Covalent organic frameworks (COFs) have shown great potential in the photocatalytic production of hydrogen peroxide (H2O2) due to their precisely designed and customized ability. Nevertheless, the quest for efficient overall photosynthesis of H2O2 in pure water without sacrificial agents using COF photocatalysts remains a formidable challenge. Herein, three pyrene-based covalent organic frameworks are synthesized using an advanced interfacial design strategy. By incorporating functional groups of F, H, and OH into a COF skeleton, their wettability and charge-separation properties are fine-tuned. These COFs show great performances as photocatalysts for H2O2 production from water and air by utilizing both the oxygen reduction reaction and water oxidation reaction pathways. Compared to PyCOF-F and PyCOF-H, PyCOF-OH demonstrates superior H2O2 production efficiency due to its improved hydrophilicity and enhanced carrier separation, achieving a remarkable rate of 2961 µmol g-1 h-1 from 25 mL pure water and air. Further, the mechanism of H2O2 production over PyCOF-OH is clarified by combining a series of control experiments, in situ characterizations, and theoretical calculations. This study offers valuable insights into the interfacial design of high-performance photocatalysts for H2O2 synthesis.
{"title":"Interfacial design of pyrene-based covalent organic framework for overall photocatalytic H<sub>2</sub>O<sub>2</sub> synthesis in water.","authors":"Mengqi Zhang, Rongchen Liu, Fulin Zhang, Hongxiang Zhao, Xia Li, Xianjun Lang, Zhiguang Guo","doi":"10.1016/j.jcis.2024.09.189","DOIUrl":"10.1016/j.jcis.2024.09.189","url":null,"abstract":"<p><p>Covalent organic frameworks (COFs) have shown great potential in the photocatalytic production of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) due to their precisely designed and customized ability. Nevertheless, the quest for efficient overall photosynthesis of H<sub>2</sub>O<sub>2</sub> in pure water without sacrificial agents using COF photocatalysts remains a formidable challenge. Herein, three pyrene-based covalent organic frameworks are synthesized using an advanced interfacial design strategy. By incorporating functional groups of F, H, and OH into a COF skeleton, their wettability and charge-separation properties are fine-tuned. These COFs show great performances as photocatalysts for H<sub>2</sub>O<sub>2</sub> production from water and air by utilizing both the oxygen reduction reaction and water oxidation reaction pathways. Compared to PyCOF-F and PyCOF-H, PyCOF-OH demonstrates superior H<sub>2</sub>O<sub>2</sub> production efficiency due to its improved hydrophilicity and enhanced carrier separation, achieving a remarkable rate of 2961 µmol g<sup>-1</sup> h<sup>-1</sup> from 25 mL pure water and air. Further, the mechanism of H<sub>2</sub>O<sub>2</sub> production over PyCOF-OH is clarified by combining a series of control experiments, in situ characterizations, and theoretical calculations. This study offers valuable insights into the interfacial design of high-performance photocatalysts for H<sub>2</sub>O<sub>2</sub> synthesis.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"678 Pt C","pages":"1170-1180"},"PeriodicalIF":9.4,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142338416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-15Epub Date: 2024-09-21DOI: 10.1016/j.jcis.2024.09.167
Can Cheng, Hongyue Jing, Hongtian Ji, Yunpeng Li, Liying Ma, Jingcheng Hao
Indoor air pollution, predominantly caused by volatile organic compounds (VOCs), poses significant health hazards when concentrations surpass critical thresholds. Using waste corn straw as carbon source and urea as nitrogen source, straw derived carbon aerogel (CAGH) loaded with g-C3N4H2O-N2-450-3 h was successfully prepared by hydrothermal and water-assisted calcination. Following water-assisted regulation, g-C3N4H2O-N2-450-3 h on CAGH exhibited a mixed structure comprising honeycomb and two-dimensional filaments, while the growth of g-C3N4H2O-N2-450-3 h was uniformly distributed on carbon aerogel in a line-surface combination fashion. This innovative binding method not only enhanced the loading capacity of g-C3N4 and the mechanical elasticity of aerogel, but also exposed a large number of adsorption sites, resulting in a significant increase in its adsorption capacity for VOCs, exceeding that of commercial activated carbon (AC). In comparison to pure g-C3N4, CAGH exhibited an expanded photo-response range. Under the exposure of visible light, CAGH proved highly effective in eliminating 73.87 % of toluene. In addition, it has demonstrated efficient removal of formaldehyde and acetone VOCs with good cyclic stability. Therefore, this work aims to reduce the emission of pollutants at source and provide an effective and economical strategy for the preparation of clean building materials from renewable materials, with potential applications in the environmental field.
室内空气污染主要由挥发性有机化合物(VOC)引起,当其浓度超过临界值时,会对健康造成严重危害。以废弃玉米秸秆为碳源,尿素为氮源,通过水热法和水辅助煅烧法成功制备了负载 g-C3N4H2O-N2-450-3 h 的秸秆衍生碳气凝胶(CAGH)。经过水辅助调节,g-C3N4H2O-N2-450-3 h 在 CAGH 上呈现出蜂窝状和二维丝状的混合结构,而 g-C3N4H2O-N2-450-3 h 则以线-面结合的方式均匀分布在碳气凝胶上。这种创新的结合方法不仅提高了 g-C3N4 的负载能力和气凝胶的机械弹性,还暴露出大量的吸附位点,使其对挥发性有机化合物的吸附能力显著提高,超过了商用活性炭(AC)的吸附能力。与纯 g-C3N4 相比,CAGH 的光响应范围有所扩大。在可见光照射下,CAGH 能高效去除 73.87% 的甲苯。此外,CAGH 还能高效去除甲醛和丙酮挥发性有机化合物,并具有良好的循环稳定性。因此,这项工作旨在从源头上减少污染物的排放,并为利用可再生材料制备清洁建筑材料提供一种有效而经济的策略,在环保领域具有潜在的应用前景。
{"title":"Bioderived carbon aerogels loaded with g-C<sub>3</sub>N<sub>4</sub> and their high Efficacy removing volatile organic compounds (VOCs).","authors":"Can Cheng, Hongyue Jing, Hongtian Ji, Yunpeng Li, Liying Ma, Jingcheng Hao","doi":"10.1016/j.jcis.2024.09.167","DOIUrl":"10.1016/j.jcis.2024.09.167","url":null,"abstract":"<p><p>Indoor air pollution, predominantly caused by volatile organic compounds (VOCs), poses significant health hazards when concentrations surpass critical thresholds. Using waste corn straw as carbon source and urea as nitrogen source, straw derived carbon aerogel (CAGH) loaded with g-C<sub>3</sub>N<sub>4</sub><sub>H</sub><sub>2</sub><sub>O-N</sub><sub>2</sub><sub>-450-3 h</sub> was successfully prepared by hydrothermal and water-assisted calcination. Following water-assisted regulation, g-C<sub>3</sub>N<sub>4</sub><sub>H</sub><sub>2</sub><sub>O-N</sub><sub>2</sub><sub>-450-3 h</sub> on CAGH exhibited a mixed structure comprising honeycomb and two-dimensional filaments, while the growth of g-C<sub>3</sub>N<sub>4</sub><sub>H</sub><sub>2</sub><sub>O-N</sub><sub>2</sub><sub>-450-3 h</sub> was uniformly distributed on carbon aerogel in a line-surface combination fashion. This innovative binding method not only enhanced the loading capacity of g-C<sub>3</sub>N<sub>4</sub> and the mechanical elasticity of aerogel, but also exposed a large number of adsorption sites, resulting in a significant increase in its adsorption capacity for VOCs, exceeding that of commercial activated carbon (AC). In comparison to pure g-C<sub>3</sub>N<sub>4</sub>, CAGH exhibited an expanded photo-response range. Under the exposure of visible light, CAGH proved highly effective in eliminating 73.87 % of toluene. In addition, it has demonstrated efficient removal of formaldehyde and acetone VOCs with good cyclic stability. Therefore, this work aims to reduce the emission of pollutants at source and provide an effective and economical strategy for the preparation of clean building materials from renewable materials, with potential applications in the environmental field.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"678 Pt C","pages":"1112-1121"},"PeriodicalIF":9.4,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142338411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hydroxychloroquine sulfate (HCQ) is extensively utilized due to its numerous therapeutic effects. Because of its properties of high solubility, persistence, bioaccumulation, and biotoxicity, HCQ can potentially affect water bodies and human health. In this study, the LaCo0.95Mo0.05O3-CeO2 material was successfully prepared by the sol-gel process, and it was applied to the experiment of degrading HCQ by activating peroxymonosulfate (PMS). The results of characterization analysis showed that LaCo0.95Mo0.05O3-CeO2 material had good stability, and the problem of particle agglomeration had been solved to some extent. Compared with LaCo0.95Mo0.05O3 material, it had a larger specific surface area and more oxygen vacancies, which was helpful to improve the catalytic activity for PMS. Under optimal conditions, the LaCo0.95Mo0.05O3-CeO2/PMS system degraded 95.5 % of HCQ in 10 min. The singlet oxygen, superoxide radicals, and sulfate radicals were the main radicals for HCQ degradation. The addition of Mo6+/Mo4+ and Ce4+/Ce3+ promoted the redox cycle of Co3+/Co2+ and enhanced the degradation rate of HCQ. Based on density functional theory and experimental analysis, three HCQ degradation pathways were proposed. The analysis of T.E.S.T software showed that the toxicity of HCQ was obviously reduced after degradation. The LaCo0.95Mo0.05O3-CeO2/PMS system displayed excellent reusability and the ability to remove pollutants in a wide range of real-world aqueous environments, with the ability to treat a wide range of pharmaceutical wastewater. In summary, this study provides some ideas for developing heterogeneous catalysts for advanced oxidation systems and provide an efficient, simple, and low-cost method for treating pharmaceutical wastewater that has good practical application potential.
{"title":"LaCo<sub>0.95</sub>Mo<sub>0.05</sub>O<sub>3</sub>/CeO<sub>2</sub> composite can promote the effective activation of peroxymonosulfate via Co<sup>3+</sup>/Co<sup>2+</sup> cycle and realize the efficient degradation of hydroxychloroquine sulfate.","authors":"Huiwen Ding, Tianqi Jiang, Haijiao Xie, Jianqiao Wang, Pengfei Xiao","doi":"10.1016/j.jcis.2024.09.174","DOIUrl":"10.1016/j.jcis.2024.09.174","url":null,"abstract":"<p><p>Hydroxychloroquine sulfate (HCQ) is extensively utilized due to its numerous therapeutic effects. Because of its properties of high solubility, persistence, bioaccumulation, and biotoxicity, HCQ can potentially affect water bodies and human health. In this study, the LaCo<sub>0.95</sub>Mo<sub>0.05</sub>O<sub>3</sub>-CeO<sub>2</sub> material was successfully prepared by the sol-gel process, and it was applied to the experiment of degrading HCQ by activating peroxymonosulfate (PMS). The results of characterization analysis showed that LaCo<sub>0.95</sub>Mo<sub>0.05</sub>O<sub>3</sub>-CeO<sub>2</sub> material had good stability, and the problem of particle agglomeration had been solved to some extent. Compared with LaCo<sub>0.95</sub>Mo<sub>0.05</sub>O<sub>3</sub> material, it had a larger specific surface area and more oxygen vacancies, which was helpful to improve the catalytic activity for PMS. Under optimal conditions, the LaCo<sub>0.95</sub>Mo<sub>0.05</sub>O<sub>3</sub>-CeO<sub>2</sub>/PMS system degraded 95.5 % of HCQ in 10 min. The singlet oxygen, superoxide radicals, and sulfate radicals were the main radicals for HCQ degradation. The addition of Mo<sup>6+</sup>/Mo<sup>4+</sup> and Ce<sup>4+</sup>/Ce<sup>3+</sup> promoted the redox cycle of Co<sup>3+</sup>/Co<sup>2+</sup> and enhanced the degradation rate of HCQ. Based on density functional theory and experimental analysis, three HCQ degradation pathways were proposed. The analysis of T.E.S.T software showed that the toxicity of HCQ was obviously reduced after degradation. The LaCo<sub>0.95</sub>Mo<sub>0.05</sub>O<sub>3</sub>-CeO<sub>2</sub>/PMS system displayed excellent reusability and the ability to remove pollutants in a wide range of real-world aqueous environments, with the ability to treat a wide range of pharmaceutical wastewater. In summary, this study provides some ideas for developing heterogeneous catalysts for advanced oxidation systems and provide an efficient, simple, and low-cost method for treating pharmaceutical wastewater that has good practical application potential.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"678 Pt C","pages":"1151-1169"},"PeriodicalIF":9.4,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142338417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Challenges associated with lithium dendrite growth and the formation of dead lithium significantly limit the achievable energy density of lithium metal batteries (LMBs), particularly under high operating current densities. Our innovative design employs a state-of-the-art 2500 separator featuring a meticulously engineered cellulose acetate (CA) coating (CA@2500) to suppress dendrite nucleation and propagation. The CO functional groups in CA enhances charge transfer kinetics and triggering the decomposition of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), which leads to the formation of a more robust solid electrolyte interphase (SEI) composed primarily of LiF. Moreover, the introduction of polar functional groups in the CA enhances the separator's hydrophilic properties, facilitating the uniform Li+ flux and creating a conductive pathway for efficient lithium migration. As a result, the CA@2500 separator exhibits a high lithium-ion transfer number (0.88) and conductivity. The lithium symmetric cell assembles with the CA@2500 separator displays a stable cycling performance over 5500 h at a current density and capacity of 10 mA cm-2 and 10 mAh cm-2, respectively. Additionally, LPF battery with CA@2500 separator shows an excellent capacity retention at 0.2 C with an average decay of 0.055 % per cycle. Moreover, a high capacity of 105 mAh g-1 is maintained after 500 cycles at 5 C with an average decay of only 0.027 % per cycle. This work achieved high stability of LMBs through simplified engineering.
{"title":"Separator engineering: Assisting lithium salt dissociation and constructing LiF-rich solid electrolyte interphases for high-rate lithium metal batteries.","authors":"Changyong Zhao, Hanyan Wu, Xuejie Gao, Chen Cheng, Shuiping Cai, Xiaofei Yang, Runcang Sun","doi":"10.1016/j.jcis.2024.08.151","DOIUrl":"10.1016/j.jcis.2024.08.151","url":null,"abstract":"<p><p>Challenges associated with lithium dendrite growth and the formation of dead lithium significantly limit the achievable energy density of lithium metal batteries (LMBs), particularly under high operating current densities. Our innovative design employs a state-of-the-art 2500 separator featuring a meticulously engineered cellulose acetate (CA) coating (CA@2500) to suppress dendrite nucleation and propagation. The CO functional groups in CA enhances charge transfer kinetics and triggering the decomposition of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), which leads to the formation of a more robust solid electrolyte interphase (SEI) composed primarily of LiF. Moreover, the introduction of polar functional groups in the CA enhances the separator's hydrophilic properties, facilitating the uniform Li<sup>+</sup> flux and creating a conductive pathway for efficient lithium migration. As a result, the CA@2500 separator exhibits a high lithium-ion transfer number (0.88) and conductivity. The lithium symmetric cell assembles with the CA@2500 separator displays a stable cycling performance over 5500 h at a current density and capacity of 10 mA cm<sup>-2</sup> and 10 mAh cm<sup>-2</sup>, respectively. Additionally, LPF battery with CA@2500 separator shows an excellent capacity retention at 0.2 C with an average decay of 0.055 % per cycle. Moreover, a high capacity of 105 mAh g<sup>-1</sup> is maintained after 500 cycles at 5 C with an average decay of only 0.027 % per cycle. This work achieved high stability of LMBs through simplified engineering.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"677 Pt B","pages":"1084-1094"},"PeriodicalIF":9.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142054504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Designing inexpensive, high-efficiency and durable bifunctional catalysts for urea oxidation reaction (UOR) and hydrogen evolution reaction (HER) is an encouraging tactic to produce hydrogen with reduced energy expenditure. Herein, oxygen vacancy-rich cobalt hydroxide/aluminum oxyhydroxide heterostructure on nickel foam (denoted as Co(OH)2/AlOOH/NF-100) has been fabricated using one step hydrothermal process. Theoretical calculation and experimental results indicate the electrons transfer from Co(OH)2 to highly active AlOOH results in the interfacial charge redistribution and optimization of electronic structure. Abundant oxygen vacancies in the heterostructure could improve the conductivity and simultaneously serve as the active sites for catalytic reaction. Consequently, the optimal Co(OH)2/AlOOH/NF-100 demonstrates excellent electrocatalytic performance for HER (62.9 mV@10 mA cm-2) and UOR (1.36 V@10 mA cm-2) due to the synergy between heterointerface and oxygen vacancies. Additionally, the in situ electrochemical impedance spectrum (EIS) for UOR suggests that the heterostructured catalyst exhibits rapid reaction kinetics, mass transfer and current response. Importantly, the urea-assisted electrolysis composed of the Co(OH)2/AlOOH/NF-100 manifests a low cell voltage (1.48 V @ 10 mA cm-2) in 1 M KOH containing 0.5 M urea. This work presents a promising avenue to the development of HER/UOR bifunctional electrocatalysts.
设计用于尿素氧化反应(UOR)和氢气进化反应(HER)的廉价、高效、耐用的双功能催化剂,是减少能源消耗生产氢气的一个令人鼓舞的策略。在此,我们采用一步水热法在泡沫镍上制备了富氧空位氢氧化钴/氧氢氧化铝异质结构(记为 Co(OH)2/AlOOH/NF-100)。理论计算和实验结果表明,电子从 Co(OH)2 转移到高活性的 AlOOH 会导致界面电荷的重新分配和电子结构的优化。异质结构中丰富的氧空位可以提高导电性,同时成为催化反应的活性位点。因此,由于异质界面和氧空位之间的协同作用,最佳的 Co(OH)2/AlOOH/NF-100 对 HER(62.9 mV@10 mA cm-2)和 UOR(1.36 V@10 mA cm-2)具有优异的电催化性能。此外,UOR 的原位电化学阻抗谱(EIS)表明,异质结构催化剂具有快速的反应动力学、传质和电流响应。重要的是,由 Co(OH)2/AlOOH/NF-100 组成的尿素辅助电解在含有 0.5 M 尿素的 1 M KOH 中表现出较低的电池电压(1.48 V @ 10 mA cm-2)。这项工作为开发 HER/UOR 双功能电催化剂提供了一条前景广阔的途径。
{"title":"Synergistic engineering of heterostructure and oxygen vacancy in cobalt hydroxide/aluminum oxyhydroxide as bifunctional electrocatalysts for urea-assisted hydrogen production.","authors":"Minglei Yan, Junjie Zhang, Cong Wang, Lang Gao, Wengang Liu, Jiahao Zhang, Chunquan Liu, Zhiwei Lu, Lijun Yang, Chenglu Jiang, Yang Zhao","doi":"10.1016/j.jcis.2024.07.239","DOIUrl":"10.1016/j.jcis.2024.07.239","url":null,"abstract":"<p><p>Designing inexpensive, high-efficiency and durable bifunctional catalysts for urea oxidation reaction (UOR) and hydrogen evolution reaction (HER) is an encouraging tactic to produce hydrogen with reduced energy expenditure. Herein, oxygen vacancy-rich cobalt hydroxide/aluminum oxyhydroxide heterostructure on nickel foam (denoted as Co(OH)<sub>2</sub>/AlOOH/NF-100) has been fabricated using one step hydrothermal process. Theoretical calculation and experimental results indicate the electrons transfer from Co(OH)<sub>2</sub> to highly active AlOOH results in the interfacial charge redistribution and optimization of electronic structure. Abundant oxygen vacancies in the heterostructure could improve the conductivity and simultaneously serve as the active sites for catalytic reaction. Consequently, the optimal Co(OH)<sub>2</sub>/AlOOH/NF-100 demonstrates excellent electrocatalytic performance for HER (62.9 mV@10 mA cm<sup>-2</sup>) and UOR (1.36 V@10 mA cm<sup>-2</sup>) due to the synergy between heterointerface and oxygen vacancies. Additionally, the in situ electrochemical impedance spectrum (EIS) for UOR suggests that the heterostructured catalyst exhibits rapid reaction kinetics, mass transfer and current response. Importantly, the urea-assisted electrolysis composed of the Co(OH)<sub>2</sub>/AlOOH/NF-100 manifests a low cell voltage (1.48 V @ 10 mA cm<sup>-2</sup>) in 1 M KOH containing 0.5 M urea. This work presents a promising avenue to the development of HER/UOR bifunctional electrocatalysts.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"677 Pt A","pages":"1069-1079"},"PeriodicalIF":9.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141974680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-07-25DOI: 10.1016/j.jcis.2024.07.192
Yating Cui, Siyu Ji, Yujie Zhu, Jingyu Xi
The practical applications of lithium sulfur batteries (LSBs) are hindered by notorious shuttle effect and sluggish conversion kinetics of intermediate polysulfides. Herein, Mo2C-Co heterogeneous particles decorated two-dimensional (2D) carbon nanosheets grown on hollow carbon microtubes (CCC@MCC) are synthesized. Three-dimensional (3D) carbon framework with Mo2C-Co heterogeneous particles combines the conductivity, adsorption and catalysis, effectively trapping and accelerating the conversion of polysulfides. As evidenced experimentally, the hetero-structured Mo2C-Co with high Li+ diffusion coefficient enables uniform precipitation and complete oxidation of Li2S. Meanwhile, CCC@MCC is found to have multiple application possibilities for lithium-sulfur batteries. As an interlayer, the cells deliver an excellent capacity of 881.1 mAh/g at 2C and still retain 438.2 mAh/g after 500 cycles under the low temperature of 0 ℃. As a sulfur carrier, the cell with a sulfur loading of 7.0 mg cm-2 exhibits a high area capacity of 5.3 mAh cm-2. This work provides an effective strategy to prepare heterostructured material and imaginatively exploit the application potential of it.
{"title":"Mo<sub>2</sub>C-Co heterostructure with carbon nanosheets decorated carbon microtubules: Different means for high-performance lithium-sulfur batteries.","authors":"Yating Cui, Siyu Ji, Yujie Zhu, Jingyu Xi","doi":"10.1016/j.jcis.2024.07.192","DOIUrl":"10.1016/j.jcis.2024.07.192","url":null,"abstract":"<p><p>The practical applications of lithium sulfur batteries (LSBs) are hindered by notorious shuttle effect and sluggish conversion kinetics of intermediate polysulfides. Herein, Mo<sub>2</sub>C-Co heterogeneous particles decorated two-dimensional (2D) carbon nanosheets grown on hollow carbon microtubes (CCC@MCC) are synthesized. Three-dimensional (3D) carbon framework with Mo<sub>2</sub>C-Co heterogeneous particles combines the conductivity, adsorption and catalysis, effectively trapping and accelerating the conversion of polysulfides. As evidenced experimentally, the hetero-structured Mo<sub>2</sub>C-Co with high Li<sup>+</sup> diffusion coefficient enables uniform precipitation and complete oxidation of Li<sub>2</sub>S. Meanwhile, CCC@MCC is found to have multiple application possibilities for lithium-sulfur batteries. As an interlayer, the cells deliver an excellent capacity of 881.1 mAh/g at 2C and still retain 438.2 mAh/g after 500 cycles under the low temperature of 0 ℃. As a sulfur carrier, the cell with a sulfur loading of 7.0 mg cm<sup>-2</sup> exhibits a high area capacity of 5.3 mAh cm<sup>-2</sup>. This work provides an effective strategy to prepare heterostructured material and imaginatively exploit the application potential of it.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"675 ","pages":"1119-1129"},"PeriodicalIF":9.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141791573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The promising non-noble electrocatalyst with well-defined structure is significant for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) for the renewable energy devices like zinc-air batteries (ZABs). Herein, the four phenyl-linked cobaltporphyrin-based covalent organic polymers (COPs-1-4) with the different edge substituents (1 = -tBu, 2 = -Me, 3 = -F, and 4 = -CF3) are firstly designed and synthesized via a simple, efficient one-pot method. With the increase of electron donating capacity of the substituents, the highest occupied molecular orbital energy (EHOMO) gradually increases in the order of COP-4 < COP-3 < COP-2 < COP-1. Consequently, the optimal COP-1 with -tBu edge groups exhibits the highest half-wave potential (E1/2) of 0.84 V (vs. RHE) among the four COPs, which is comparable with commercial Pt/C in alkaline media. The DFT calculations further reveal that with strong electron donating capacity, the Gibbs free energy decreases in the order of COP-4 > COP-3 > COP-2 > COP-1 by modulating the adsorption energy of OOH* at rate-determining step (RDS) to promote ORR activity. Furthermore, introducing Ni (II) and Co (II) into porphyrin centers afford the bimetallic CoNi-COP-1 with both Co-N4, Ni-N4 active sites and edge substituted -tBu. The synergistic effect of Co, Ni bimetallic active sites and strong electron-donating -tBu substituents renders the CoNi-COP-1 the highest HOMO and smallest energy gap between the ELUMO and EF among the as-prepared five COPs, which leads to more filling electrons of its LUMO level, and thus exhibits the excellent ORR and OER bifunctional catalytic activities with an E1/2 as high as 0.85 V and an overpotential (η) of 0.34 V at 10 mA cm-2 in alkaline media, superior to monometallic Co-containing COPs-1-4. In particular, the assembled ZABs with bifunctional catalyst CoNi-COP-1 possesses high power density (94.10 mW cm-2), high specific capacity (841.71 mAh gZn-1) and long durability of over 160,000 s. This work exemplifies the rational design of pyrolysis-free non-noble metal COP-based electrocatalyst through optimizing the intrinsic metal center and its secondary coordination environment.
对于锌-空气电池(ZABs)等可再生能源设备而言,具有明确结构的前景广阔的非贵金属电催化剂对于氧还原反应(ORR)和氧进化反应(OER)都具有重要意义。本文首先设计并通过简单高效的一锅法合成了四种苯基连接的钴卟啉基共价有机聚合物(COPs-1-4),它们具有不同的边缘取代基(1 = -tBu、2 = -Me、3 = -F、4 = -CF3)。随着取代基电子捐献能力的增加,四种 COPs 的最高占据分子轨道能(EHOMO)以 COP-4 1/2 的顺序逐渐增加,达到 0.84 V(相对于 RHE),与碱性介质中的商用 Pt/C 相当。DFT 计算进一步表明,在强电子捐赠能力下,通过调节速率决定步骤(RDS)中 OOH* 的吸附能,吉布斯自由能按照 COP-4 > COP-3 > COP-2 > COP-1 的顺序降低,从而促进 ORR 活性。此外,在卟啉中心引入 Ni (II) 和 Co (II) 还可产生具有 Co-N4 和 Ni-N4 活性位点以及边缘取代 -tBu 的双金属 CoNi-COP-1 。在 Co、Ni 双金属活性位点和强电子供体 -tBu 取代基的协同作用下,CoNi-COP-1 的 HOMO 最高,ELUMO 与 EF 之间的能隙最小,这使得它的 LUMO 水平有更多的填充电子,从而表现出优异的 ORR 和 OER 双功能催化活性,E1/2 高达 0.85 V,在碱性介质中 10 mA cm-2 的过电位 (η) 为 0.34 V,优于单金属含 Co COPs-1-4。这项工作体现了通过优化固有金属中心及其次级配位环境,合理设计无热解非贵金属 COP 型电催化剂的方法。
{"title":"Edge-substituents and center metal optimization boosting oxygen electrocatalysis in porphyrin-based covalent organic polymers.","authors":"Hongyan Zhuo, Qiming Ye, Shaoze Wang, Han Yu, Tianle Yang, Binghan Jiang, Chuangyu Wei, Linlin Feng, Tenglong Jin, Xue Liu, Zhuang Shi, Hao Song, Zhen Fu, Wenmiao Chen, Yuexing Zhang, Yanli Chen","doi":"10.1016/j.jcis.2024.11.109","DOIUrl":"https://doi.org/10.1016/j.jcis.2024.11.109","url":null,"abstract":"<p><p>The promising non-noble electrocatalyst with well-defined structure is significant for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) for the renewable energy devices like zinc-air batteries (ZABs). Herein, the four phenyl-linked cobaltporphyrin-based covalent organic polymers (COPs-1-4) with the different edge substituents (1 = -tBu, 2 = -Me, 3 = -F, and 4 = -CF<sub>3</sub>) are firstly designed and synthesized via a simple, efficient one-pot method. With the increase of electron donating capacity of the substituents, the highest occupied molecular orbital energy (E<sub>HOMO</sub>) gradually increases in the order of COP-4 < COP-3 < COP-2 < COP-1. Consequently, the optimal COP-1 with -tBu edge groups exhibits the highest half-wave potential (E<sub>1/2</sub>) of 0.84 V (vs. RHE) among the four COPs, which is comparable with commercial Pt/C in alkaline media. The DFT calculations further reveal that with strong electron donating capacity, the Gibbs free energy decreases in the order of COP-4 > COP-3 > COP-2 > COP-1 by modulating the adsorption energy of OOH* at rate-determining step (RDS) to promote ORR activity. Furthermore, introducing Ni (II) and Co (II) into porphyrin centers afford the bimetallic CoNi-COP-1 with both Co-N<sub>4</sub>, Ni-N<sub>4</sub> active sites and edge substituted -tBu. The synergistic effect of Co, Ni bimetallic active sites and strong electron-donating -tBu substituents renders the CoNi-COP-1 the highest HOMO and smallest energy gap between the E<sub>LUMO</sub> and E<sub>F</sub> among the as-prepared five COPs, which leads to more filling electrons of its LUMO level, and thus exhibits the excellent ORR and OER bifunctional catalytic activities with an E<sub>1/2</sub> as high as 0.85 V and an overpotential (η) of 0.34 V at 10 mA cm<sup>-2</sup> in alkaline media, superior to monometallic Co-containing COPs-1-4. In particular, the assembled ZABs with bifunctional catalyst CoNi-COP-1 possesses high power density (94.10 mW cm<sup>-2</sup>), high specific capacity (841.71 mAh g<sub>Zn</sub><sup>-1</sup>) and long durability of over 160,000 s. This work exemplifies the rational design of pyrolysis-free non-noble metal COP-based electrocatalyst through optimizing the intrinsic metal center and its secondary coordination environment.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"680 Pt B","pages":"137-145"},"PeriodicalIF":9.4,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-16DOI: 10.1016/j.jcis.2024.11.089
Liyun Ma, Zhi Li, Yuying Cai, Linjiao Yang, Yuchen Xie, Ming Jiang, Xu Yu, Li Xu
Titanium dioxide (TiO2) is a kind of generally used photocatalyst with the assistance of UV light. To utilize the visible light and save the energy, herein, a titanium (Ti)-based nanocomposite, i.e. PPDs/C-hTiO2, was designed and prepared based on carbon (C)-doping and photosensitive polymer dots (PPDs) nano-hybridization. This design synergistically narrowed the band gap energy (Eg) and strengthened absorption of the visible light. As a result, PPDs/C-hTiO2 exerted remarkably high catalytic ability under visible light, surpassing that of commercial TiO2 (i.e. P25) under UV light. PPDs/C-hTiO2 succeeded in assisting the degradation of sulindac with a degradation efficiency of 96.7%±1.25% within 10 min under visible light. The degradation process was driven by the generation of hydroxyl radical, superoxide radical and holes, and the total biotoxicity of degradation products was decreased compared to the parent compound. This study creatively combined the C-doping and PPDs nano-hybridization to construct a visible light Ti-based photocatalyst, proposing a potential technique for addressing current aquatic environmental issues.
{"title":"Highly efficient degradation of sulindac under visible light irradiation by a novel titanium based photocatalyst.","authors":"Liyun Ma, Zhi Li, Yuying Cai, Linjiao Yang, Yuchen Xie, Ming Jiang, Xu Yu, Li Xu","doi":"10.1016/j.jcis.2024.11.089","DOIUrl":"https://doi.org/10.1016/j.jcis.2024.11.089","url":null,"abstract":"<p><p>Titanium dioxide (TiO<sub>2</sub>) is a kind of generally used photocatalyst with the assistance of UV light. To utilize the visible light and save the energy, herein, a titanium (Ti)-based nanocomposite, i.e. PPDs/C-hTiO<sub>2</sub>, was designed and prepared based on carbon (C)-doping and photosensitive polymer dots (PPDs) nano-hybridization. This design synergistically narrowed the band gap energy (E<sub>g</sub>) and strengthened absorption of the visible light. As a result, PPDs/C-hTiO<sub>2</sub> exerted remarkably high catalytic ability under visible light, surpassing that of commercial TiO<sub>2</sub> (i.e. P25) under UV light. PPDs/C-hTiO<sub>2</sub> succeeded in assisting the degradation of sulindac with a degradation efficiency of 96.7%±1.25% within 10 min under visible light. The degradation process was driven by the generation of hydroxyl radical, superoxide radical and holes, and the total biotoxicity of degradation products was decreased compared to the parent compound. This study creatively combined the C-doping and PPDs nano-hybridization to construct a visible light Ti-based photocatalyst, proposing a potential technique for addressing current aquatic environmental issues.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"680 Pt B","pages":"191-201"},"PeriodicalIF":9.4,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-16DOI: 10.1016/j.jcis.2024.11.098
Wenxin Wang, Jiangjiang Zhang, Jinsheng Rong, Lanli Chen, Shiqiang Cui
Reducing the size of catalysts and tuning their electronic structure and interfacial properties are key to enhancing catalytic performance. Herein, a series of quantum-sized Co-based nanodot composites, including Co3O4/C, CoS2/C, CoN/C, and CoP/C, were synthesized using chemical vapor deposition (CVD) methods. By means of experimental measurement and theoretical calculation, CoP/C exhibited more robust electrochemical response than other Co-based compounds in electrochemical oxidation of N2H4 (HzOR) and hydrogen evolution reaction (HER). The catalytic activities of CoP/C can be further enhanced by introducing Co vacancies on the surface of CoP/C (labeled as Co1-xP/C). The results demonstrated that Co1-xP/C not only exhibited notable electrochemical responses at an ultra-low N2H4 concentration of 0.67 μM, showcasing its potential for ultra-sensitive N2H4 detection but also realized HzOR instead of the oxygen evolution reaction (OER) half-reaction, thereby lowering the overpotential to 2.0 mV at 10.0 mA cm-2. Finally, a Zn-hydrazine (Zn-Hz) battery was fabricated as a promising energy conversion device, showing the exceptional practical value of Co1-xP/C.
减小催化剂尺寸、调整其电子结构和界面特性是提高催化性能的关键。本文采用化学气相沉积(CVD)方法合成了一系列量子尺寸的 Co 基纳米点复合材料,包括 Co3O4/C、CoS2/C、CoN/C 和 CoP/C。通过实验测量和理论计算,CoP/C 在 N2H4 的电化学氧化(HzOR)和氢进化反应(HER)中表现出比其他 Co 基化合物更强的电化学响应。通过在 CoP/C 表面引入 Co 空位(标记为 Co1-xP/C),可以进一步提高 CoP/C 的催化活性。结果表明,Co1-xP/C 不仅在 0.67 μM 的超低 N2H4 浓度下表现出显著的电化学响应,展示了其在超灵敏 N2H4 检测方面的潜力,而且还实现了 HzOR 取代氧进化反应(OER)半反应,从而将 10.0 mA cm-2 时的过电位降至 2.0 mV。最后,制备出了一种 Zn-肼(Zn-Hz)电池,作为一种前景广阔的能量转换装置,显示了 Co1-xP/C 的非凡实用价值。
{"title":"Quantum-sized CoP nanodots with rich vacancies: Enhanced hydrazine oxidation, hydrazine-assisted water splitting, and Zn-hydrazine battery performance through interface modulation.","authors":"Wenxin Wang, Jiangjiang Zhang, Jinsheng Rong, Lanli Chen, Shiqiang Cui","doi":"10.1016/j.jcis.2024.11.098","DOIUrl":"https://doi.org/10.1016/j.jcis.2024.11.098","url":null,"abstract":"<p><p>Reducing the size of catalysts and tuning their electronic structure and interfacial properties are key to enhancing catalytic performance. Herein, a series of quantum-sized Co-based nanodot composites, including Co<sub>3</sub>O<sub>4</sub>/C, CoS<sub>2</sub>/C, CoN/C, and CoP/C, were synthesized using chemical vapor deposition (CVD) methods. By means of experimental measurement and theoretical calculation, CoP/C exhibited more robust electrochemical response than other Co-based compounds in electrochemical oxidation of N<sub>2</sub>H<sub>4</sub> (HzOR) and hydrogen evolution reaction (HER). The catalytic activities of CoP/C can be further enhanced by introducing Co vacancies on the surface of CoP/C (labeled as Co<sub>1-x</sub>P/C). The results demonstrated that Co<sub>1-x</sub>P/C not only exhibited notable electrochemical responses at an ultra-low N<sub>2</sub>H<sub>4</sub> concentration of 0.67 μM, showcasing its potential for ultra-sensitive N<sub>2</sub>H<sub>4</sub> detection but also realized HzOR instead of the oxygen evolution reaction (OER) half-reaction, thereby lowering the overpotential to 2.0 mV at 10.0 mA cm<sup>-2</sup>. Finally, a Zn-hydrazine (Zn-Hz) battery was fabricated as a promising energy conversion device, showing the exceptional practical value of Co<sub>1-x</sub>P/C.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"680 Pt B","pages":"214-223"},"PeriodicalIF":9.4,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-16DOI: 10.1016/j.jcis.2024.11.083
Shiyu Qin, Mengyuan Wang, Hongliang Wei, Yanxue Ren, Gang Wang, Tao Guo, Qiaoran Zhang, Meng Yan, Hongli Chen
A new type of pH-sensitive hydrogel containing supramolecular structures was fabricated from maleimide-functionalized polyrotaxane, ɛ-polylysine and furan-functionalized hyaluronic acid by Diels-Alder reaction and amino-maleimide reaction. Firstly, pseudo polyrotaxane was obtained through self-assembly of polyethylene glycol and α-cyclodextrin, and then capped with 1-adamantanecarboxylic acid to convert it into polyrotaxane. Secondly, a maleimide-functionalized slidable crosslinker was obtained by modifying the polyrotaxane with 3-maleimide propionic acid, and furan-functionalized hyaluronic acid was prepared by modifying it with 2-furanmethylamine. Thirdly, the hydrogel cotaining supramolecular structures was fabricated from the prepared slidable crosslinker, ɛ-polylysine, and furan-functionalized hyaluronic acid in mixed solvent of water and N,N-dimethylformamide. Taking gel mass fraction and swelling ratio as two indicators, the formation parameters of hydrogel were optimized through single- factor experiments. The pH-sensitivity, rheological properties, self-healing performance, and degradation behavior of the hydrogel were investigated. Cytotoxicity assay, live/dead stains, and hemolysis assay were done to verify the biocompatibility of the hydrogel. Finally, the slow-release behavior of the hydrogel containing lidocaine hydrochloride was studied. The hydrogel possesses good biocompatibility, pH-sensitivity, self-healing behavior, degradation, and drug-controlled release, and can find broad application in biomaterials.
{"title":"Self-healing hyaluronic acid/polylysine hydrogel prepared by dual-click chemistry from polyrotaxane slidable crosslinkers.","authors":"Shiyu Qin, Mengyuan Wang, Hongliang Wei, Yanxue Ren, Gang Wang, Tao Guo, Qiaoran Zhang, Meng Yan, Hongli Chen","doi":"10.1016/j.jcis.2024.11.083","DOIUrl":"https://doi.org/10.1016/j.jcis.2024.11.083","url":null,"abstract":"<p><p>A new type of pH-sensitive hydrogel containing supramolecular structures was fabricated from maleimide-functionalized polyrotaxane, ɛ-polylysine and furan-functionalized hyaluronic acid by Diels-Alder reaction and amino-maleimide reaction. Firstly, pseudo polyrotaxane was obtained through self-assembly of polyethylene glycol and α-cyclodextrin, and then capped with 1-adamantanecarboxylic acid to convert it into polyrotaxane. Secondly, a maleimide-functionalized slidable crosslinker was obtained by modifying the polyrotaxane with 3-maleimide propionic acid, and furan-functionalized hyaluronic acid was prepared by modifying it with 2-furanmethylamine. Thirdly, the hydrogel cotaining supramolecular structures was fabricated from the prepared slidable crosslinker, ɛ-polylysine, and furan-functionalized hyaluronic acid in mixed solvent of water and N,N-dimethylformamide. Taking gel mass fraction and swelling ratio as two indicators, the formation parameters of hydrogel were optimized through single- factor experiments. The pH-sensitivity, rheological properties, self-healing performance, and degradation behavior of the hydrogel were investigated. Cytotoxicity assay, live/dead stains, and hemolysis assay were done to verify the biocompatibility of the hydrogel. Finally, the slow-release behavior of the hydrogel containing lidocaine hydrochloride was studied. The hydrogel possesses good biocompatibility, pH-sensitivity, self-healing behavior, degradation, and drug-controlled release, and can find broad application in biomaterials.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"680 Pt B","pages":"157-172"},"PeriodicalIF":9.4,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}