In this opinion, Upol Ehsan and Mark Riedl argue why a singular monolithic definition of explainable AI (XAI) is neither feasible nor desirable at this stage of XAI's development.
Combining classification systems potentially improves predictive accuracy, but outcomes have proven impossible to predict. Similar to improving binary classification with fusion, fusing ranking systems most commonly increases Pearson or Spearman correlations with a target when the input classifiers are “sufficiently good” (generalized as “accuracy”) and “sufficiently different” (generalized as “diversity”), but the individual and joint quantitative influence of these factors on the final outcome remains unknown. We resolve these issues. Building on our previous empirical work establishing the DIRAC (DIversity of Ranks and ACcuracy) framework, which accurately predicts the outcome of fusing binary classifiers, we demonstrate that the DIRAC framework similarly explains the outcome of fusing ranking systems. Specifically, precise geometric representation of diversity and accuracy as angle-based distances within rank-based combinatorial structures (permutahedra) fully captures their synergistic roles in rank approximation, uncouples them from the specific metrics of a given problem, and represents them as generally as possible.
In this study, we introduce TESA (weighted two-stage alignment), an innovative motif prediction tool that refines the identification of DNA-binding protein motifs, essential for deciphering transcriptional regulatory mechanisms. Unlike traditional algorithms that rely solely on sequence data, TESA integrates the high-resolution chromatin immunoprecipitation (ChIP) signal, specifically from ChIP-exonuclease (ChIP-exo), by assigning weights to sequence positions, thereby enhancing motif discovery. TESA employs a nuanced approach combining a binomial distribution model with a graph model, further supported by a “bookend” model, to improve the accuracy of predicting motifs of varying lengths. Our evaluation, utilizing an extensive compilation of 90 prokaryotic ChIP-exo datasets from proChIPdb and 167 H. sapiens datasets, compared TESA’s performance against seven established tools. The results indicate TESA’s improved precision in motif identification, suggesting its valuable contribution to the field of genomic research.
Data-driven machine learning, as a promising approach, possesses the capability to build high-quality, exact, and robust models from ophthalmic medical data. Ophthalmic medical data, however, presently exist across disparate data silos with privacy limitations, making centralized training challenging. While ophthalmologists may not specialize in machine learning and artificial intelligence (AI), considerable impediments arise in the associated realm of research. To address these issues, we design and develop FedEYE, a scalable and flexible end-to-end ophthalmic federated learning platform. During FedEYE design, we adhere to four fundamental design principles, ensuring that ophthalmologists can effortlessly create independent and federated AI research tasks. Benefiting from the design principles and architecture of FedEYE, it encloses numerous key features, including rich and customizable capabilities, separation of concerns, scalability, and flexible deployment. We also validated the applicability of FedEYE by employing several prevalent neural networks on ophthalmic disease image classification tasks.