首页 > 最新文献

Journal of Colloid and Interface Science最新文献

英文 中文
Interfacial design of pyrene-based covalent organic framework for overall photocatalytic H2O2 synthesis in water. 用于在水中整体光催化合成 H2O2 的芘基共价有机框架的界面设计。
IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-01-15 Epub Date: 2024-09-23 DOI: 10.1016/j.jcis.2024.09.189
Mengqi Zhang, Rongchen Liu, Fulin Zhang, Hongxiang Zhao, Xia Li, Xianjun Lang, Zhiguang Guo

Covalent organic frameworks (COFs) have shown great potential in the photocatalytic production of hydrogen peroxide (H2O2) due to their precisely designed and customized ability. Nevertheless, the quest for efficient overall photosynthesis of H2O2 in pure water without sacrificial agents using COF photocatalysts remains a formidable challenge. Herein, three pyrene-based covalent organic frameworks are synthesized using an advanced interfacial design strategy. By incorporating functional groups of F, H, and OH into a COF skeleton, their wettability and charge-separation properties are fine-tuned. These COFs show great performances as photocatalysts for H2O2 production from water and air by utilizing both the oxygen reduction reaction and water oxidation reaction pathways. Compared to PyCOF-F and PyCOF-H, PyCOF-OH demonstrates superior H2O2 production efficiency due to its improved hydrophilicity and enhanced carrier separation, achieving a remarkable rate of 2961 µmol g-1 h-1 from 25 mL pure water and air. Further, the mechanism of H2O2 production over PyCOF-OH is clarified by combining a series of control experiments, in situ characterizations, and theoretical calculations. This study offers valuable insights into the interfacial design of high-performance photocatalysts for H2O2 synthesis.

共价有机框架(COF)因其精确设计和定制能力,在光催化生产过氧化氢(H2O2)方面显示出巨大潜力。然而,利用 COF 光催化剂在纯水中实现 H2O2 的高效整体光合作用而不使用牺牲剂,仍然是一项艰巨的挑战。本文采用先进的界面设计策略合成了三种芘基共价有机框架。通过在 COF 骨架中加入 F、H 和 OH 官能团,对其润湿性和电荷分离特性进行了微调。这些 COF 作为光催化剂,利用氧还原反应和水氧化反应途径从水中和空气中产生 H2O2,表现出了卓越的性能。与 PyCOF-F 和 PyCOF-H 相比,PyCOF-OH 因其亲水性的改善和载体分离的增强而表现出更高的 H2O2 生成效率,从 25 mL 纯水和空气中生成 H2O2 的速率高达 2961 µmol g-1 h-1。此外,通过结合一系列对照实验、原位表征和理论计算,阐明了 PyCOF-OH 产生 H2O2 的机理。这项研究为用于 H2O2 合成的高性能光催化剂的界面设计提供了宝贵的见解。
{"title":"Interfacial design of pyrene-based covalent organic framework for overall photocatalytic H<sub>2</sub>O<sub>2</sub> synthesis in water.","authors":"Mengqi Zhang, Rongchen Liu, Fulin Zhang, Hongxiang Zhao, Xia Li, Xianjun Lang, Zhiguang Guo","doi":"10.1016/j.jcis.2024.09.189","DOIUrl":"10.1016/j.jcis.2024.09.189","url":null,"abstract":"<p><p>Covalent organic frameworks (COFs) have shown great potential in the photocatalytic production of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) due to their precisely designed and customized ability. Nevertheless, the quest for efficient overall photosynthesis of H<sub>2</sub>O<sub>2</sub> in pure water without sacrificial agents using COF photocatalysts remains a formidable challenge. Herein, three pyrene-based covalent organic frameworks are synthesized using an advanced interfacial design strategy. By incorporating functional groups of F, H, and OH into a COF skeleton, their wettability and charge-separation properties are fine-tuned. These COFs show great performances as photocatalysts for H<sub>2</sub>O<sub>2</sub> production from water and air by utilizing both the oxygen reduction reaction and water oxidation reaction pathways. Compared to PyCOF-F and PyCOF-H, PyCOF-OH demonstrates superior H<sub>2</sub>O<sub>2</sub> production efficiency due to its improved hydrophilicity and enhanced carrier separation, achieving a remarkable rate of 2961 µmol g<sup>-1</sup> h<sup>-1</sup> from 25 mL pure water and air. Further, the mechanism of H<sub>2</sub>O<sub>2</sub> production over PyCOF-OH is clarified by combining a series of control experiments, in situ characterizations, and theoretical calculations. This study offers valuable insights into the interfacial design of high-performance photocatalysts for H<sub>2</sub>O<sub>2</sub> synthesis.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"678 Pt C","pages":"1170-1180"},"PeriodicalIF":9.4,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142338416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioderived carbon aerogels loaded with g-C3N4 and their high Efficacy removing volatile organic compounds (VOCs). 负载 g-C3N4 的生物碳气凝胶及其去除挥发性有机化合物 (VOC) 的高效能。
IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-01-15 Epub Date: 2024-09-21 DOI: 10.1016/j.jcis.2024.09.167
Can Cheng, Hongyue Jing, Hongtian Ji, Yunpeng Li, Liying Ma, Jingcheng Hao

Indoor air pollution, predominantly caused by volatile organic compounds (VOCs), poses significant health hazards when concentrations surpass critical thresholds. Using waste corn straw as carbon source and urea as nitrogen source, straw derived carbon aerogel (CAGH) loaded with g-C3N4H2O-N2-450-3 h was successfully prepared by hydrothermal and water-assisted calcination. Following water-assisted regulation, g-C3N4H2O-N2-450-3 h on CAGH exhibited a mixed structure comprising honeycomb and two-dimensional filaments, while the growth of g-C3N4H2O-N2-450-3 h was uniformly distributed on carbon aerogel in a line-surface combination fashion. This innovative binding method not only enhanced the loading capacity of g-C3N4 and the mechanical elasticity of aerogel, but also exposed a large number of adsorption sites, resulting in a significant increase in its adsorption capacity for VOCs, exceeding that of commercial activated carbon (AC). In comparison to pure g-C3N4, CAGH exhibited an expanded photo-response range. Under the exposure of visible light, CAGH proved highly effective in eliminating 73.87 % of toluene. In addition, it has demonstrated efficient removal of formaldehyde and acetone VOCs with good cyclic stability. Therefore, this work aims to reduce the emission of pollutants at source and provide an effective and economical strategy for the preparation of clean building materials from renewable materials, with potential applications in the environmental field.

室内空气污染主要由挥发性有机化合物(VOC)引起,当其浓度超过临界值时,会对健康造成严重危害。以废弃玉米秸秆为碳源,尿素为氮源,通过水热法和水辅助煅烧法成功制备了负载 g-C3N4H2O-N2-450-3 h 的秸秆衍生碳气凝胶(CAGH)。经过水辅助调节,g-C3N4H2O-N2-450-3 h 在 CAGH 上呈现出蜂窝状和二维丝状的混合结构,而 g-C3N4H2O-N2-450-3 h 则以线-面结合的方式均匀分布在碳气凝胶上。这种创新的结合方法不仅提高了 g-C3N4 的负载能力和气凝胶的机械弹性,还暴露出大量的吸附位点,使其对挥发性有机化合物的吸附能力显著提高,超过了商用活性炭(AC)的吸附能力。与纯 g-C3N4 相比,CAGH 的光响应范围有所扩大。在可见光照射下,CAGH 能高效去除 73.87% 的甲苯。此外,CAGH 还能高效去除甲醛和丙酮挥发性有机化合物,并具有良好的循环稳定性。因此,这项工作旨在从源头上减少污染物的排放,并为利用可再生材料制备清洁建筑材料提供一种有效而经济的策略,在环保领域具有潜在的应用前景。
{"title":"Bioderived carbon aerogels loaded with g-C<sub>3</sub>N<sub>4</sub> and their high Efficacy removing volatile organic compounds (VOCs).","authors":"Can Cheng, Hongyue Jing, Hongtian Ji, Yunpeng Li, Liying Ma, Jingcheng Hao","doi":"10.1016/j.jcis.2024.09.167","DOIUrl":"10.1016/j.jcis.2024.09.167","url":null,"abstract":"<p><p>Indoor air pollution, predominantly caused by volatile organic compounds (VOCs), poses significant health hazards when concentrations surpass critical thresholds. Using waste corn straw as carbon source and urea as nitrogen source, straw derived carbon aerogel (CAGH) loaded with g-C<sub>3</sub>N<sub>4</sub><sub>H</sub><sub>2</sub><sub>O-N</sub><sub>2</sub><sub>-450-3 h</sub> was successfully prepared by hydrothermal and water-assisted calcination. Following water-assisted regulation, g-C<sub>3</sub>N<sub>4</sub><sub>H</sub><sub>2</sub><sub>O-N</sub><sub>2</sub><sub>-450-3 h</sub> on CAGH exhibited a mixed structure comprising honeycomb and two-dimensional filaments, while the growth of g-C<sub>3</sub>N<sub>4</sub><sub>H</sub><sub>2</sub><sub>O-N</sub><sub>2</sub><sub>-450-3 h</sub> was uniformly distributed on carbon aerogel in a line-surface combination fashion. This innovative binding method not only enhanced the loading capacity of g-C<sub>3</sub>N<sub>4</sub> and the mechanical elasticity of aerogel, but also exposed a large number of adsorption sites, resulting in a significant increase in its adsorption capacity for VOCs, exceeding that of commercial activated carbon (AC). In comparison to pure g-C<sub>3</sub>N<sub>4</sub>, CAGH exhibited an expanded photo-response range. Under the exposure of visible light, CAGH proved highly effective in eliminating 73.87 % of toluene. In addition, it has demonstrated efficient removal of formaldehyde and acetone VOCs with good cyclic stability. Therefore, this work aims to reduce the emission of pollutants at source and provide an effective and economical strategy for the preparation of clean building materials from renewable materials, with potential applications in the environmental field.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"678 Pt C","pages":"1112-1121"},"PeriodicalIF":9.4,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142338411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LaCo0.95Mo0.05O3/CeO2 composite can promote the effective activation of peroxymonosulfate via Co3+/Co2+ cycle and realize the efficient degradation of hydroxychloroquine sulfate. LaCo0.95Mo0.05O3/CeO2 复合材料可通过 Co3+/Co2+ 循环促进过氧单硫酸盐的有效活化,实现硫酸羟氯喹的高效降解。
IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-01-15 Epub Date: 2024-09-19 DOI: 10.1016/j.jcis.2024.09.174
Huiwen Ding, Tianqi Jiang, Haijiao Xie, Jianqiao Wang, Pengfei Xiao

Hydroxychloroquine sulfate (HCQ) is extensively utilized due to its numerous therapeutic effects. Because of its properties of high solubility, persistence, bioaccumulation, and biotoxicity, HCQ can potentially affect water bodies and human health. In this study, the LaCo0.95Mo0.05O3-CeO2 material was successfully prepared by the sol-gel process, and it was applied to the experiment of degrading HCQ by activating peroxymonosulfate (PMS). The results of characterization analysis showed that LaCo0.95Mo0.05O3-CeO2 material had good stability, and the problem of particle agglomeration had been solved to some extent. Compared with LaCo0.95Mo0.05O3 material, it had a larger specific surface area and more oxygen vacancies, which was helpful to improve the catalytic activity for PMS. Under optimal conditions, the LaCo0.95Mo0.05O3-CeO2/PMS system degraded 95.5 % of HCQ in 10 min. The singlet oxygen, superoxide radicals, and sulfate radicals were the main radicals for HCQ degradation. The addition of Mo6+/Mo4+ and Ce4+/Ce3+ promoted the redox cycle of Co3+/Co2+ and enhanced the degradation rate of HCQ. Based on density functional theory and experimental analysis, three HCQ degradation pathways were proposed. The analysis of T.E.S.T software showed that the toxicity of HCQ was obviously reduced after degradation. The LaCo0.95Mo0.05O3-CeO2/PMS system displayed excellent reusability and the ability to remove pollutants in a wide range of real-world aqueous environments, with the ability to treat a wide range of pharmaceutical wastewater. In summary, this study provides some ideas for developing heterogeneous catalysts for advanced oxidation systems and provide an efficient, simple, and low-cost method for treating pharmaceutical wastewater that has good practical application potential.

硫酸羟氯喹(HCQ)具有多种治疗效果,因此被广泛使用。由于 HCQ 具有高溶解性、持久性、生物蓄积性和生物毒性等特性,可能会对水体和人类健康造成潜在影响。本研究采用溶胶-凝胶工艺成功制备了 LaCo0.95Mo0.05O3-CeO2 材料,并将其应用于活化过一硫酸盐(PMS)降解 HCQ 的实验。表征分析结果表明,LaCo0.95Mo0.05O3-CeO2 材料具有良好的稳定性,在一定程度上解决了颗粒团聚的问题。与 LaCo0.95Mo0.05O3 材料相比,它具有更大的比表面积和更多的氧空位,这有利于提高 PMS 的催化活性。在最佳条件下,LaCo0.95Mo0.05O3-CeO2/PMS 系统在 10 分钟内降解了 95.5% 的 HCQ。单线态氧、超氧自由基和硫酸根自由基是降解 HCQ 的主要自由基。Mo6+/Mo4+和Ce4+/Ce3+的加入促进了Co3+/Co2+的氧化还原循环,提高了HCQ的降解速率。基于密度泛函理论和实验分析,提出了三种 HCQ 降解途径。T.E.S.T软件分析表明,降解后的HCQ毒性明显降低。LaCo0.95Mo0.05O3-CeO2/PMS 系统具有良好的重复利用性,能在多种实际水环境中去除污染物,可处理多种制药废水。总之,本研究为开发用于高级氧化系统的异相催化剂提供了一些思路,并为处理制药废水提供了一种高效、简单、低成本的方法,具有良好的实际应用潜力。
{"title":"LaCo<sub>0.95</sub>Mo<sub>0.05</sub>O<sub>3</sub>/CeO<sub>2</sub> composite can promote the effective activation of peroxymonosulfate via Co<sup>3+</sup>/Co<sup>2+</sup> cycle and realize the efficient degradation of hydroxychloroquine sulfate.","authors":"Huiwen Ding, Tianqi Jiang, Haijiao Xie, Jianqiao Wang, Pengfei Xiao","doi":"10.1016/j.jcis.2024.09.174","DOIUrl":"10.1016/j.jcis.2024.09.174","url":null,"abstract":"<p><p>Hydroxychloroquine sulfate (HCQ) is extensively utilized due to its numerous therapeutic effects. Because of its properties of high solubility, persistence, bioaccumulation, and biotoxicity, HCQ can potentially affect water bodies and human health. In this study, the LaCo<sub>0.95</sub>Mo<sub>0.05</sub>O<sub>3</sub>-CeO<sub>2</sub> material was successfully prepared by the sol-gel process, and it was applied to the experiment of degrading HCQ by activating peroxymonosulfate (PMS). The results of characterization analysis showed that LaCo<sub>0.95</sub>Mo<sub>0.05</sub>O<sub>3</sub>-CeO<sub>2</sub> material had good stability, and the problem of particle agglomeration had been solved to some extent. Compared with LaCo<sub>0.95</sub>Mo<sub>0.05</sub>O<sub>3</sub> material, it had a larger specific surface area and more oxygen vacancies, which was helpful to improve the catalytic activity for PMS. Under optimal conditions, the LaCo<sub>0.95</sub>Mo<sub>0.05</sub>O<sub>3</sub>-CeO<sub>2</sub>/PMS system degraded 95.5 % of HCQ in 10 min. The singlet oxygen, superoxide radicals, and sulfate radicals were the main radicals for HCQ degradation. The addition of Mo<sup>6+</sup>/Mo<sup>4+</sup> and Ce<sup>4+</sup>/Ce<sup>3+</sup> promoted the redox cycle of Co<sup>3+</sup>/Co<sup>2+</sup> and enhanced the degradation rate of HCQ. Based on density functional theory and experimental analysis, three HCQ degradation pathways were proposed. The analysis of T.E.S.T software showed that the toxicity of HCQ was obviously reduced after degradation. The LaCo<sub>0.95</sub>Mo<sub>0.05</sub>O<sub>3</sub>-CeO<sub>2</sub>/PMS system displayed excellent reusability and the ability to remove pollutants in a wide range of real-world aqueous environments, with the ability to treat a wide range of pharmaceutical wastewater. In summary, this study provides some ideas for developing heterogeneous catalysts for advanced oxidation systems and provide an efficient, simple, and low-cost method for treating pharmaceutical wastewater that has good practical application potential.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"678 Pt C","pages":"1151-1169"},"PeriodicalIF":9.4,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142338417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Separator engineering: Assisting lithium salt dissociation and constructing LiF-rich solid electrolyte interphases for high-rate lithium metal batteries. 分离器工程:协助锂盐解离,为高倍率锂金属电池构建富含锂F的固体电解质相间层。
IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-01-01 Epub Date: 2024-08-22 DOI: 10.1016/j.jcis.2024.08.151
Changyong Zhao, Hanyan Wu, Xuejie Gao, Chen Cheng, Shuiping Cai, Xiaofei Yang, Runcang Sun

Challenges associated with lithium dendrite growth and the formation of dead lithium significantly limit the achievable energy density of lithium metal batteries (LMBs), particularly under high operating current densities. Our innovative design employs a state-of-the-art 2500 separator featuring a meticulously engineered cellulose acetate (CA) coating (CA@2500) to suppress dendrite nucleation and propagation. The CO functional groups in CA enhances charge transfer kinetics and triggering the decomposition of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), which leads to the formation of a more robust solid electrolyte interphase (SEI) composed primarily of LiF. Moreover, the introduction of polar functional groups in the CA enhances the separator's hydrophilic properties, facilitating the uniform Li+ flux and creating a conductive pathway for efficient lithium migration. As a result, the CA@2500 separator exhibits a high lithium-ion transfer number (0.88) and conductivity. The lithium symmetric cell assembles with the CA@2500 separator displays a stable cycling performance over 5500 h at a current density and capacity of 10 mA cm-2 and 10 mAh cm-2, respectively. Additionally, LPF battery with CA@2500 separator shows an excellent capacity retention at 0.2 C with an average decay of 0.055 % per cycle. Moreover, a high capacity of 105 mAh g-1 is maintained after 500 cycles at 5 C with an average decay of only 0.027 % per cycle. This work achieved high stability of LMBs through simplified engineering.

锂枝晶的生长和死锂的形成极大地限制了锂金属电池(LMB)的能量密度,尤其是在高工作电流密度下。我们的创新设计采用了最先进的 2500 分离器,该分离器具有精心设计的醋酸纤维素 (CA) 涂层 (CA@2500),可抑制枝晶的成核和传播。CA中的CO官能团增强了电荷转移动力学,引发了双(三氟甲烷磺酰基)亚胺锂(LiTFSI)的分解,从而形成了主要由LiF组成的更坚固的固态电解质间相(SEI)。此外,CA 中极性官能团的引入增强了隔膜的亲水性,促进了均匀的 Li+ 通量,并为锂的高效迁移创造了导电途径。因此,CA@2500 分离剂具有很高的锂离子转移数(0.88)和导电性。在电流密度和容量分别为 10 mA cm-2 和 10 mAh cm-2 的情况下,使用 CA@2500 隔膜组装的锂对称电池可稳定循环 5500 小时。此外,采用 CA@2500 隔膜的 LPF 电池在 0.2 摄氏度条件下显示出极佳的容量保持能力,每个循环的平均衰减率为 0.055%。此外,在 5 摄氏度条件下循环 500 次后,仍能保持 105 mAh g-1 的高容量,每次循环的平均衰减率仅为 0.027%。这项工作通过简化工程实现了 LMB 的高稳定性。
{"title":"Separator engineering: Assisting lithium salt dissociation and constructing LiF-rich solid electrolyte interphases for high-rate lithium metal batteries.","authors":"Changyong Zhao, Hanyan Wu, Xuejie Gao, Chen Cheng, Shuiping Cai, Xiaofei Yang, Runcang Sun","doi":"10.1016/j.jcis.2024.08.151","DOIUrl":"10.1016/j.jcis.2024.08.151","url":null,"abstract":"<p><p>Challenges associated with lithium dendrite growth and the formation of dead lithium significantly limit the achievable energy density of lithium metal batteries (LMBs), particularly under high operating current densities. Our innovative design employs a state-of-the-art 2500 separator featuring a meticulously engineered cellulose acetate (CA) coating (CA@2500) to suppress dendrite nucleation and propagation. The CO functional groups in CA enhances charge transfer kinetics and triggering the decomposition of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), which leads to the formation of a more robust solid electrolyte interphase (SEI) composed primarily of LiF. Moreover, the introduction of polar functional groups in the CA enhances the separator's hydrophilic properties, facilitating the uniform Li<sup>+</sup> flux and creating a conductive pathway for efficient lithium migration. As a result, the CA@2500 separator exhibits a high lithium-ion transfer number (0.88) and conductivity. The lithium symmetric cell assembles with the CA@2500 separator displays a stable cycling performance over 5500 h at a current density and capacity of 10 mA cm<sup>-2</sup> and 10 mAh cm<sup>-2</sup>, respectively. Additionally, LPF battery with CA@2500 separator shows an excellent capacity retention at 0.2 C with an average decay of 0.055 % per cycle. Moreover, a high capacity of 105 mAh g<sup>-1</sup> is maintained after 500 cycles at 5 C with an average decay of only 0.027 % per cycle. This work achieved high stability of LMBs through simplified engineering.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"677 Pt B","pages":"1084-1094"},"PeriodicalIF":9.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142054504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic engineering of heterostructure and oxygen vacancy in cobalt hydroxide/aluminum oxyhydroxide as bifunctional electrocatalysts for urea-assisted hydrogen production. 氢氧化钴/氧氢氧化铝中异质结构和氧空位的协同工程,作为尿素辅助制氢的双功能电催化剂。
IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-01-01 Epub Date: 2024-08-08 DOI: 10.1016/j.jcis.2024.07.239
Minglei Yan, Junjie Zhang, Cong Wang, Lang Gao, Wengang Liu, Jiahao Zhang, Chunquan Liu, Zhiwei Lu, Lijun Yang, Chenglu Jiang, Yang Zhao

Designing inexpensive, high-efficiency and durable bifunctional catalysts for urea oxidation reaction (UOR) and hydrogen evolution reaction (HER) is an encouraging tactic to produce hydrogen with reduced energy expenditure. Herein, oxygen vacancy-rich cobalt hydroxide/aluminum oxyhydroxide heterostructure on nickel foam (denoted as Co(OH)2/AlOOH/NF-100) has been fabricated using one step hydrothermal process. Theoretical calculation and experimental results indicate the electrons transfer from Co(OH)2 to highly active AlOOH results in the interfacial charge redistribution and optimization of electronic structure. Abundant oxygen vacancies in the heterostructure could improve the conductivity and simultaneously serve as the active sites for catalytic reaction. Consequently, the optimal Co(OH)2/AlOOH/NF-100 demonstrates excellent electrocatalytic performance for HER (62.9 mV@10 mA cm-2) and UOR (1.36 V@10 mA cm-2) due to the synergy between heterointerface and oxygen vacancies. Additionally, the in situ electrochemical impedance spectrum (EIS) for UOR suggests that the heterostructured catalyst exhibits rapid reaction kinetics, mass transfer and current response. Importantly, the urea-assisted electrolysis composed of the Co(OH)2/AlOOH/NF-100 manifests a low cell voltage (1.48 V @ 10 mA cm-2) in 1 M KOH containing 0.5 M urea. This work presents a promising avenue to the development of HER/UOR bifunctional electrocatalysts.

设计用于尿素氧化反应(UOR)和氢气进化反应(HER)的廉价、高效、耐用的双功能催化剂,是减少能源消耗生产氢气的一个令人鼓舞的策略。在此,我们采用一步水热法在泡沫镍上制备了富氧空位氢氧化钴/氧氢氧化铝异质结构(记为 Co(OH)2/AlOOH/NF-100)。理论计算和实验结果表明,电子从 Co(OH)2 转移到高活性的 AlOOH 会导致界面电荷的重新分配和电子结构的优化。异质结构中丰富的氧空位可以提高导电性,同时成为催化反应的活性位点。因此,由于异质界面和氧空位之间的协同作用,最佳的 Co(OH)2/AlOOH/NF-100 对 HER(62.9 mV@10 mA cm-2)和 UOR(1.36 V@10 mA cm-2)具有优异的电催化性能。此外,UOR 的原位电化学阻抗谱(EIS)表明,异质结构催化剂具有快速的反应动力学、传质和电流响应。重要的是,由 Co(OH)2/AlOOH/NF-100 组成的尿素辅助电解在含有 0.5 M 尿素的 1 M KOH 中表现出较低的电池电压(1.48 V @ 10 mA cm-2)。这项工作为开发 HER/UOR 双功能电催化剂提供了一条前景广阔的途径。
{"title":"Synergistic engineering of heterostructure and oxygen vacancy in cobalt hydroxide/aluminum oxyhydroxide as bifunctional electrocatalysts for urea-assisted hydrogen production.","authors":"Minglei Yan, Junjie Zhang, Cong Wang, Lang Gao, Wengang Liu, Jiahao Zhang, Chunquan Liu, Zhiwei Lu, Lijun Yang, Chenglu Jiang, Yang Zhao","doi":"10.1016/j.jcis.2024.07.239","DOIUrl":"10.1016/j.jcis.2024.07.239","url":null,"abstract":"<p><p>Designing inexpensive, high-efficiency and durable bifunctional catalysts for urea oxidation reaction (UOR) and hydrogen evolution reaction (HER) is an encouraging tactic to produce hydrogen with reduced energy expenditure. Herein, oxygen vacancy-rich cobalt hydroxide/aluminum oxyhydroxide heterostructure on nickel foam (denoted as Co(OH)<sub>2</sub>/AlOOH/NF-100) has been fabricated using one step hydrothermal process. Theoretical calculation and experimental results indicate the electrons transfer from Co(OH)<sub>2</sub> to highly active AlOOH results in the interfacial charge redistribution and optimization of electronic structure. Abundant oxygen vacancies in the heterostructure could improve the conductivity and simultaneously serve as the active sites for catalytic reaction. Consequently, the optimal Co(OH)<sub>2</sub>/AlOOH/NF-100 demonstrates excellent electrocatalytic performance for HER (62.9 mV@10 mA cm<sup>-2</sup>) and UOR (1.36 V@10 mA cm<sup>-2</sup>) due to the synergy between heterointerface and oxygen vacancies. Additionally, the in situ electrochemical impedance spectrum (EIS) for UOR suggests that the heterostructured catalyst exhibits rapid reaction kinetics, mass transfer and current response. Importantly, the urea-assisted electrolysis composed of the Co(OH)<sub>2</sub>/AlOOH/NF-100 manifests a low cell voltage (1.48 V @ 10 mA cm<sup>-2</sup>) in 1 M KOH containing 0.5 M urea. This work presents a promising avenue to the development of HER/UOR bifunctional electrocatalysts.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"677 Pt A","pages":"1069-1079"},"PeriodicalIF":9.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141974680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mo2C-Co heterostructure with carbon nanosheets decorated carbon microtubules: Different means for high-performance lithium-sulfur batteries. 具有碳纳米片装饰碳微管的 Mo2C-Co 异质结构:实现高性能锂硫电池的不同方法。
IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-12-01 Epub Date: 2024-07-25 DOI: 10.1016/j.jcis.2024.07.192
Yating Cui, Siyu Ji, Yujie Zhu, Jingyu Xi

The practical applications of lithium sulfur batteries (LSBs) are hindered by notorious shuttle effect and sluggish conversion kinetics of intermediate polysulfides. Herein, Mo2C-Co heterogeneous particles decorated two-dimensional (2D) carbon nanosheets grown on hollow carbon microtubes (CCC@MCC) are synthesized. Three-dimensional (3D) carbon framework with Mo2C-Co heterogeneous particles combines the conductivity, adsorption and catalysis, effectively trapping and accelerating the conversion of polysulfides. As evidenced experimentally, the hetero-structured Mo2C-Co with high Li+ diffusion coefficient enables uniform precipitation and complete oxidation of Li2S. Meanwhile, CCC@MCC is found to have multiple application possibilities for lithium-sulfur batteries. As an interlayer, the cells deliver an excellent capacity of 881.1 mAh/g at 2C and still retain 438.2 mAh/g after 500 cycles under the low temperature of 0 ℃. As a sulfur carrier, the cell with a sulfur loading of 7.0 mg cm-2 exhibits a high area capacity of 5.3 mAh cm-2. This work provides an effective strategy to prepare heterostructured material and imaginatively exploit the application potential of it.

锂硫电池(LSB)的实际应用因中间多硫化物臭名昭著的穿梭效应和缓慢的转化动力学而受到阻碍。在此,我们合成了装饰在空心碳微管(CCC@MCC)上生长的二维(2D)碳纳米片的 Mo2C-Co 异质颗粒。带有 Mo2C-Co 异质颗粒的三维(3D)碳框架集导电、吸附和催化作用于一体,能有效捕集并加速多硫化物的转化。实验证明,具有高 Li+ 扩散系数的异质结构 Mo2C-Co 可使 Li2S 均匀析出并完全氧化。同时,研究发现 CCC@MCC 在锂硫电池中具有多种应用可能性。作为中间膜,电池在 2C 时可提供 881.1 mAh/g 的出色容量,在 0 ℃ 低温条件下循环 500 次后仍可保持 438.2 mAh/g。作为硫载体,硫载量为 7.0 mg cm-2 的电池显示出 5.3 mAh cm-2 的高面积容量。这项工作为制备异质结构材料提供了一种有效的策略,并富有想象力地开发了其应用潜力。
{"title":"Mo<sub>2</sub>C-Co heterostructure with carbon nanosheets decorated carbon microtubules: Different means for high-performance lithium-sulfur batteries.","authors":"Yating Cui, Siyu Ji, Yujie Zhu, Jingyu Xi","doi":"10.1016/j.jcis.2024.07.192","DOIUrl":"10.1016/j.jcis.2024.07.192","url":null,"abstract":"<p><p>The practical applications of lithium sulfur batteries (LSBs) are hindered by notorious shuttle effect and sluggish conversion kinetics of intermediate polysulfides. Herein, Mo<sub>2</sub>C-Co heterogeneous particles decorated two-dimensional (2D) carbon nanosheets grown on hollow carbon microtubes (CCC@MCC) are synthesized. Three-dimensional (3D) carbon framework with Mo<sub>2</sub>C-Co heterogeneous particles combines the conductivity, adsorption and catalysis, effectively trapping and accelerating the conversion of polysulfides. As evidenced experimentally, the hetero-structured Mo<sub>2</sub>C-Co with high Li<sup>+</sup> diffusion coefficient enables uniform precipitation and complete oxidation of Li<sub>2</sub>S. Meanwhile, CCC@MCC is found to have multiple application possibilities for lithium-sulfur batteries. As an interlayer, the cells deliver an excellent capacity of 881.1 mAh/g at 2C and still retain 438.2 mAh/g after 500 cycles under the low temperature of 0 ℃. As a sulfur carrier, the cell with a sulfur loading of 7.0 mg cm<sup>-2</sup> exhibits a high area capacity of 5.3 mAh cm<sup>-2</sup>. This work provides an effective strategy to prepare heterostructured material and imaginatively exploit the application potential of it.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"675 ","pages":"1119-1129"},"PeriodicalIF":9.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141791573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Edge-substituents and center metal optimization boosting oxygen electrocatalysis in porphyrin-based covalent organic polymers. 优化边缘取代基和中心金属,促进卟啉基共价有机聚合物的氧电催化。
IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-11-16 DOI: 10.1016/j.jcis.2024.11.109
Hongyan Zhuo, Qiming Ye, Shaoze Wang, Han Yu, Tianle Yang, Binghan Jiang, Chuangyu Wei, Linlin Feng, Tenglong Jin, Xue Liu, Zhuang Shi, Hao Song, Zhen Fu, Wenmiao Chen, Yuexing Zhang, Yanli Chen

The promising non-noble electrocatalyst with well-defined structure is significant for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) for the renewable energy devices like zinc-air batteries (ZABs). Herein, the four phenyl-linked cobaltporphyrin-based covalent organic polymers (COPs-1-4) with the different edge substituents (1 = -tBu, 2 = -Me, 3 = -F, and 4 = -CF3) are firstly designed and synthesized via a simple, efficient one-pot method. With the increase of electron donating capacity of the substituents, the highest occupied molecular orbital energy (EHOMO) gradually increases in the order of COP-4 < COP-3 < COP-2 < COP-1. Consequently, the optimal COP-1 with -tBu edge groups exhibits the highest half-wave potential (E1/2) of 0.84 V (vs. RHE) among the four COPs, which is comparable with commercial Pt/C in alkaline media. The DFT calculations further reveal that with strong electron donating capacity, the Gibbs free energy decreases in the order of COP-4 > COP-3 > COP-2 > COP-1 by modulating the adsorption energy of OOH* at rate-determining step (RDS) to promote ORR activity. Furthermore, introducing Ni (II) and Co (II) into porphyrin centers afford the bimetallic CoNi-COP-1 with both Co-N4, Ni-N4 active sites and edge substituted -tBu. The synergistic effect of Co, Ni bimetallic active sites and strong electron-donating -tBu substituents renders the CoNi-COP-1 the highest HOMO and smallest energy gap between the ELUMO and EF among the as-prepared five COPs, which leads to more filling electrons of its LUMO level, and thus exhibits the excellent ORR and OER bifunctional catalytic activities with an E1/2 as high as 0.85 V and an overpotential (η) of 0.34 V at 10 mA cm-2 in alkaline media, superior to monometallic Co-containing COPs-1-4. In particular, the assembled ZABs with bifunctional catalyst CoNi-COP-1 possesses high power density (94.10 mW cm-2), high specific capacity (841.71 mAh gZn-1) and long durability of over 160,000 s. This work exemplifies the rational design of pyrolysis-free non-noble metal COP-based electrocatalyst through optimizing the intrinsic metal center and its secondary coordination environment.

对于锌-空气电池(ZABs)等可再生能源设备而言,具有明确结构的前景广阔的非贵金属电催化剂对于氧还原反应(ORR)和氧进化反应(OER)都具有重要意义。本文首先设计并通过简单高效的一锅法合成了四种苯基连接的钴卟啉基共价有机聚合物(COPs-1-4),它们具有不同的边缘取代基(1 = -tBu、2 = -Me、3 = -F、4 = -CF3)。随着取代基电子捐献能力的增加,四种 COPs 的最高占据分子轨道能(EHOMO)以 COP-4 1/2 的顺序逐渐增加,达到 0.84 V(相对于 RHE),与碱性介质中的商用 Pt/C 相当。DFT 计算进一步表明,在强电子捐赠能力下,通过调节速率决定步骤(RDS)中 OOH* 的吸附能,吉布斯自由能按照 COP-4 > COP-3 > COP-2 > COP-1 的顺序降低,从而促进 ORR 活性。此外,在卟啉中心引入 Ni (II) 和 Co (II) 还可产生具有 Co-N4 和 Ni-N4 活性位点以及边缘取代 -tBu 的双金属 CoNi-COP-1 。在 Co、Ni 双金属活性位点和强电子供体 -tBu 取代基的协同作用下,CoNi-COP-1 的 HOMO 最高,ELUMO 与 EF 之间的能隙最小,这使得它的 LUMO 水平有更多的填充电子,从而表现出优异的 ORR 和 OER 双功能催化活性,E1/2 高达 0.85 V,在碱性介质中 10 mA cm-2 的过电位 (η) 为 0.34 V,优于单金属含 Co COPs-1-4。这项工作体现了通过优化固有金属中心及其次级配位环境,合理设计无热解非贵金属 COP 型电催化剂的方法。
{"title":"Edge-substituents and center metal optimization boosting oxygen electrocatalysis in porphyrin-based covalent organic polymers.","authors":"Hongyan Zhuo, Qiming Ye, Shaoze Wang, Han Yu, Tianle Yang, Binghan Jiang, Chuangyu Wei, Linlin Feng, Tenglong Jin, Xue Liu, Zhuang Shi, Hao Song, Zhen Fu, Wenmiao Chen, Yuexing Zhang, Yanli Chen","doi":"10.1016/j.jcis.2024.11.109","DOIUrl":"https://doi.org/10.1016/j.jcis.2024.11.109","url":null,"abstract":"<p><p>The promising non-noble electrocatalyst with well-defined structure is significant for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) for the renewable energy devices like zinc-air batteries (ZABs). Herein, the four phenyl-linked cobaltporphyrin-based covalent organic polymers (COPs-1-4) with the different edge substituents (1 = -tBu, 2 = -Me, 3 = -F, and 4 = -CF<sub>3</sub>) are firstly designed and synthesized via a simple, efficient one-pot method. With the increase of electron donating capacity of the substituents, the highest occupied molecular orbital energy (E<sub>HOMO</sub>) gradually increases in the order of COP-4 < COP-3 < COP-2 < COP-1. Consequently, the optimal COP-1 with -tBu edge groups exhibits the highest half-wave potential (E<sub>1/2</sub>) of 0.84 V (vs. RHE) among the four COPs, which is comparable with commercial Pt/C in alkaline media. The DFT calculations further reveal that with strong electron donating capacity, the Gibbs free energy decreases in the order of COP-4 > COP-3 > COP-2 > COP-1 by modulating the adsorption energy of OOH* at rate-determining step (RDS) to promote ORR activity. Furthermore, introducing Ni (II) and Co (II) into porphyrin centers afford the bimetallic CoNi-COP-1 with both Co-N<sub>4</sub>, Ni-N<sub>4</sub> active sites and edge substituted -tBu. The synergistic effect of Co, Ni bimetallic active sites and strong electron-donating -tBu substituents renders the CoNi-COP-1 the highest HOMO and smallest energy gap between the E<sub>LUMO</sub> and E<sub>F</sub> among the as-prepared five COPs, which leads to more filling electrons of its LUMO level, and thus exhibits the excellent ORR and OER bifunctional catalytic activities with an E<sub>1/2</sub> as high as 0.85 V and an overpotential (η) of 0.34 V at 10 mA cm<sup>-2</sup> in alkaline media, superior to monometallic Co-containing COPs-1-4. In particular, the assembled ZABs with bifunctional catalyst CoNi-COP-1 possesses high power density (94.10 mW cm<sup>-2</sup>), high specific capacity (841.71 mAh g<sub>Zn</sub><sup>-1</sup>) and long durability of over 160,000 s. This work exemplifies the rational design of pyrolysis-free non-noble metal COP-based electrocatalyst through optimizing the intrinsic metal center and its secondary coordination environment.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"680 Pt B","pages":"137-145"},"PeriodicalIF":9.4,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Highly efficient degradation of sulindac under visible light irradiation by a novel titanium based photocatalyst. 新型钛基光催化剂在可见光照射下高效降解舒林酸。
IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-11-16 DOI: 10.1016/j.jcis.2024.11.089
Liyun Ma, Zhi Li, Yuying Cai, Linjiao Yang, Yuchen Xie, Ming Jiang, Xu Yu, Li Xu

Titanium dioxide (TiO2) is a kind of generally used photocatalyst with the assistance of UV light. To utilize the visible light and save the energy, herein, a titanium (Ti)-based nanocomposite, i.e. PPDs/C-hTiO2, was designed and prepared based on carbon (C)-doping and photosensitive polymer dots (PPDs) nano-hybridization. This design synergistically narrowed the band gap energy (Eg) and strengthened absorption of the visible light. As a result, PPDs/C-hTiO2 exerted remarkably high catalytic ability under visible light, surpassing that of commercial TiO2 (i.e. P25) under UV light. PPDs/C-hTiO2 succeeded in assisting the degradation of sulindac with a degradation efficiency of 96.7%±1.25% within 10 min under visible light. The degradation process was driven by the generation of hydroxyl radical, superoxide radical and holes, and the total biotoxicity of degradation products was decreased compared to the parent compound. This study creatively combined the C-doping and PPDs nano-hybridization to construct a visible light Ti-based photocatalyst, proposing a potential technique for addressing current aquatic environmental issues.

二氧化钛(TiO2)是一种借助紫外线的常用光催化剂。为了利用可见光并节约能源,本文设计并制备了一种基于碳(C)掺杂和光敏聚合物点(PPDs)纳米杂化的钛(Ti)基纳米复合材料,即 PPDs/C-hTiO2 。这种设计协同缩小了带隙能(Eg),增强了对可见光的吸收。因此,PPDs/C-hTiO2 在可见光下具有极高的催化能力,在紫外光下的催化能力超过了商用二氧化钛(即 P25)。在可见光下,PPDs/C-hTiO2 在 10 分钟内成功地帮助舒林酸降解,降解效率为 96.7%±1.25%。降解过程中产生了羟自由基、超氧自由基和空穴,降解产物的总生物毒性较母体化合物有所降低。该研究创造性地将 C 掺杂和 PPDs 纳米杂化结合起来,构建了一种可见光钛基光催化剂,为解决当前的水生环境问题提出了一种潜在的技术。
{"title":"Highly efficient degradation of sulindac under visible light irradiation by a novel titanium based photocatalyst.","authors":"Liyun Ma, Zhi Li, Yuying Cai, Linjiao Yang, Yuchen Xie, Ming Jiang, Xu Yu, Li Xu","doi":"10.1016/j.jcis.2024.11.089","DOIUrl":"https://doi.org/10.1016/j.jcis.2024.11.089","url":null,"abstract":"<p><p>Titanium dioxide (TiO<sub>2</sub>) is a kind of generally used photocatalyst with the assistance of UV light. To utilize the visible light and save the energy, herein, a titanium (Ti)-based nanocomposite, i.e. PPDs/C-hTiO<sub>2</sub>, was designed and prepared based on carbon (C)-doping and photosensitive polymer dots (PPDs) nano-hybridization. This design synergistically narrowed the band gap energy (E<sub>g</sub>) and strengthened absorption of the visible light. As a result, PPDs/C-hTiO<sub>2</sub> exerted remarkably high catalytic ability under visible light, surpassing that of commercial TiO<sub>2</sub> (i.e. P25) under UV light. PPDs/C-hTiO<sub>2</sub> succeeded in assisting the degradation of sulindac with a degradation efficiency of 96.7%±1.25% within 10 min under visible light. The degradation process was driven by the generation of hydroxyl radical, superoxide radical and holes, and the total biotoxicity of degradation products was decreased compared to the parent compound. This study creatively combined the C-doping and PPDs nano-hybridization to construct a visible light Ti-based photocatalyst, proposing a potential technique for addressing current aquatic environmental issues.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"680 Pt B","pages":"191-201"},"PeriodicalIF":9.4,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum-sized CoP nanodots with rich vacancies: Enhanced hydrazine oxidation, hydrazine-assisted water splitting, and Zn-hydrazine battery performance through interface modulation. 具有丰富空位的量子尺寸 CoP 纳米点:通过界面调制增强肼氧化、肼辅助水分离和锌肼电池性能。
IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-11-16 DOI: 10.1016/j.jcis.2024.11.098
Wenxin Wang, Jiangjiang Zhang, Jinsheng Rong, Lanli Chen, Shiqiang Cui

Reducing the size of catalysts and tuning their electronic structure and interfacial properties are key to enhancing catalytic performance. Herein, a series of quantum-sized Co-based nanodot composites, including Co3O4/C, CoS2/C, CoN/C, and CoP/C, were synthesized using chemical vapor deposition (CVD) methods. By means of experimental measurement and theoretical calculation, CoP/C exhibited more robust electrochemical response than other Co-based compounds in electrochemical oxidation of N2H4 (HzOR) and hydrogen evolution reaction (HER). The catalytic activities of CoP/C can be further enhanced by introducing Co vacancies on the surface of CoP/C (labeled as Co1-xP/C). The results demonstrated that Co1-xP/C not only exhibited notable electrochemical responses at an ultra-low N2H4 concentration of 0.67 μM, showcasing its potential for ultra-sensitive N2H4 detection but also realized HzOR instead of the oxygen evolution reaction (OER) half-reaction, thereby lowering the overpotential to 2.0 mV at 10.0 mA cm-2. Finally, a Zn-hydrazine (Zn-Hz) battery was fabricated as a promising energy conversion device, showing the exceptional practical value of Co1-xP/C.

减小催化剂尺寸、调整其电子结构和界面特性是提高催化性能的关键。本文采用化学气相沉积(CVD)方法合成了一系列量子尺寸的 Co 基纳米点复合材料,包括 Co3O4/C、CoS2/C、CoN/C 和 CoP/C。通过实验测量和理论计算,CoP/C 在 N2H4 的电化学氧化(HzOR)和氢进化反应(HER)中表现出比其他 Co 基化合物更强的电化学响应。通过在 CoP/C 表面引入 Co 空位(标记为 Co1-xP/C),可以进一步提高 CoP/C 的催化活性。结果表明,Co1-xP/C 不仅在 0.67 μM 的超低 N2H4 浓度下表现出显著的电化学响应,展示了其在超灵敏 N2H4 检测方面的潜力,而且还实现了 HzOR 取代氧进化反应(OER)半反应,从而将 10.0 mA cm-2 时的过电位降至 2.0 mV。最后,制备出了一种 Zn-肼(Zn-Hz)电池,作为一种前景广阔的能量转换装置,显示了 Co1-xP/C 的非凡实用价值。
{"title":"Quantum-sized CoP nanodots with rich vacancies: Enhanced hydrazine oxidation, hydrazine-assisted water splitting, and Zn-hydrazine battery performance through interface modulation.","authors":"Wenxin Wang, Jiangjiang Zhang, Jinsheng Rong, Lanli Chen, Shiqiang Cui","doi":"10.1016/j.jcis.2024.11.098","DOIUrl":"https://doi.org/10.1016/j.jcis.2024.11.098","url":null,"abstract":"<p><p>Reducing the size of catalysts and tuning their electronic structure and interfacial properties are key to enhancing catalytic performance. Herein, a series of quantum-sized Co-based nanodot composites, including Co<sub>3</sub>O<sub>4</sub>/C, CoS<sub>2</sub>/C, CoN/C, and CoP/C, were synthesized using chemical vapor deposition (CVD) methods. By means of experimental measurement and theoretical calculation, CoP/C exhibited more robust electrochemical response than other Co-based compounds in electrochemical oxidation of N<sub>2</sub>H<sub>4</sub> (HzOR) and hydrogen evolution reaction (HER). The catalytic activities of CoP/C can be further enhanced by introducing Co vacancies on the surface of CoP/C (labeled as Co<sub>1-x</sub>P/C). The results demonstrated that Co<sub>1-x</sub>P/C not only exhibited notable electrochemical responses at an ultra-low N<sub>2</sub>H<sub>4</sub> concentration of 0.67 μM, showcasing its potential for ultra-sensitive N<sub>2</sub>H<sub>4</sub> detection but also realized HzOR instead of the oxygen evolution reaction (OER) half-reaction, thereby lowering the overpotential to 2.0 mV at 10.0 mA cm<sup>-2</sup>. Finally, a Zn-hydrazine (Zn-Hz) battery was fabricated as a promising energy conversion device, showing the exceptional practical value of Co<sub>1-x</sub>P/C.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"680 Pt B","pages":"214-223"},"PeriodicalIF":9.4,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-healing hyaluronic acid/polylysine hydrogel prepared by dual-click chemistry from polyrotaxane slidable crosslinkers. 通过双击化学方法,利用聚二十二烷可滑动交联剂制备自愈合透明质酸/聚赖氨酸水凝胶。
IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-11-16 DOI: 10.1016/j.jcis.2024.11.083
Shiyu Qin, Mengyuan Wang, Hongliang Wei, Yanxue Ren, Gang Wang, Tao Guo, Qiaoran Zhang, Meng Yan, Hongli Chen

A new type of pH-sensitive hydrogel containing supramolecular structures was fabricated from maleimide-functionalized polyrotaxane, ɛ-polylysine and furan-functionalized hyaluronic acid by Diels-Alder reaction and amino-maleimide reaction. Firstly, pseudo polyrotaxane was obtained through self-assembly of polyethylene glycol and α-cyclodextrin, and then capped with 1-adamantanecarboxylic acid to convert it into polyrotaxane. Secondly, a maleimide-functionalized slidable crosslinker was obtained by modifying the polyrotaxane with 3-maleimide propionic acid, and furan-functionalized hyaluronic acid was prepared by modifying it with 2-furanmethylamine. Thirdly, the hydrogel cotaining supramolecular structures was fabricated from the prepared slidable crosslinker, ɛ-polylysine, and furan-functionalized hyaluronic acid in mixed solvent of water and N,N-dimethylformamide. Taking gel mass fraction and swelling ratio as two indicators, the formation parameters of hydrogel were optimized through single- factor experiments. The pH-sensitivity, rheological properties, self-healing performance, and degradation behavior of the hydrogel were investigated. Cytotoxicity assay, live/dead stains, and hemolysis assay were done to verify the biocompatibility of the hydrogel. Finally, the slow-release behavior of the hydrogel containing lidocaine hydrochloride was studied. The hydrogel possesses good biocompatibility, pH-sensitivity, self-healing behavior, degradation, and drug-controlled release, and can find broad application in biomaterials.

通过Diels-Alder反应和氨基马来酰亚胺反应,以马来酰亚胺官能化的聚骆驼祥烷、ɛ-聚赖氨酸和呋喃官能化的透明质酸为原料,制备了一种含有超分子结构的新型pH敏感水凝胶。首先,通过聚乙二醇和 α-环糊精的自组装获得了假聚龙齿杉烷,然后用 1-金刚烷甲酸封端使其转化为聚龙齿杉烷。其次,用 3-马来酰亚胺丙酸对聚罗他赛烷进行改性,得到马来酰亚胺功能化可滑动交联剂;用 2-呋喃甲胺对聚罗他赛烷进行改性,制备出呋喃功能化透明质酸。第三,利用制备的可滑动交联剂、ɛ-聚赖氨酸和呋喃官能化透明质酸,在水和 N,N-二甲基甲酰胺混合溶剂中制成含有超分子结构的水凝胶。以凝胶质量分数和溶胀率为两个指标,通过单因素实验优化了水凝胶的形成参数。研究了水凝胶的 pH 敏感性、流变特性、自愈合性能和降解行为。为了验证水凝胶的生物相容性,还进行了细胞毒性试验、活/死染色和溶血试验。最后,研究了含有盐酸利多卡因的水凝胶的缓释行为。该水凝胶具有良好的生物相容性、pH 敏感性、自愈合行为、降解性和药物控释性,可在生物材料中广泛应用。
{"title":"Self-healing hyaluronic acid/polylysine hydrogel prepared by dual-click chemistry from polyrotaxane slidable crosslinkers.","authors":"Shiyu Qin, Mengyuan Wang, Hongliang Wei, Yanxue Ren, Gang Wang, Tao Guo, Qiaoran Zhang, Meng Yan, Hongli Chen","doi":"10.1016/j.jcis.2024.11.083","DOIUrl":"https://doi.org/10.1016/j.jcis.2024.11.083","url":null,"abstract":"<p><p>A new type of pH-sensitive hydrogel containing supramolecular structures was fabricated from maleimide-functionalized polyrotaxane, ɛ-polylysine and furan-functionalized hyaluronic acid by Diels-Alder reaction and amino-maleimide reaction. Firstly, pseudo polyrotaxane was obtained through self-assembly of polyethylene glycol and α-cyclodextrin, and then capped with 1-adamantanecarboxylic acid to convert it into polyrotaxane. Secondly, a maleimide-functionalized slidable crosslinker was obtained by modifying the polyrotaxane with 3-maleimide propionic acid, and furan-functionalized hyaluronic acid was prepared by modifying it with 2-furanmethylamine. Thirdly, the hydrogel cotaining supramolecular structures was fabricated from the prepared slidable crosslinker, ɛ-polylysine, and furan-functionalized hyaluronic acid in mixed solvent of water and N,N-dimethylformamide. Taking gel mass fraction and swelling ratio as two indicators, the formation parameters of hydrogel were optimized through single- factor experiments. The pH-sensitivity, rheological properties, self-healing performance, and degradation behavior of the hydrogel were investigated. Cytotoxicity assay, live/dead stains, and hemolysis assay were done to verify the biocompatibility of the hydrogel. Finally, the slow-release behavior of the hydrogel containing lidocaine hydrochloride was studied. The hydrogel possesses good biocompatibility, pH-sensitivity, self-healing behavior, degradation, and drug-controlled release, and can find broad application in biomaterials.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"680 Pt B","pages":"157-172"},"PeriodicalIF":9.4,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Colloid and Interface Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1