首页 > 最新文献

Patterns最新文献

英文 中文
Folding paper models of biostructures for outreach and education 用于推广和教育的生物结构折叠纸模型
IF 6.5 Q2 Decision Sciences Pub Date : 2024-02-01 DOI: 10.1016/j.patter.2024.100931
David S. Goodsell, Shuchismita Dutta, Brian P. Hudson, Maria Voigt, Stephen Burley, C. Zardecki
{"title":"Folding paper models of biostructures for outreach and education","authors":"David S. Goodsell, Shuchismita Dutta, Brian P. Hudson, Maria Voigt, Stephen Burley, C. Zardecki","doi":"10.1016/j.patter.2024.100931","DOIUrl":"https://doi.org/10.1016/j.patter.2024.100931","url":null,"abstract":"","PeriodicalId":36242,"journal":{"name":"Patterns","volume":null,"pages":null},"PeriodicalIF":6.5,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139817317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using a deep generation network reveals neuroanatomical specificity in hemispheres 利用深度生成网络揭示大脑半球的神经解剖特异性
IF 6.5 Q2 Decision Sciences Pub Date : 2024-02-01 DOI: 10.1016/j.patter.2024.100930
Gongshu Wang, Ning Jiang, Yunxiao Ma, Dingjie Suo, Tiantian Liu, Shintaro Funahashi, Tianyi Yan
{"title":"Using a deep generation network reveals neuroanatomical specificity in hemispheres","authors":"Gongshu Wang, Ning Jiang, Yunxiao Ma, Dingjie Suo, Tiantian Liu, Shintaro Funahashi, Tianyi Yan","doi":"10.1016/j.patter.2024.100930","DOIUrl":"https://doi.org/10.1016/j.patter.2024.100930","url":null,"abstract":"","PeriodicalId":36242,"journal":{"name":"Patterns","volume":null,"pages":null},"PeriodicalIF":6.5,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139816609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using a deep generation network reveals neuroanatomical specificity in hemispheres 利用深度生成网络揭示大脑半球的神经解剖特异性
IF 6.5 Q2 Decision Sciences Pub Date : 2024-02-01 DOI: 10.1016/j.patter.2024.100930
Gongshu Wang, Ning Jiang, Yunxiao Ma, Dingjie Suo, Tiantian Liu, Shintaro Funahashi, Tianyi Yan
{"title":"Using a deep generation network reveals neuroanatomical specificity in hemispheres","authors":"Gongshu Wang, Ning Jiang, Yunxiao Ma, Dingjie Suo, Tiantian Liu, Shintaro Funahashi, Tianyi Yan","doi":"10.1016/j.patter.2024.100930","DOIUrl":"https://doi.org/10.1016/j.patter.2024.100930","url":null,"abstract":"","PeriodicalId":36242,"journal":{"name":"Patterns","volume":null,"pages":null},"PeriodicalIF":6.5,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139876574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DRAC 2022: A public benchmark for diabetic retinopathy analysis on ultra-wide optical coherence tomography angiography images DRAC 2022:超宽光学相干断层血管造影图像上的糖尿病视网膜病变分析公共基准
IF 6.5 Q2 Decision Sciences Pub Date : 2024-02-01 DOI: 10.1016/j.patter.2024.100929
Bo Qian, Hao Chen, Xiangning Wang, Zhouyu Guan, Tingyao Li, Yixiao Jin, Yilan Wu, Yang Wen, Haoxuan Che, Gitaek Kwon, Jaeyoung Kim, Sungjin Choi, Seoyoung Shin, Felix Krause, Markus Unterdechler, Junlin Hou, Rui Feng, Yihao Li, Mostafa El Habib Daho, Dawei Yang, Qiang Wu, Ping Zhang, Xiaokang Yang, Yiyu Cai, Gavin Siew Wei Tan, Carol Y Cheung, Weiping Jia, Huating Li, Y. Tham, T. Y. Wong, Bin Sheng
{"title":"DRAC 2022: A public benchmark for diabetic retinopathy analysis on ultra-wide optical coherence tomography angiography images","authors":"Bo Qian, Hao Chen, Xiangning Wang, Zhouyu Guan, Tingyao Li, Yixiao Jin, Yilan Wu, Yang Wen, Haoxuan Che, Gitaek Kwon, Jaeyoung Kim, Sungjin Choi, Seoyoung Shin, Felix Krause, Markus Unterdechler, Junlin Hou, Rui Feng, Yihao Li, Mostafa El Habib Daho, Dawei Yang, Qiang Wu, Ping Zhang, Xiaokang Yang, Yiyu Cai, Gavin Siew Wei Tan, Carol Y Cheung, Weiping Jia, Huating Li, Y. Tham, T. Y. Wong, Bin Sheng","doi":"10.1016/j.patter.2024.100929","DOIUrl":"https://doi.org/10.1016/j.patter.2024.100929","url":null,"abstract":"","PeriodicalId":36242,"journal":{"name":"Patterns","volume":null,"pages":null},"PeriodicalIF":6.5,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139890259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DRAC 2022: A public benchmark for diabetic retinopathy analysis on ultra-wide optical coherence tomography angiography images DRAC 2022:超宽光学相干断层血管造影图像上的糖尿病视网膜病变分析公共基准
IF 6.5 Q2 Decision Sciences Pub Date : 2024-02-01 DOI: 10.1016/j.patter.2024.100929
Bo Qian, Hao Chen, Xiangning Wang, Zhouyu Guan, Tingyao Li, Yixiao Jin, Yilan Wu, Yang Wen, Haoxuan Che, Gitaek Kwon, Jaeyoung Kim, Sungjin Choi, Seoyoung Shin, Felix Krause, Markus Unterdechler, Junlin Hou, Rui Feng, Yihao Li, Mostafa El Habib Daho, Dawei Yang, Qiang Wu, Ping Zhang, Xiaokang Yang, Yiyu Cai, Gavin Siew Wei Tan, Carol Y Cheung, Weiping Jia, Huating Li, Y. Tham, T. Y. Wong, Bin Sheng
{"title":"DRAC 2022: A public benchmark for diabetic retinopathy analysis on ultra-wide optical coherence tomography angiography images","authors":"Bo Qian, Hao Chen, Xiangning Wang, Zhouyu Guan, Tingyao Li, Yixiao Jin, Yilan Wu, Yang Wen, Haoxuan Che, Gitaek Kwon, Jaeyoung Kim, Sungjin Choi, Seoyoung Shin, Felix Krause, Markus Unterdechler, Junlin Hou, Rui Feng, Yihao Li, Mostafa El Habib Daho, Dawei Yang, Qiang Wu, Ping Zhang, Xiaokang Yang, Yiyu Cai, Gavin Siew Wei Tan, Carol Y Cheung, Weiping Jia, Huating Li, Y. Tham, T. Y. Wong, Bin Sheng","doi":"10.1016/j.patter.2024.100929","DOIUrl":"https://doi.org/10.1016/j.patter.2024.100929","url":null,"abstract":"","PeriodicalId":36242,"journal":{"name":"Patterns","volume":null,"pages":null},"PeriodicalIF":6.5,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139830162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Folding paper models of biostructures for outreach and education 用于推广和教育的生物结构折叠纸模型
IF 6.5 Q2 Decision Sciences Pub Date : 2024-02-01 DOI: 10.1016/j.patter.2024.100931
David S. Goodsell, Shuchismita Dutta, Brian P. Hudson, Maria Voigt, Stephen Burley, C. Zardecki
{"title":"Folding paper models of biostructures for outreach and education","authors":"David S. Goodsell, Shuchismita Dutta, Brian P. Hudson, Maria Voigt, Stephen Burley, C. Zardecki","doi":"10.1016/j.patter.2024.100931","DOIUrl":"https://doi.org/10.1016/j.patter.2024.100931","url":null,"abstract":"","PeriodicalId":36242,"journal":{"name":"Patterns","volume":null,"pages":null},"PeriodicalIF":6.5,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139876963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Incorporating simulated spatial context information improves the effectiveness of contrastive learning models 纳入模拟空间背景信息可提高对比学习模型的有效性
IF 6.5 Q2 Decision Sciences Pub Date : 2024-01-26 DOI: 10.1016/j.patter.2024.100964
Lizhen Zhu, James Z. Wang, Wonseuk Lee, Brad Wyble
{"title":"Incorporating simulated spatial context information improves the effectiveness of contrastive learning models","authors":"Lizhen Zhu, James Z. Wang, Wonseuk Lee, Brad Wyble","doi":"10.1016/j.patter.2024.100964","DOIUrl":"https://doi.org/10.1016/j.patter.2024.100964","url":null,"abstract":"","PeriodicalId":36242,"journal":{"name":"Patterns","volume":null,"pages":null},"PeriodicalIF":6.5,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140493973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
UFPS: A unified framework for partially annotated federated segmentation in heterogeneous data distribution UFPS:异构数据分布中部分注释联合分割的统一框架
IF 6.5 Q2 Decision Sciences Pub Date : 2024-01-25 DOI: 10.1016/j.patter.2024.100917
Le Jiang, Li Yan Ma, Tie Yong Zeng, Shi Hui Ying

Partially supervised segmentation is a label-saving method based on datasets with fractional classes labeled and intersectant. Its practical application in real-world medical scenarios is, however, hindered by privacy concerns and data heterogeneity. To address these issues without compromising privacy, federated partially supervised segmentation (FPSS) is formulated in this work. The primary challenges for FPSS are class heterogeneity and client drift. We propose a unified federated partially labeled segmentation (UFPS) framework to segment pixels within all classes for partially annotated datasets by training a comprehensive global model that avoids class collision. Our framework includes unified label learning (ULL) and sparse unified sharpness aware minimization (sUSAM) for class and feature space unification, respectively. Through empirical studies, we find that traditional methods in partially supervised segmentation and federated learning often struggle with class collision when combined. Our extensive experiments on real medical datasets demonstrate better deconflicting and generalization capabilities of UFPS.

部分监督分割是一种节省标签的方法,它基于已标记和交叉的分数类数据集。然而,这种方法在现实世界医疗场景中的实际应用却受到隐私问题和数据异质性的阻碍。为了在不损害隐私的情况下解决这些问题,本研究提出了联合部分监督分割(FPSS)。FPSS 面临的主要挑战是类异构和客户端漂移。我们提出了一个统一的联合部分标注分割(UFPS)框架,通过训练一个全面的全局模型,避免类碰撞,从而对部分标注数据集的所有类内的像素进行分割。我们的框架包括统一标签学习(ULL)和稀疏统一锐度感知最小化(sUSAM),分别用于类和特征空间的统一。通过实证研究,我们发现传统的部分监督分割方法和联合学习方法在结合使用时往往难以避免类碰撞。我们在真实医疗数据集上进行的大量实验证明,UFPS 具有更好的解冲突和泛化能力。
{"title":"UFPS: A unified framework for partially annotated federated segmentation in heterogeneous data distribution","authors":"Le Jiang, Li Yan Ma, Tie Yong Zeng, Shi Hui Ying","doi":"10.1016/j.patter.2024.100917","DOIUrl":"https://doi.org/10.1016/j.patter.2024.100917","url":null,"abstract":"<p>Partially supervised segmentation is a label-saving method based on datasets with fractional classes labeled and intersectant. Its practical application in real-world medical scenarios is, however, hindered by privacy concerns and data heterogeneity. To address these issues without compromising privacy, federated partially supervised segmentation (FPSS) is formulated in this work. The primary challenges for FPSS are class heterogeneity and client drift. We propose a unified federated partially labeled segmentation (UFPS) framework to segment pixels within all classes for partially annotated datasets by training a comprehensive global model that avoids class collision. Our framework includes unified label learning (ULL) and sparse unified sharpness aware minimization (sUSAM) for class and feature space unification, respectively. Through empirical studies, we find that traditional methods in partially supervised segmentation and federated learning often struggle with class collision when combined. Our extensive experiments on real medical datasets demonstrate better deconflicting and generalization capabilities of UFPS.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":null,"pages":null},"PeriodicalIF":6.5,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139555865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Learning across diverse biomedical data modalities and cohorts: Challenges and opportunities for innovation 跨多种生物医学数据模式和队列学习:创新的挑战和机遇
IF 6.5 Q2 Decision Sciences Pub Date : 2024-01-17 DOI: 10.1016/j.patter.2023.100913
Suraj Rajendran, Weishen Pan, Mert R. Sabuncu, Yong Chen, Jiayu Zhou, Fei Wang

In healthcare, machine learning (ML) shows significant potential to augment patient care, improve population health, and streamline healthcare workflows. Realizing its full potential is, however, often hampered by concerns about data privacy, diversity in data sources, and suboptimal utilization of different data modalities. This review studies the utility of cross-cohort cross-category (C4) integration in such contexts: the process of combining information from diverse datasets distributed across distinct, secure sites. We argue that C4 approaches could pave the way for ML models that are both holistic and widely applicable. This paper provides a comprehensive overview of C4 in health care, including its present stage, potential opportunities, and associated challenges.

在医疗保健领域,机器学习(ML)在增强患者护理、改善人口健康和简化医疗保健工作流程方面显示出巨大的潜力。然而,由于担心数据隐私、数据来源的多样性以及不同数据模式的次优利用,机器学习潜力的充分发挥往往受到阻碍。本综述研究了在这种情况下跨队列跨类别(C4)整合的效用:将分布在不同安全地点的不同数据集的信息结合起来的过程。我们认为,C4 方法可以为建立既全面又广泛适用的 ML 模型铺平道路。本文全面概述了 C4 在医疗保健领域的应用,包括其目前所处的阶段、潜在的机遇以及相关的挑战。
{"title":"Learning across diverse biomedical data modalities and cohorts: Challenges and opportunities for innovation","authors":"Suraj Rajendran, Weishen Pan, Mert R. Sabuncu, Yong Chen, Jiayu Zhou, Fei Wang","doi":"10.1016/j.patter.2023.100913","DOIUrl":"https://doi.org/10.1016/j.patter.2023.100913","url":null,"abstract":"<p>In healthcare, machine learning (ML) shows significant potential to augment patient care, improve population health, and streamline healthcare workflows. Realizing its full potential is, however, often hampered by concerns about data privacy, diversity in data sources, and suboptimal utilization of different data modalities. This review studies the utility of cross-cohort cross-category (C<sup>4</sup>) integration in such contexts: the process of combining information from diverse datasets distributed across distinct, secure sites. We argue that C<sup>4</sup> approaches could pave the way for ML models that are both holistic and widely applicable. This paper provides a comprehensive overview of C<sup>4</sup> in health care, including its present stage, potential opportunities, and associated challenges.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":null,"pages":null},"PeriodicalIF":6.5,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139498387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spaco: A comprehensive tool for coloring spatial data at single-cell resolution Spaco:单细胞分辨率空间数据着色综合工具
IF 6.5 Q2 Decision Sciences Pub Date : 2024-01-16 DOI: 10.1016/j.patter.2023.100915
Zehua Jing, Qianhua Zhu, Linxuan Li, Yue Xie, Xinchao Wu, Qi Fang, Bolin Yang, Baojun Dai, Xun Xu, Hailin Pan, Yinqi Bai

Understanding tissue architecture and niche-specific microenvironments in spatially resolved transcriptomics (SRT) requires in situ annotation and labeling of cells. Effective spatial visualization of these data demands appropriate colorization of numerous cell types. However, current colorization frameworks often inadequately account for the spatial relationships between cell types. This results in perceptual ambiguity in neighboring cells of biological distinct types, particularly in complex environments such as brain or tumor. To address this, we introduce Spaco, a potent tool for spatially aware colorization. Spaco utilizes the Degree of Interlacement metric to construct a weighted graph that evaluates the spatial relationships among different cell types, refining color assignments. Furthermore, Spaco incorporates an adaptive palette selection approach to amplify chromatic distinctions. When benchmarked on four diverse datasets, Spaco outperforms existing solutions, capturing complex spatial relationships and boosting visual clarity. Spaco ensures broad accessibility by accommodating color vision deficiency and offering open-accessible code in both Python and R.

要了解空间分辨转录组学(SRT)中的组织结构和特异性微环境,需要对细胞进行原位标注和标记。这些数据的有效空间可视化要求对众多细胞类型进行适当着色。然而,目前的着色框架往往不能充分考虑细胞类型之间的空间关系。这导致生物不同类型细胞相邻时的感知模糊,尤其是在大脑或肿瘤等复杂环境中。为了解决这个问题,我们引入了 Spaco,这是一种有效的空间感知着色工具。Spaco 利用 "置换度"(Degree of Interlacement)指标构建加权图,评估不同细胞类型之间的空间关系,从而完善颜色分配。此外,Spaco 还采用了一种自适应调色板选择方法,以扩大色差。在四个不同的数据集上进行基准测试时,Spaco 的表现优于现有的解决方案,既捕捉了复杂的空间关系,又提高了视觉清晰度。Spaco 可适应色觉缺陷,并提供 Python 和 R 语言的开放式代码,从而确保了广泛的可访问性。
{"title":"Spaco: A comprehensive tool for coloring spatial data at single-cell resolution","authors":"Zehua Jing, Qianhua Zhu, Linxuan Li, Yue Xie, Xinchao Wu, Qi Fang, Bolin Yang, Baojun Dai, Xun Xu, Hailin Pan, Yinqi Bai","doi":"10.1016/j.patter.2023.100915","DOIUrl":"https://doi.org/10.1016/j.patter.2023.100915","url":null,"abstract":"<p>Understanding tissue architecture and niche-specific microenvironments in spatially resolved transcriptomics (SRT) requires <em>in situ</em> annotation and labeling of cells. Effective spatial visualization of these data demands appropriate colorization of numerous cell types. However, current colorization frameworks often inadequately account for the spatial relationships between cell types. This results in perceptual ambiguity in neighboring cells of biological distinct types, particularly in complex environments such as brain or tumor. To address this, we introduce Spaco, a potent tool for spatially aware colorization. Spaco utilizes the Degree of Interlacement metric to construct a weighted graph that evaluates the spatial relationships among different cell types, refining color assignments. Furthermore, Spaco incorporates an adaptive palette selection approach to amplify chromatic distinctions. When benchmarked on four diverse datasets, Spaco outperforms existing solutions, capturing complex spatial relationships and boosting visual clarity. Spaco ensures broad accessibility by accommodating color vision deficiency and offering open-accessible code in both Python and R.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":null,"pages":null},"PeriodicalIF":6.5,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139476274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Patterns
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1