Pub Date : 2023-09-01DOI: 10.23919/CJEE.2023.000035
With the increasing concern about climate change, environmental pollution, and sustainable development, the energy system is evolving towards a low-carbon form powered by a large share of renewable energy. Renewable generation from wind and solar is intermittent and volatile, posing great challenges to the secure and economical operation of power systems which requires simultaneous balance between power demand and supply. In this regard, various energy storage, including battery, pumped storage, compressed-air storage, flywheel, supper-capacitor, etc., are recognized as indispensable technologies to deal with the intermittency from renewables and facilitate the low-carbon transition of power systems. Energy storage can be implemented in different parts of the power supply chain from generation-side to grid-side and demand-side, and can benefit the power system operation in multiple time scales from seasonal energy balance to near-real-time stability control.
{"title":"Editorial for the Special Issue on Emerging Technology and Advanced Application of Energy Storage in Low-Carbon Power Systems","authors":"","doi":"10.23919/CJEE.2023.000035","DOIUrl":"https://doi.org/10.23919/CJEE.2023.000035","url":null,"abstract":"With the increasing concern about climate change, environmental pollution, and sustainable development, the energy system is evolving towards a low-carbon form powered by a large share of renewable energy. Renewable generation from wind and solar is intermittent and volatile, posing great challenges to the secure and economical operation of power systems which requires simultaneous balance between power demand and supply. In this regard, various energy storage, including battery, pumped storage, compressed-air storage, flywheel, supper-capacitor, etc., are recognized as indispensable technologies to deal with the intermittency from renewables and facilitate the low-carbon transition of power systems. Energy storage can be implemented in different parts of the power supply chain from generation-side to grid-side and demand-side, and can benefit the power system operation in multiple time scales from seasonal energy balance to near-real-time stability control.","PeriodicalId":36428,"journal":{"name":"Chinese Journal of Electrical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/7873788/10272329/10272330.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49939875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.23919/CJEE.2023.000033
Bo Li;Chunjie Qin;Ruotao Yu;Wei Dai;Mengjun Shen;Ziming Ma;Jianxiao Wang
Long-term storage (LTS) can provide various services to address seasonal fluctuations in variable renewable energy by reducing energy curtailment. However, long-term unit commitment (UC) with LTS involves mixed-integer programming with large-scale coupling constraints between consecutive intervals (state-of-charge (SOC) constraint of LTS, ramping rate, and minimum up/down time constraints of thermal units), resulting in a significant computational burden. Herein, an iterative-based fast solution method is proposed to solve the long-term UC with LTS. First, the UC with coupling constraints is split into several sub problems that can be solved in parallel. Second, the solutions of the sub problems are adjusted to obtain a feasible solution that satisfies the coupling constraints. Third, a decoupling method for long-term time-series coupling constraints is proposed to determine the global optimization of the SOC of the LTS. The price-arbitrage model of the LTS determines the SOC boundary of the LTS for each sub problem. Finally, the sub problem with the SOC boundary of the LTS is iteratively solved independently. The proposed method was verified using a modified IEEE 24-bus system. The results showed that the computation time of the unit combination problem can be reduced by 97.8%, with a relative error of 3.62%.
{"title":"Fast Solution Method for the Large-Scale Unit Commitment Problem with Long-Term Storage","authors":"Bo Li;Chunjie Qin;Ruotao Yu;Wei Dai;Mengjun Shen;Ziming Ma;Jianxiao Wang","doi":"10.23919/CJEE.2023.000033","DOIUrl":"https://doi.org/10.23919/CJEE.2023.000033","url":null,"abstract":"Long-term storage (LTS) can provide various services to address seasonal fluctuations in variable renewable energy by reducing energy curtailment. However, long-term unit commitment (UC) with LTS involves mixed-integer programming with large-scale coupling constraints between consecutive intervals (state-of-charge (SOC) constraint of LTS, ramping rate, and minimum up/down time constraints of thermal units), resulting in a significant computational burden. Herein, an iterative-based fast solution method is proposed to solve the long-term UC with LTS. First, the UC with coupling constraints is split into several sub problems that can be solved in parallel. Second, the solutions of the sub problems are adjusted to obtain a feasible solution that satisfies the coupling constraints. Third, a decoupling method for long-term time-series coupling constraints is proposed to determine the global optimization of the SOC of the LTS. The price-arbitrage model of the LTS determines the SOC boundary of the LTS for each sub problem. Finally, the sub problem with the SOC boundary of the LTS is iteratively solved independently. The proposed method was verified using a modified IEEE 24-bus system. The results showed that the computation time of the unit combination problem can be reduced by 97.8%, with a relative error of 3.62%.","PeriodicalId":36428,"journal":{"name":"Chinese Journal of Electrical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/7873788/10272329/10272564.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49976318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A comparison of two modular linear permanent-magnet vernier (LPMV) machines is presented. A modular LPMV machine with a partitioned primary, which can significantly improve the modulation effect, is proposed. Benefitting from the partition design, the space conflict between the permanent magnet (PM) and the armature magnetic field is relieved. First, the topologies of modular LPMV machines with and without a partitioned primary are presented. Then, the effect of the partitioned primary on the modular LPMV machine is analyzed using flux modulation theory. Moreover, analytical expressions for the trapezoidal permeance are derived. In addition, the harmonic components, back electromotive forces, and thrust forces of the machines with and without the partitioned primary are comparatively analyzed. The results reveal that the thrust force density of the LPMV machine with a partitioned primary is increased by 32.3%. Finally, experiments are performed on a prototype machine for validation.
{"title":"Quantitative Comparison of Modular Linear Permanent Magnet Vernier Machines with and Without Partitioned Primary","authors":"Yunpeng Xu;Jinghua Ji;Zhijian Ling;Chen Wang;Wenxiang Zhao","doi":"10.23919/CJEE.2023.000024","DOIUrl":"https://doi.org/10.23919/CJEE.2023.000024","url":null,"abstract":"A comparison of two modular linear permanent-magnet vernier (LPMV) machines is presented. A modular LPMV machine with a partitioned primary, which can significantly improve the modulation effect, is proposed. Benefitting from the partition design, the space conflict between the permanent magnet (PM) and the armature magnetic field is relieved. First, the topologies of modular LPMV machines with and without a partitioned primary are presented. Then, the effect of the partitioned primary on the modular LPMV machine is analyzed using flux modulation theory. Moreover, analytical expressions for the trapezoidal permeance are derived. In addition, the harmonic components, back electromotive forces, and thrust forces of the machines with and without the partitioned primary are comparatively analyzed. The results reveal that the thrust force density of the LPMV machine with a partitioned primary is increased by 32.3%. Finally, experiments are performed on a prototype machine for validation.","PeriodicalId":36428,"journal":{"name":"Chinese Journal of Electrical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/7873788/10272329/10272568.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49939870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.23919/CJEE.2023.000030
Zijie He;Guidong Zhang;Zexiang Chen;Samson S. Yu
Modern eco-friendly industries such as renewable energy systems, electric vehicles (EVs), and light-emitting diodes (LEDs) have led to technological advancements in power electronics. Switching-based power converters have limited working ranges and can cause significant harmonics and oscillations in the output voltage and current. Introducing variable inductors can help solve this problem by changing the inductance without resorting to extreme switch duty cycles. Despite their advantages, there is still a lack of comprehensive reviews of variable inductor applications in power converter design. A thorough and in-depth review of variable inductance control in power conversion is presented, including its significance, working principle, core structure, modeling method, and typical applications. Traditionally, an inductor works in its linear magnetic region; its inductance in a power converter is considered constant, and the converter operates under fixed working conditions. However, a broad range of working conditions is required for power converters in practical applications. This is typically realized by changing the duty cycles of the switches. The working principle of variable inductance is reviewed, and the application of variable inductance control in power converters is presented, which will further help power electronics researchers and engineers design flexible and resilient power converters.
{"title":"A Review of Variable-Inductor-Based Power Converters for Eco-Friendly Applications: Fundamentals, Configurations, and Applications","authors":"Zijie He;Guidong Zhang;Zexiang Chen;Samson S. Yu","doi":"10.23919/CJEE.2023.000030","DOIUrl":"https://doi.org/10.23919/CJEE.2023.000030","url":null,"abstract":"Modern eco-friendly industries such as renewable energy systems, electric vehicles (EVs), and light-emitting diodes (LEDs) have led to technological advancements in power electronics. Switching-based power converters have limited working ranges and can cause significant harmonics and oscillations in the output voltage and current. Introducing variable inductors can help solve this problem by changing the inductance without resorting to extreme switch duty cycles. Despite their advantages, there is still a lack of comprehensive reviews of variable inductor applications in power converter design. A thorough and in-depth review of variable inductance control in power conversion is presented, including its significance, working principle, core structure, modeling method, and typical applications. Traditionally, an inductor works in its linear magnetic region; its inductance in a power converter is considered constant, and the converter operates under fixed working conditions. However, a broad range of working conditions is required for power converters in practical applications. This is typically realized by changing the duty cycles of the switches. The working principle of variable inductance is reviewed, and the application of variable inductance control in power converters is presented, which will further help power electronics researchers and engineers design flexible and resilient power converters.","PeriodicalId":36428,"journal":{"name":"Chinese Journal of Electrical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/7873788/10272329/10272566.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49939871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.23919/CJEE.2023.000026
Krunal Shah;Abid Mansuri;Rakesh Maurya
In this study, a six-phase induction asymmetric induction motor (SPAIM) was examined, whose performance surpasses that of its three-phase counterpart, with regard to the torque density, torque pulsation, fault tolerance, power rating per inverter lag, and noise characteristics. Speed-encoder-less direct torque control (DTC) for SPAIM with virtual voltage vectors (VVVs) and a modified sliding mode observer (MSMO) are described. The SPAIM model was developed using a stationary $alpha-beta$