required. Although the technology is particularly suitable for the production of bending components with variable and complex geometry, fluctuations in the process conditions, as well as in the quality of the semi-finished products can results in geometrical deviations from the target geometry. Currently, the quality assessment of the bent components can be done only offline by random sampling, with a considerable time and cost effort. In this contribution, a real-time process monitoring is realised and applied to free-form bending for the first time. First of all, an inline strategy based on single-point tracking for the assessment of the geometry is investigated through an extensive numerical sensitivity analysis. Successively, the method is implemented experimentally and validated with real tests. Finally, a small-batch series of deviating components is produced, and the developed strategy is adopted to perform a real-time process monitoring. The study highlights the potential of an inline measurement strategy for the process monitoring in free-form bending, and its advantages compared to the current offline methods.

为了使自由曲面折弯成为制造结构部件的首选工艺,需要有一套强大的工艺监控策略。虽然该技术特别适用于生产几何形状多变且复杂的折弯部件,但工艺条件的波动以及半成品质量的波动会导致几何形状偏离目标几何形状。目前,对弯曲部件的质量评估只能通过随机抽样的方式离线进行,耗费大量的时间和成本。在本论文中,首次实现了对自由曲面折弯的实时过程监控。首先,通过广泛的数值敏感性分析,研究了基于单点跟踪的几何评估在线策略。随后,在实验中实施了该方法,并通过实际测试进行了验证。最后,制作了一系列小批量偏差部件,并采用所开发的策略来执行实时过程监控。这项研究强调了在线测量策略在自由形态弯曲过程监控中的潜力,以及与当前离线方法相比的优势。
{"title":"An inline point-tracking approach for the real-time monitoring of the free-form bending process","authors":"Lorenzo Scandola,&nbsp;Viktor Böhm,&nbsp;Daniel Maier,&nbsp;Jeremias Tschannerl,&nbsp;Florian Steinlehner,&nbsp;Christoph Hartmann,&nbsp;Wolfram Volk","doi":"10.1016/j.aime.2024.100150","DOIUrl":"10.1016/j.aime.2024.100150","url":null,"abstract":"<div><p>In order to make free-form bending a process of choice for the manufacturing of structural components, a robust strategy for process monitoring is required. Although the technology is particularly suitable for the production of bending components with variable and complex geometry, fluctuations in the process conditions, as well as in the quality of the semi-finished products can results in geometrical deviations from the target geometry. Currently, the quality assessment of the bent components can be done only offline by random sampling, with a considerable time and cost effort. In this contribution, a real-time process monitoring is realised and applied to free-form bending for the first time. First of all, an inline strategy based on single-point tracking for the assessment of the geometry is investigated through an extensive numerical sensitivity analysis. Successively, the method is implemented experimentally and validated with real tests. Finally, a small-batch series of deviating components is produced, and the developed strategy is adopted to perform a real-time process monitoring. The study highlights the potential of an inline measurement strategy for the process monitoring in free-form bending, and its advantages compared to the current offline methods.</p></div>","PeriodicalId":34573,"journal":{"name":"Advances in Industrial and Manufacturing Engineering","volume":"9 ","pages":"Article 100150"},"PeriodicalIF":3.9,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666912924000151/pdfft?md5=5e481947cae14eb5983b1e08aef6868c&pid=1-s2.0-S2666912924000151-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142089526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental investigations on the formation mechanisms of shrink lines in powder bed fusion of metals using a laser beam 利用激光束对金属粉末床熔化过程中收缩线形成机理的实验研究
IF 3.9 Q2 ENGINEERING, INDUSTRIAL Pub Date : 2024-08-12 DOI: 10.1016/j.aime.2024.100149
Dominik Rauner, David L. Wenzler, Daniel Wolf, Felix Granz, Michael F. Zaeh

The powder bed fusion of metals using a laser beam enables the tool-free fabrication of complex part geometries with merging areas and rapid cross-sectional changes. Together, these geometry features represent a structural transition leading to the formation of shrink lines. These notches on the surface of the part reduce the dimensional accuracy and the fatigue resistance. Shrink lines arise in various materials, with the dimensions of the shrink line depending on the geometric design. The formation mechanisms and influencing parameters of shrink lines have not been investigated yet. This paper demonstrates the extent of influence of the part geometry on the shrink line formation, which was quantified by varying the design of a representative structural transition. In addition, the positions of the specimens on the build platform and the scanning strategy were varied for deriving a cause-effect relationship using process monitoring. The results demonstrated that the shrink line formation was mainly caused by a local overheating at the structural transition and the global cooling behavior. The radius at the structural transition indicated the most significant impact among the investigated geometric parameters. The shrink line dimensions depended significantly on the orientation of the specimens on the build platform and the local scanning strategy applied at the height of the structural transition. The results can be used to reduce shrink lines by re-designing the part and to adjust the manufacturing strategy for structural transitions.

使用激光束对金属进行粉末床熔融,可以免工具制造出具有合并区域和快速截面变化的复杂零件几何形状。这些几何特征共同代表了一种结构转变,导致收缩线的形成。零件表面的这些缺口会降低尺寸精度和抗疲劳性。收缩纹出现在各种材料中,收缩纹的尺寸取决于几何设计。收缩纹的形成机理和影响参数尚未得到研究。本文展示了零件几何形状对收缩线形成的影响程度,并通过改变具有代表性的结构过渡设计对其进行了量化。此外,还改变了试样在构建平台上的位置和扫描策略,以便利用过程监控得出因果关系。结果表明,收缩线的形成主要是由结构过渡处的局部过热和整体冷却行为造成的。在所研究的几何参数中,结构过渡处的半径影响最大。收缩线的尺寸在很大程度上取决于试样在构建平台上的方向以及在结构过渡高度应用的局部扫描策略。这些结果可用于通过重新设计零件来减少收缩线,并调整结构过渡的制造策略。
{"title":"Experimental investigations on the formation mechanisms of shrink lines in powder bed fusion of metals using a laser beam","authors":"Dominik Rauner,&nbsp;David L. Wenzler,&nbsp;Daniel Wolf,&nbsp;Felix Granz,&nbsp;Michael F. Zaeh","doi":"10.1016/j.aime.2024.100149","DOIUrl":"10.1016/j.aime.2024.100149","url":null,"abstract":"<div><p>The powder bed fusion of metals using a laser beam enables the tool-free fabrication of complex part geometries with merging areas and rapid cross-sectional changes. Together, these geometry features represent a structural transition leading to the formation of shrink lines. These notches on the surface of the part reduce the dimensional accuracy and the fatigue resistance. Shrink lines arise in various materials, with the dimensions of the shrink line depending on the geometric design. The formation mechanisms and influencing parameters of shrink lines have not been investigated yet. This paper demonstrates the extent of influence of the part geometry on the shrink line formation, which was quantified by varying the design of a representative structural transition. In addition, the positions of the specimens on the build platform and the scanning strategy were varied for deriving a cause-effect relationship using process monitoring. The results demonstrated that the shrink line formation was mainly caused by a local overheating at the structural transition and the global cooling behavior. The radius at the structural transition indicated the most significant impact among the investigated geometric parameters. The shrink line dimensions depended significantly on the orientation of the specimens on the build platform and the local scanning strategy applied at the height of the structural transition. The results can be used to reduce shrink lines by re-designing the part and to adjust the manufacturing strategy for structural transitions.</p></div>","PeriodicalId":34573,"journal":{"name":"Advances in Industrial and Manufacturing Engineering","volume":"9 ","pages":"Article 100149"},"PeriodicalIF":3.9,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266691292400014X/pdfft?md5=611e578bed454a8d49c4e686c2e1edfa&pid=1-s2.0-S266691292400014X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141993806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A strain acceleration method to identify the onset of diffuse necking 应变加速法确定弥漫性缩颈的起始点
IF 3.9 Q2 ENGINEERING, INDUSTRIAL Pub Date : 2024-08-02 DOI: 10.1016/j.aime.2024.100148
Rui F.V. Sampaio , João P.M. Pragana , Ivo M.F. Bragança , Carlos M.A. Silva , Paulo A.F. Martins

This paper presents an innovative ‘strain acceleration method’ for determining the onset of diffuse necking in sheet forming tests using data obtained from digital image correlation (DIC). The method identifies the onset time of diffuse necking and provides the corresponding in-plane principal strain values by detecting a local extreme in the second derivative of the minor principal in-plane strain with respect to time at the edges of the sheet surface region where diffuse necking occurs. Results obtained from applying the method to tensile testing on two different materials and comparisons with available methods based on force-time or principal strain rate evolutions confirm its accuracy and validity. The new method was implemented in a computer software to be used for research and education that also enables determination of localized necking and fracture and plotting the strain loading paths in principal strain space.

本文提出了一种创新的 "应变加速法",用于利用数字图像相关(DIC)获得的数据确定板材成形试验中扩散缩颈的开始时间。该方法通过检测板材表面区域边缘处发生扩散缩颈时,次要平面内主应变相对于时间的二阶导数的局部极值,来确定扩散缩颈的开始时间,并提供相应的平面内主应变值。将该方法应用于两种不同材料的拉伸测试所获得的结果,以及与基于力-时间或主应变率演变的现有方法进行的比较,都证实了该方法的准确性和有效性。新方法已在计算机软件中实施,该软件可用于研究和教育,还能确定局部缩颈和断裂,并绘制主应变空间中的应变加载路径。
{"title":"A strain acceleration method to identify the onset of diffuse necking","authors":"Rui F.V. Sampaio ,&nbsp;João P.M. Pragana ,&nbsp;Ivo M.F. Bragança ,&nbsp;Carlos M.A. Silva ,&nbsp;Paulo A.F. Martins","doi":"10.1016/j.aime.2024.100148","DOIUrl":"10.1016/j.aime.2024.100148","url":null,"abstract":"<div><p>This paper presents an innovative ‘strain acceleration method’ for determining the onset of diffuse necking in sheet forming tests using data obtained from digital image correlation (DIC). The method identifies the onset time of diffuse necking and provides the corresponding in-plane principal strain values by detecting a local extreme in the second derivative of the minor principal in-plane strain with respect to time at the edges of the sheet surface region where diffuse necking occurs. Results obtained from applying the method to tensile testing on two different materials and comparisons with available methods based on force-time or principal strain rate evolutions confirm its accuracy and validity. The new method was implemented in a computer software to be used for research and education that also enables determination of localized necking and fracture and plotting the strain loading paths in principal strain space.</p></div>","PeriodicalId":34573,"journal":{"name":"Advances in Industrial and Manufacturing Engineering","volume":"9 ","pages":"Article 100148"},"PeriodicalIF":3.9,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666912924000138/pdfft?md5=05a7a126b23a33d6522153ff66697659&pid=1-s2.0-S2666912924000138-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141961190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retrofitting enables sustainability, Industry 4.0 connectivity, and improved usability 改造可实现可持续性、工业 4.0 连接性和更高的可用性
Q2 ENGINEERING, INDUSTRIAL Pub Date : 2024-06-06 DOI: 10.1016/j.aime.2024.100146
Tero Kaarlela , Tero Niemi , Tomi Pitkäaho , Jari Harjula

Retrofitting is a sustainable approach to improving the capabilities and extending the life of aging machine tools. Reusing the mechanical construction and replacing only the control electronics and software is a viable option to upgrade an aging machine tool to a cutting-edge level. During the last decades, the evolution of machine tools has focused on developing computer numerical control (CNC) rather than on mechanical construction. Retrofitting the CNC enables Industry 4.0 connectivity and improved usability sustainably, preserving finite raw material resources and reducing carbon emissions created during the casting process of heavy blank parts for physically large machine tools.

This publication presents methods to retrofit machine tools using open-source CNC software and a feasibility study after seven years of operation. Our study highlights retrofitting as more profitable than repairing an aging CNC and compares the sustainability of retrofitting or replacing the aging machine tool with a new unit. In conclusion, retrofitting enables sustainability, connectivity, and accuracy comparable to modern machine tools. Retrofitting also paves the way for using artificial intelligence to monitor and adapt to tool wear, chatter, and surface roughness.

改造是提高老旧机床性能和延长其使用寿命的一种可持续方法。重复使用机械结构,仅更换控制电子元件和软件,是将老旧机床升级到最先进水平的可行方案。在过去几十年中,机床的发展重点是开发计算机数控系统(CNC),而不是机械结构。本出版物介绍了使用开源数控软件改造机床的方法,以及运行七年后的可行性研究。我们的研究强调了改造比维修老化的数控系统更有利可图,并比较了改造或用新设备替换老化机床的可持续性。总之,改造可实现与现代机床相当的可持续性、连接性和精确性。改造还为利用人工智能监测和适应刀具磨损、颤动和表面粗糙度铺平了道路。
{"title":"Retrofitting enables sustainability, Industry 4.0 connectivity, and improved usability","authors":"Tero Kaarlela ,&nbsp;Tero Niemi ,&nbsp;Tomi Pitkäaho ,&nbsp;Jari Harjula","doi":"10.1016/j.aime.2024.100146","DOIUrl":"https://doi.org/10.1016/j.aime.2024.100146","url":null,"abstract":"<div><p>Retrofitting is a sustainable approach to improving the capabilities and extending the life of aging machine tools. Reusing the mechanical construction and replacing only the control electronics and software is a viable option to upgrade an aging machine tool to a cutting-edge level. During the last decades, the evolution of machine tools has focused on developing computer numerical control (CNC) rather than on mechanical construction. Retrofitting the CNC enables Industry 4.0 connectivity and improved usability sustainably, preserving finite raw material resources and reducing carbon emissions created during the casting process of heavy blank parts for physically large machine tools.</p><p>This publication presents methods to retrofit machine tools using open-source CNC software and a feasibility study after seven years of operation. Our study highlights retrofitting as more profitable than repairing an aging CNC and compares the sustainability of retrofitting or replacing the aging machine tool with a new unit. In conclusion, retrofitting enables sustainability, connectivity, and accuracy comparable to modern machine tools. Retrofitting also paves the way for using artificial intelligence to monitor and adapt to tool wear, chatter, and surface roughness.</p></div>","PeriodicalId":34573,"journal":{"name":"Advances in Industrial and Manufacturing Engineering","volume":"9 ","pages":"Article 100146"},"PeriodicalIF":0.0,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666912924000114/pdfft?md5=19e6b3c67119ec1343a8efb47ff495cb&pid=1-s2.0-S2666912924000114-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141298163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A simulated annealing metaheuristic approach to hybrid flow shop scheduling problem 混合流水车间调度问题的模拟退火元智方法
Q2 ENGINEERING, INDUSTRIAL Pub Date : 2024-06-03 DOI: 10.1016/j.aime.2024.100144
Mohamed Karim Hajji , Oumayma Hamlaoui , Hatem Hadda

This study investigates a complex hybrid flow shop scheduling problem prevalent in the industrial sector, characterized by dedicated machines, availability dates, and delivery times. The primary objective is to minimize the total completion time (makespan) in a two-stage workshop setting. We conducted a comprehensive literature review, revealing a scarcity of research on this specific configuration, and employed the Simulated Annealing metaheuristic as our main resolution method. Special emphasis was placed on the meticulous parameterization and configuration of this metaheuristic, crucial for navigating the complexity of the problem.

Our findings demonstrate the remarkable effectiveness of the Simulated Annealing method, particularly in achieving low deviation from the lower bound in larger problem sizes and specific instance classes. This consistency highlights the method’s robustness and suitability for complex scheduling scenarios. The study also reveals varying degrees of problem solvability across different instance classes, with computation times generally reasonable except in more challenging scenarios.

本研究探讨的是工业领域普遍存在的复杂混合流程车间调度问题,其特点是专用机器、可用日期和交货时间。主要目标是在两阶段车间环境中最大限度地减少总完成时间(makespan)。我们进行了全面的文献综述,发现对这一特定配置的研究很少,因此我们采用了模拟退火元启发式作为主要的解决方法。我们的研究结果表明,模拟退火法效果显著,特别是在问题规模较大和特定实例类别中,偏离下限的程度较低。这种一致性凸显了该方法的稳健性和对复杂调度场景的适用性。这项研究还揭示了不同实例类别中问题的不同程度的可解决性,除更具挑战性的情况外,计算时间一般都比较合理。
{"title":"A simulated annealing metaheuristic approach to hybrid flow shop scheduling problem","authors":"Mohamed Karim Hajji ,&nbsp;Oumayma Hamlaoui ,&nbsp;Hatem Hadda","doi":"10.1016/j.aime.2024.100144","DOIUrl":"10.1016/j.aime.2024.100144","url":null,"abstract":"<div><p>This study investigates a complex hybrid flow shop scheduling problem prevalent in the industrial sector, characterized by dedicated machines, availability dates, and delivery times. The primary objective is to minimize the total completion time (makespan) in a two-stage workshop setting. We conducted a comprehensive literature review, revealing a scarcity of research on this specific configuration, and employed the Simulated Annealing metaheuristic as our main resolution method. Special emphasis was placed on the meticulous parameterization and configuration of this metaheuristic, crucial for navigating the complexity of the problem.</p><p>Our findings demonstrate the remarkable effectiveness of the Simulated Annealing method, particularly in achieving low deviation from the lower bound in larger problem sizes and specific instance classes. This consistency highlights the method’s robustness and suitability for complex scheduling scenarios. The study also reveals varying degrees of problem solvability across different instance classes, with computation times generally reasonable except in more challenging scenarios.</p></div>","PeriodicalId":34573,"journal":{"name":"Advances in Industrial and Manufacturing Engineering","volume":"9 ","pages":"Article 100144"},"PeriodicalIF":0.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666912924000096/pdfft?md5=568d8b28e0aa6aad12d2b5e6b96f31cc&pid=1-s2.0-S2666912924000096-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141279797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydro-assisted incremental forming (HAIF): A formability-enhanced incremental forming process; presenting an experimental method for determination of forming limits with generalized non-planar stress state 水力辅助增量成形(HAIF):一种成形能力增强的增量成形工艺;介绍一种确定广义非平面应力状态下成形极限的实验方法
Q2 ENGINEERING, INDUSTRIAL Pub Date : 2024-05-20 DOI: 10.1016/j.aime.2024.100143
Afshin Fatemi, Bijan Mollaei Dariani

Hydro-assisted incremental forming (HAIF) as a hybrid process of incremental forming and hydromechanical deep drawing with enhanced formability resulted of simultaneous exertion of normal and through thickness stresses is introduced in this paper. Based on this process, a test method is invented for experimental and finite element assessment of forming limits under generalized non-planar stress state. Previous analytical forming limit curves predicted by the present authors are evaluated using experimental tests and finite element simulations and good compatibility is observed. It is again confirmed that application of normal and through thickness stresses enhance formability in all strain paths specially in plane strain mode.

本文介绍了水力辅助增量成形(HAIF),它是增量成形和水力机械拉深的混合工艺,通过同时施加法向应力和贯穿厚度应力提高了成形性。在此基础上,发明了一种试验方法,用于在广义非平面应力状态下对成形极限进行实验和有限元评估。本文作者利用实验测试和有限元模拟对之前预测的分析成形极限曲线进行了评估,发现两者具有良好的兼容性。实验再次证实,施加法向应力和贯穿厚度应力可提高所有应变路径下的成形性,尤其是平面应变模式下的成形性。
{"title":"Hydro-assisted incremental forming (HAIF): A formability-enhanced incremental forming process; presenting an experimental method for determination of forming limits with generalized non-planar stress state","authors":"Afshin Fatemi,&nbsp;Bijan Mollaei Dariani","doi":"10.1016/j.aime.2024.100143","DOIUrl":"10.1016/j.aime.2024.100143","url":null,"abstract":"<div><p>Hydro-assisted incremental forming (HAIF) as a hybrid process of incremental forming and hydromechanical deep drawing with enhanced formability resulted of simultaneous exertion of normal and through thickness stresses is introduced in this paper. Based on this process, a test method is invented for experimental and finite element assessment of forming limits under generalized non-planar stress state. Previous analytical forming limit curves predicted by the present authors are evaluated using experimental tests and finite element simulations and good compatibility is observed. It is again confirmed that application of normal and through thickness stresses enhance formability in all strain paths specially in plane strain mode.</p></div>","PeriodicalId":34573,"journal":{"name":"Advances in Industrial and Manufacturing Engineering","volume":"9 ","pages":"Article 100143"},"PeriodicalIF":0.0,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666912924000084/pdfft?md5=f94d73b702c1cd14626da7854b21c90b&pid=1-s2.0-S2666912924000084-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141136399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of argon, helium, and their mixtures on the powder bed fusion of an Al–Cu–Li–Ti alloy using a laser beam: Evaporation, microstructure, and mechanical properties 氩气、氦气及其混合物对使用激光束的铝-铜-锂-钛合金粉末床熔化的影响:蒸发、微观结构和机械性能
Q2 ENGINEERING, INDUSTRIAL Pub Date : 2024-05-01 DOI: 10.1016/j.aime.2024.100142
Siegfried Baehr , Graham Matheson , Thomas Ammann , Peter Mayr , Michael F. Zaeh

The role of the inert processing gas during the powder bed fusion of metals using a laser beam (PBF-LB/M) is to prevent oxidation and remove process by-products, such as metal vapor and spatter particles. The present study aims to unveil additional impacts of using argon (Ar), helium (He), and two mixtures thereof as the processing gas on the material properties of a high-strength Al–Cu–Li–Ti alloy fabricated by PBF-LB/M. The part density, microstructure, static tensile properties, and volatile element evaporation were characterized as functions of the processing gas. Decreased porosity levels and increased melt penetration depths were found across a range of processing parameters when increasing the fraction of He in Ar indicating a more stable process and melt pool dynamics. A trend towards increasing yield and ultimate tensile strength was also observed and was attributed to a slightly refined grain size when processing under He-containing gases. The process gas had no significant influence on the evaporation of alloying constituents in the material. Overall, several advantages of using He-containing process gases over pure Ar in PBF-LB/M are demonstrated and discussed.

© 2017 Elsevier Inc. All rights reserved.

在使用激光束进行金属粉末床熔化(PBF-LB/M)的过程中,惰性加工气体的作用是防止氧化和去除加工副产物,如金属蒸气和飞溅颗粒。本研究旨在揭示使用氩气(Ar)、氦气(He)及其两种混合物作为加工气体对通过 PBF-LB/M 制造的高强度铝-铜-锂-钛合金材料性能的其他影响。零件密度、微观结构、静态拉伸性能和挥发性元素蒸发的特征是加工气体的函数。当增加氦气在氩气中的比例时,在一系列加工参数中发现孔隙率降低,熔体渗透深度增加,这表明加工过程和熔池动力学更加稳定。此外,还观察到屈服强度和极限拉伸强度呈上升趋势,这归因于在含 He 气体中加工时晶粒尺寸略有细化。加工气体对材料中合金成分的蒸发没有明显影响。总之,在 PBF-LB/M 中使用含 He 的工艺气体比使用纯 Ar 更有优势,本文对此进行了论证和讨论。保留所有权利。
{"title":"Influence of argon, helium, and their mixtures on the powder bed fusion of an Al–Cu–Li–Ti alloy using a laser beam: Evaporation, microstructure, and mechanical properties","authors":"Siegfried Baehr ,&nbsp;Graham Matheson ,&nbsp;Thomas Ammann ,&nbsp;Peter Mayr ,&nbsp;Michael F. Zaeh","doi":"10.1016/j.aime.2024.100142","DOIUrl":"10.1016/j.aime.2024.100142","url":null,"abstract":"<div><p>The role of the inert processing gas during the powder bed fusion of metals using a laser beam (PBF-LB/M) is to prevent oxidation and remove process by-products, such as metal vapor and spatter particles. The present study aims to unveil additional impacts of using argon (Ar), helium (He), and two mixtures thereof as the processing gas on the material properties of a high-strength Al–Cu–Li–Ti alloy fabricated by PBF-LB/M. The part density, microstructure, static tensile properties, and volatile element evaporation were characterized as functions of the processing gas. Decreased porosity levels and increased melt penetration depths were found across a range of processing parameters when increasing the fraction of He in Ar indicating a more stable process and melt pool dynamics. A trend towards increasing yield and ultimate tensile strength was also observed and was attributed to a slightly refined grain size when processing under He-containing gases. The process gas had no significant influence on the evaporation of alloying constituents in the material. Overall, several advantages of using He-containing process gases over pure Ar in PBF-LB/M are demonstrated and discussed.</p><p>© 2017 Elsevier Inc. All rights reserved.</p></div>","PeriodicalId":34573,"journal":{"name":"Advances in Industrial and Manufacturing Engineering","volume":"8 ","pages":"Article 100142"},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666912924000072/pdfft?md5=aff562af69ea079e3d147f2748fa39b0&pid=1-s2.0-S2666912924000072-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141033322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Introducing a novel sheet test specimen for biaxial stretching under uniaxial loading 引入一种新型薄片试样,用于单轴加载下的双轴拉伸试验
Q2 ENGINEERING, INDUSTRIAL Pub Date : 2024-04-19 DOI: 10.1016/j.aime.2024.100141
Rui F.V. Sampaio , João P.M. Pragana , Ivo M.F. Bragança , Carlos M.A. Silva , Paulo A.F. Martins

This paper introduces a novel sheet test specimen that plastically deforms under biaxial stretching when subjected to uniaxial loading in conventional testing machines. The specimen was designed using finite element simulation and consists of a two-dimensional reticular structure with interconnected arms in the form of triangles that converge at the center and are connected to full-width sheets at the specimen's ends. Accumulation of damage at the center is ensured through spherical cups that are milled at opposite sheet surfaces. Experimental strain loading paths obtained by digital image correlation confirm the capability of the novel sheet test specimen to provide biaxial stretching strain paths. This is achieved under friction-independent conditions and without requiring complicated multiaxial setups and machines, provided appropriate values of the inner and outer angles of the interconnected arms are used.

本文介绍了一种新型薄板测试试样,当在传统测试机中承受单轴载荷时,该试样会在双轴拉伸作用下发生塑性变形。该试样是利用有限元模拟设计的,由二维网状结构组成,网状结构的臂呈三角形相互连接,在中心处汇聚,并在试样两端与全宽薄片相连。通过在相对薄片表面铣制的球形杯,确保损伤在中心累积。通过数字图像相关性获得的实验应变加载路径证实,新型薄片试样能够提供双轴拉伸应变路径。这是在摩擦无关的条件下实现的,不需要复杂的多轴设置和机器,只要使用相互连接的臂的内角和外角的适当值即可。
{"title":"Introducing a novel sheet test specimen for biaxial stretching under uniaxial loading","authors":"Rui F.V. Sampaio ,&nbsp;João P.M. Pragana ,&nbsp;Ivo M.F. Bragança ,&nbsp;Carlos M.A. Silva ,&nbsp;Paulo A.F. Martins","doi":"10.1016/j.aime.2024.100141","DOIUrl":"https://doi.org/10.1016/j.aime.2024.100141","url":null,"abstract":"<div><p>This paper introduces a novel sheet test specimen that plastically deforms under biaxial stretching when subjected to uniaxial loading in conventional testing machines. The specimen was designed using finite element simulation and consists of a two-dimensional reticular structure with interconnected arms in the form of triangles that converge at the center and are connected to full-width sheets at the specimen's ends. Accumulation of damage at the center is ensured through spherical cups that are milled at opposite sheet surfaces. Experimental strain loading paths obtained by digital image correlation confirm the capability of the novel sheet test specimen to provide biaxial stretching strain paths. This is achieved under friction-independent conditions and without requiring complicated multiaxial setups and machines, provided appropriate values of the inner and outer angles of the interconnected arms are used.</p></div>","PeriodicalId":34573,"journal":{"name":"Advances in Industrial and Manufacturing Engineering","volume":"8 ","pages":"Article 100141"},"PeriodicalIF":0.0,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666912924000060/pdfft?md5=98940409f74ef8374bb314240fca8459&pid=1-s2.0-S2666912924000060-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140638307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
G-code evaluation in CNC milling to predict energy consumption through Machine Learning 通过机器学习评估数控铣削中的 G 代码以预测能耗
Q2 ENGINEERING, INDUSTRIAL Pub Date : 2024-04-07 DOI: 10.1016/j.aime.2024.100140
Anna-Maria Schmitt , Eddi Miller , Bastian Engelmann , Rafael Batres , Jan Schmitt

Computerized Numeric Control (CNC) plays an essential role in highly autonomous manufacturing systems for interlinked process chains for machine tools. NC-programs are mostly written in standardized G-code. Evaluating CNC-controlled manufacturing processes before their real application is advantageous due to resource efficiency. One dimension is the estimation of the energy demand of a part manufactured by an NC-program, e.g. to discover optimization potentials. In this context, this paper presents a Machine Learning (ML) approach to assess G-code for CNC-milling processes from the perspective of the energy demand of basic G-commands. We propose Latin Hypercube Sampling as an efficient method of Design of Experiments to train the ML model with minimum experimental effort to avoid costly setup and implementation time of the model training and deployment.

计算机数控(CNC)在高度自主的制造系统中发挥着至关重要的作用,可用于机床相互关联的工艺链。数控程序大多采用标准化的 G 代码编写。在实际应用之前对数控制造工艺进行评估,有利于提高资源利用效率。其中一个方面是估算由数控程序制造的零件的能源需求,例如发现优化潜力。在此背景下,本文提出了一种机器学习(ML)方法,从基本 G 命令的能源需求角度评估数控铣削过程的 G 代码。我们提出了拉丁超立方采样(Latin Hypercube Sampling)这一高效的实验设计方法,以最小的实验工作量训练 ML 模型,从而避免模型训练和部署过程中昂贵的设置和实施时间。
{"title":"G-code evaluation in CNC milling to predict energy consumption through Machine Learning","authors":"Anna-Maria Schmitt ,&nbsp;Eddi Miller ,&nbsp;Bastian Engelmann ,&nbsp;Rafael Batres ,&nbsp;Jan Schmitt","doi":"10.1016/j.aime.2024.100140","DOIUrl":"https://doi.org/10.1016/j.aime.2024.100140","url":null,"abstract":"<div><p>Computerized Numeric Control (CNC) plays an essential role in highly autonomous manufacturing systems for interlinked process chains for machine tools. NC-programs are mostly written in standardized G-code. Evaluating CNC-controlled manufacturing processes before their real application is advantageous due to resource efficiency. One dimension is the estimation of the energy demand of a part manufactured by an NC-program, e.g. to discover optimization potentials. In this context, this paper presents a Machine Learning (ML) approach to assess G-code for CNC-milling processes from the perspective of the energy demand of basic G-commands. We propose Latin Hypercube Sampling as an efficient method of Design of Experiments to train the ML model with minimum experimental effort to avoid costly setup and implementation time of the model training and deployment.</p></div>","PeriodicalId":34573,"journal":{"name":"Advances in Industrial and Manufacturing Engineering","volume":"8 ","pages":"Article 100140"},"PeriodicalIF":0.0,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666912924000059/pdfft?md5=37d22a4223506262c227b264ea43e038&pid=1-s2.0-S2666912924000059-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140539216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of changing loading directions on damage in sheet metal forming 改变加载方向对金属板材成型损伤的影响
Q2 ENGINEERING, INDUSTRIAL Pub Date : 2024-03-12 DOI: 10.1016/j.aime.2024.100139
Philipp Lennemann, Yannis P. Korkolis, A. Erman Tekkaya

The impact of the stress state on damage evolution, fracture behavior, and product performance is well understood for proportional loading. However, many complex sheet forming operations involve non-proportional loading, which affect the material's hardening and fracture characteristics. This study investigates the influence of a loading direction change on damage evolution in a dual phase steel DP800. Specimens are pre-strained by tensile tests and subsequently loaded in either the same or orthogonal direction to the initial pre-strain direction by additional tensile tests and bending tests. Damage quantification by scanning electron microscopy reveals lower damage evolution after an orthogonal change of loading direction in contrast to monotonic loading directions. The load paths, defined as a history of triaxiality and Lode parameter during loading, are identified numerically under consideration of kinematic hardening. Since kinematic hardening leads to higher triaxialities after orthogonal changes, the load path is not the dominant influence on damage. A possible explanation for the experimental results is the void characteristics after tensile load. After the pre-straining in tensile test, voids are oriented orthogonally to the tensile direction and located between hard martensitic phases. The influence of this morphology on subsequent void growth is illustrated by a simulation verifying that an orthogonal change of loading direction results in void shrinkage, while monotonic loading directions lead to further void growth.

对于比例加载而言,应力状态对损伤演变、断裂行为和产品性能的影响是众所周知的。然而,许多复杂的板材成型操作都涉及非比例加载,这会影响材料的硬化和断裂特性。本研究调查了加载方向改变对双相钢 DP800 损伤演变的影响。通过拉伸试验对试样进行预应变,然后通过附加的拉伸试验和弯曲试验在与初始预应变方向相同或正交的方向上加载。通过扫描电子显微镜对损伤进行定量分析发现,与单调的加载方向相比,正交改变加载方向后的损伤演变程度较低。加载路径被定义为加载过程中的三轴性和洛德参数历史,并在考虑运动硬化的情况下通过数值确定。由于运动硬化会在正交变化后导致更高的三轴度,因此加载路径并不是影响破坏的主要因素。实验结果的一个可能解释是拉伸载荷后的空隙特征。在拉伸试验中进行预拉伸后,空隙的方向与拉伸方向正交,并位于硬马氏体相之间。这种形态对后续空隙增长的影响可通过模拟验证,即加载方向的正交变化会导致空隙收缩,而单调的加载方向则会导致空隙进一步增长。
{"title":"Influence of changing loading directions on damage in sheet metal forming","authors":"Philipp Lennemann,&nbsp;Yannis P. Korkolis,&nbsp;A. Erman Tekkaya","doi":"10.1016/j.aime.2024.100139","DOIUrl":"https://doi.org/10.1016/j.aime.2024.100139","url":null,"abstract":"<div><p>The impact of the stress state on damage evolution, fracture behavior, and product performance is well understood for proportional loading. However, many complex sheet forming operations involve non-proportional loading, which affect the material's hardening and fracture characteristics. This study investigates the influence of a loading direction change on damage evolution in a dual phase steel DP800. Specimens are pre-strained by tensile tests and subsequently loaded in either the same or orthogonal direction to the initial pre-strain direction by additional tensile tests and bending tests. Damage quantification by scanning electron microscopy reveals lower damage evolution after an orthogonal change of loading direction in contrast to monotonic loading directions. The load paths, defined as a history of triaxiality and Lode parameter during loading, are identified numerically under consideration of kinematic hardening. Since kinematic hardening leads to higher triaxialities after orthogonal changes, the load path is not the dominant influence on damage. A possible explanation for the experimental results is the void characteristics after tensile load. After the pre-straining in tensile test, voids are oriented orthogonally to the tensile direction and located between hard martensitic phases. The influence of this morphology on subsequent void growth is illustrated by a simulation verifying that an orthogonal change of loading direction results in void shrinkage, while monotonic loading directions lead to further void growth.</p></div>","PeriodicalId":34573,"journal":{"name":"Advances in Industrial and Manufacturing Engineering","volume":"8 ","pages":"Article 100139"},"PeriodicalIF":0.0,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666912924000047/pdfft?md5=4432d5fcfd820add5cec954fcb393ee3&pid=1-s2.0-S2666912924000047-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140181241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Advances in Industrial and Manufacturing Engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1