首页 > 最新文献

IEEE Transactions on Molecular, Biological, and Multi-Scale Communications最新文献

英文 中文
From Molecular Robotics to Molecular Cybernetics: The First Step Toward Chemical Artificial Intelligence 从分子机器人到分子控制论:迈向化学人工智能的第一步
IF 2.2 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-08-10 DOI: 10.1109/TMBMC.2023.3304243
Akinori Kuzuya;Shin-Ichiro M. Nomura;Taro Toyota;Takashi Nakakuki;Satoshi Murata
“Molecular Cybernetics” is an emerging research field aiming the development of “Chemical AI”, artificial intelligence with memory and learning capabilities based on molecular communication. It is originated from “Molecular Robotics,” which studies molecular systems that comprise of the three basic elements of robots; Sensing, Planning, and Acting. Development of an Amoeba-type molecular robot (unicellular artificial cell,) motivated the construction of multicellular artificial cell systems mimicking nerve systems. The major challenges in molecular cybernetics are molecular communication over two lipid-bilayer compartments, amplification of molecular information in a compartment, and large deformation of the compartment triggered by molecular signal, etc. Recently reported molecular devices and systems that contributes to the realization of Chemical AI are overviewed.
“分子控制论”是一个新兴的研究领域,旨在发展“化学人工智能”,即基于分子通信的具有记忆和学习能力的人工智能。它起源于“分子机器人学”,研究由机器人的三个基本元素组成的分子系统;感知、规划和行动。阿米巴型分子机器人(单细胞人工细胞)的开发推动了模仿神经系统的多细胞人工细胞系统的构建。分子控制论的主要挑战是两个脂质双层隔室的分子通信、隔室中分子信息的放大以及分子信号触发的隔室的大变形等。综述了最近报道的有助于实现化学人工智能的分子设备和系统。
{"title":"From Molecular Robotics to Molecular Cybernetics: The First Step Toward Chemical Artificial Intelligence","authors":"Akinori Kuzuya;Shin-Ichiro M. Nomura;Taro Toyota;Takashi Nakakuki;Satoshi Murata","doi":"10.1109/TMBMC.2023.3304243","DOIUrl":"https://doi.org/10.1109/TMBMC.2023.3304243","url":null,"abstract":"“Molecular Cybernetics” is an emerging research field aiming the development of “Chemical AI”, artificial intelligence with memory and learning capabilities based on molecular communication. It is originated from “Molecular Robotics,” which studies molecular systems that comprise of the three basic elements of robots; Sensing, Planning, and Acting. Development of an Amoeba-type molecular robot (unicellular artificial cell,) motivated the construction of multicellular artificial cell systems mimicking nerve systems. The major challenges in molecular cybernetics are molecular communication over two lipid-bilayer compartments, amplification of molecular information in a compartment, and large deformation of the compartment triggered by molecular signal, etc. Recently reported molecular devices and systems that contributes to the realization of Chemical AI are overviewed.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"9 3","pages":"354-363"},"PeriodicalIF":2.2,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/6687308/10255331/10214301.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67982995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distance Estimation From a Diffusive Process: Theoretical Limits and Experimental Results 扩散过程的距离估计:理论极限和实验结果
IF 2.2 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-08-08 DOI: 10.1109/TMBMC.2023.3303363
Fabio Broghammer;Siwei Zhang;Thomas Wiedemann;Peter A. Hoeher
Estimating the distance between the source of a diffusive process and a receiver has a variety of applications, ranging from gas source localization at the macro-scale to molecular communication at the micro-scale. Distance information can be extracted from features of the observed particle concentration, e.g., its peak. This paper derives the Cramér-Rao lower bound (CRB) for distance estimation given the advection-diffusion model for absorbing receivers, which is the fundamental limit of any distance estimator. Furthermore, CRBs are obtained for estimators using only information about the observed peak. A maximum-likelihood estimator using the entire signal and two estimators based on peak detection are deduced. The derived CRBs are used to study the effect of channel parameters on the estimation performance. Finally, the performance of the proposed estimators is verified by comparing the root mean squared errors with their theoretical bounds in a simulation, and preliminary experimental results are presented.
估算扩散过程的源和接收器之间的距离有多种应用,从宏观尺度的气源定位到微观尺度的分子通信。距离信息可以从观察到的颗粒浓度的特征中提取,例如其峰值。本文在吸收式接收器的平流-扩散模型下,导出了距离估计的Cramér-Rao下界(CRB),这是任何距离估计的基本极限。此外,仅使用关于观测到的峰值的信息来获得用于估计器的CRB。推导了一个使用整个信号的最大似然估计器和两个基于峰值检测的估计器。导出的CRB用于研究信道参数对估计性能的影响。最后,通过将均方根误差与理论界进行仿真比较,验证了所提出的估计量的性能,并给出了初步的实验结果。
{"title":"Distance Estimation From a Diffusive Process: Theoretical Limits and Experimental Results","authors":"Fabio Broghammer;Siwei Zhang;Thomas Wiedemann;Peter A. Hoeher","doi":"10.1109/TMBMC.2023.3303363","DOIUrl":"https://doi.org/10.1109/TMBMC.2023.3303363","url":null,"abstract":"Estimating the distance between the source of a diffusive process and a receiver has a variety of applications, ranging from gas source localization at the macro-scale to molecular communication at the micro-scale. Distance information can be extracted from features of the observed particle concentration, e.g., its peak. This paper derives the Cramér-Rao lower bound (CRB) for distance estimation given the advection-diffusion model for absorbing receivers, which is the fundamental limit of any distance estimator. Furthermore, CRBs are obtained for estimators using only information about the observed peak. A maximum-likelihood estimator using the entire signal and two estimators based on peak detection are deduced. The derived CRBs are used to study the effect of channel parameters on the estimation performance. Finally, the performance of the proposed estimators is verified by comparing the root mean squared errors with their theoretical bounds in a simulation, and preliminary experimental results are presented.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"9 3","pages":"312-317"},"PeriodicalIF":2.2,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/6687308/10255331/10210712.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67982986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rectangular Concentration-Based Nanomachine Localization in Molecular Communication Networks With Unknown Emission Time 发射时间未知的分子通信网络中基于矩形浓度的纳米机器定位
IF 2.2 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-08-08 DOI: 10.1109/TMBMC.2023.3302798
Ajit Kumar;Akarsh Yadav;Sudhir Kumar
Localization of nanomachines is essential for optimal functionality, including optimizing transmission rates and detecting irregular cells. The sampling concentration received by the nanomachines can be used for this purpose. The localization based on received sampling concentration requires the emission time of molecules to improve the accuracy and establish synchronization among the nanomachine. In this paper, we derive the maximum likelihood estimation for localizing nanomachine in two scenarios, that is, known and unknown emission times. In contrast to the existing model, the proposed model considers a generic input (rectangular) concentration that can accommodate both non-zero emission duration and instantaneous emission, making it more practical for many applications. The model also considers multiple symbols and challenges like inter-symbol interference. Even with the rectangular input concentration, the proposed model achieves comparable individual localization performance to the impulse concentration. Additionally, the proposed model allows for joint estimation of location and emission time using correlated observations, making it a practical and generic solution for applications.
纳米机械的定位对实现最佳功能至关重要,包括优化传输速率和检测不规则细胞。纳米机械接收到的采样浓度可用于此目的。根据接收到的采样浓度进行定位需要分子的发射时间,以提高精度并建立纳米机器之间的同步。本文推导了在已知和未知发射时间两种情况下对纳米机械进行定位的最大似然估计。与现有模型相比,本文提出的模型考虑了通用输入(矩形)浓度,可同时容纳非零发射持续时间和瞬时发射,因此在许多应用中更加实用。该模型还考虑了多符号和符号间干扰等挑战。即使采用矩形输入浓度,所提出的模型也能实现与脉冲浓度相当的单个定位性能。此外,所提出的模型允许使用相关观测数据对位置和发射时间进行联合估计,使其成为一种实用的通用应用解决方案。
{"title":"Rectangular Concentration-Based Nanomachine Localization in Molecular Communication Networks With Unknown Emission Time","authors":"Ajit Kumar;Akarsh Yadav;Sudhir Kumar","doi":"10.1109/TMBMC.2023.3302798","DOIUrl":"10.1109/TMBMC.2023.3302798","url":null,"abstract":"Localization of nanomachines is essential for optimal functionality, including optimizing transmission rates and detecting irregular cells. The sampling concentration received by the nanomachines can be used for this purpose. The localization based on received sampling concentration requires the emission time of molecules to improve the accuracy and establish synchronization among the nanomachine. In this paper, we derive the maximum likelihood estimation for localizing nanomachine in two scenarios, that is, known and unknown emission times. In contrast to the existing model, the proposed model considers a generic input (rectangular) concentration that can accommodate both non-zero emission duration and instantaneous emission, making it more practical for many applications. The model also considers multiple symbols and challenges like inter-symbol interference. Even with the rectangular input concentration, the proposed model achieves comparable individual localization performance to the impulse concentration. Additionally, the proposed model allows for joint estimation of location and emission time using correlated observations, making it a practical and generic solution for applications.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"9 4","pages":"472-477"},"PeriodicalIF":2.2,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79160542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Influence of Plasmodesmata Number and Opening State on Molecular Transports in Plants 质粒数量和开放状态对植物分子转运的影响
IF 2.2 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-08-04 DOI: 10.1109/TMBMC.2023.3301038
Beatrice Ruzzante;Alessandro Piscopo;Svyatoslav Salo;Maurizio Magarini;Gabriele Candiani
Molecular Communication (MC) studies the transport of information encoded in signaling molecules. To date, its application field is mainly restrained to health-related uses. However, MC in plants has been gaining increasing interest. The primary transport route in plant cell-to-cell communication are Plasmodesmata (PDs), pore-like structures dotting the plant cell wall. PDs opening state is influenced by several environmental damaging factors (i.e., plant viruses), and plant cells try to restore homeostasis through defense mechanisms. In this letter, we seek to depict the complexity of plant-based communication, and we propose a simple model that proves the influence of the PDs number and opening state in the transport of information in plants.
分子通讯(MC)研究信号分子中编码的信息的传输。迄今为止,其应用领域主要局限于与健康相关的用途。然而,植物中的MC越来越受到人们的关注。植物细胞间通讯的主要运输途径是质体,即散布在植物细胞壁上的孔状结构。PD的开放状态受到几种环境破坏因素(即植物病毒)的影响,植物细胞试图通过防御机制恢复体内平衡。在这封信中,我们试图描述基于植物的通信的复杂性,并提出了一个简单的模型,证明了PDs数量和开放状态对植物信息传输的影响。
{"title":"The Influence of Plasmodesmata Number and Opening State on Molecular Transports in Plants","authors":"Beatrice Ruzzante;Alessandro Piscopo;Svyatoslav Salo;Maurizio Magarini;Gabriele Candiani","doi":"10.1109/TMBMC.2023.3301038","DOIUrl":"https://doi.org/10.1109/TMBMC.2023.3301038","url":null,"abstract":"Molecular Communication (MC) studies the transport of information encoded in signaling molecules. To date, its application field is mainly restrained to health-related uses. However, MC in plants has been gaining increasing interest. The primary transport route in plant cell-to-cell communication are Plasmodesmata (PDs), pore-like structures dotting the plant cell wall. PDs opening state is influenced by several environmental damaging factors (i.e., plant viruses), and plant cells try to restore homeostasis through defense mechanisms. In this letter, we seek to depict the complexity of plant-based communication, and we propose a simple model that proves the influence of the PDs number and opening state in the transport of information in plants.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"9 3","pages":"329-333"},"PeriodicalIF":2.2,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/6687308/10255331/10208114.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67982990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-Speed Molecular Communication in Vacuum 真空中的高速分子通信
IF 2.2 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-08-01 DOI: 10.1109/TMBMC.2023.3298429
Taha Sajjad;Andrew W. Eckford
Existing molecular communication systems, both theoretical and experimental, are characterized by low information rates. In this paper, inspired by time-of-flight mass spectrometry (TOFMS), we consider the design of a molecular communication system in which the channel is a vacuum and demonstrate that this method has the potential to increase achievable information rates by many orders of magnitude. We use modelling results from TOFMS to obtain arrival time distributions for accelerated ions and use them to analyze several species of ions, including hydrogen, nitrogen, argon, and benzene. We show that the achievable information rates can be increased using a velocity (Wien) filter, which reduces uncertainty in the velocity of the ions. Using a simplified communication model, we show that data rates well above 1 Gbit/s/molecule are achievable.
现有的分子通信系统,无论是理论上的还是实验上的,都具有信息速率低的特点。在本文中,我们受飞行时间质谱(TOFMS)的启发,考虑设计一种信道为真空的分子通讯系统,并证明这种方法有可能将可实现的信息速率提高多个数量级。我们利用 TOFMS 的建模结果获得了加速离子的到达时间分布,并利用它们分析了包括氢、氮、氩和苯在内的几种离子。我们表明,使用速度(维恩)滤波器可以提高可实现的信息速率,从而降低离子速度的不确定性。利用简化的通信模型,我们证明可以实现远高于 1 Gbit/s/分子的数据传输率。
{"title":"High-Speed Molecular Communication in Vacuum","authors":"Taha Sajjad;Andrew W. Eckford","doi":"10.1109/TMBMC.2023.3298429","DOIUrl":"10.1109/TMBMC.2023.3298429","url":null,"abstract":"Existing molecular communication systems, both theoretical and experimental, are characterized by low information rates. In this paper, inspired by time-of-flight mass spectrometry (TOFMS), we consider the design of a molecular communication system in which the channel is a vacuum and demonstrate that this method has the potential to increase achievable information rates by many orders of magnitude. We use modelling results from TOFMS to obtain arrival time distributions for accelerated ions and use them to analyze several species of ions, including hydrogen, nitrogen, argon, and benzene. We show that the achievable information rates can be increased using a velocity (Wien) filter, which reduces uncertainty in the velocity of the ions. Using a simplified communication model, we show that data rates well above 1 Gbit/s/molecule are achievable.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"9 4","pages":"382-390"},"PeriodicalIF":2.2,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135784881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Explainability of Neural Networks for Symbol Detection in Molecular Communication Channels 分子通信信道中符号检测的神经网络可解释性
IF 2.2 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-07-20 DOI: 10.1109/TMBMC.2023.3297135
Jorge Torres Gómez;Pit Hofmann;Frank H. P. Fitzek;Falko Dressler
Recent molecular communication (MC) research suggests machine learning (ML) models for symbol detection, avoiding the unfeasibility of end-to-end channel models. However, ML models are applied as black boxes, lacking proof of correctness of the underlying neural networks (NNs) to detect incoming symbols. This paper studies approaches to the explainability of NNs for symbol detection in MC channels. Based on MC channel models and real testbed measurements, we generate synthesized data and train a NN model to detect of binary transmissions in MC channels. Using the local interpretable model-agnostic explanation (LIME) method and the individual conditional expectation (ICE), the findings in this paper demonstrate the analogy between the trained NN and the standard peak and slope detectors.
最近的分子通信(MC)研究提出了用于符号检测的机器学习(ML)模型,避免了端到端信道模型的不可行性。然而,ML模型被应用为黑匣子,缺乏底层神经网络(NN)检测传入符号的正确性证明。本文研究了用于MC信道中符号检测的神经网络的可解释性方法。基于MC信道模型和实际测试台测量,我们生成合成数据并训练NN模型来检测MC信道中的二进制传输。使用局部可解释模型不可知解释(LIME)方法和个体条件期望(ICE),本文的研究结果证明了训练的神经网络与标准峰值和斜率检测器之间的相似性。
{"title":"Explainability of Neural Networks for Symbol Detection in Molecular Communication Channels","authors":"Jorge Torres Gómez;Pit Hofmann;Frank H. P. Fitzek;Falko Dressler","doi":"10.1109/TMBMC.2023.3297135","DOIUrl":"https://doi.org/10.1109/TMBMC.2023.3297135","url":null,"abstract":"Recent molecular communication (MC) research suggests machine learning (ML) models for symbol detection, avoiding the unfeasibility of end-to-end channel models. However, ML models are applied as black boxes, lacking proof of correctness of the underlying neural networks (NNs) to detect incoming symbols. This paper studies approaches to the explainability of NNs for symbol detection in MC channels. Based on MC channel models and real testbed measurements, we generate synthesized data and train a NN model to detect of binary transmissions in MC channels. Using the local interpretable model-agnostic explanation (LIME) method and the individual conditional expectation (ICE), the findings in this paper demonstrate the analogy between the trained NN and the standard peak and slope detectors.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"9 3","pages":"323-328"},"PeriodicalIF":2.2,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67982989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Reducing Dispersion in Molecular Communications by Placing Decelerators in the Propagation Channel 通过在传播通道中放置减速器来减少分子通信中的色散
IF 2.2 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-07-19 DOI: 10.1109/TMBMC.2023.3296828
Angelika S. Thalmayer;Alisa Ladebeck;Samuel Zeising;Georg Fischer
In molecular communications, magnetic nanoparticles, which are injected into a pipe flow, are used as information carriers. Due to the parabolic shape of the velocity profile in laminar flow regimes, the speed of one particle depends on its radial position in the tube. This results in an unwanted extension of a particle pulse over the propagation time. Potential overlapping of subsequent pulses induces intersymbol interference. Only few research of the current state of the art reduces velocity dispersion directly within the propagation channel. To the best of the authors’ knowledge, this is the first paper that numerically investigates different passive obstacles which are placed directly in the channel for non-turbulent flow regimes to address the dispersion effects. These obstacles serve as decelerators, as they decelerate the fastest particles while at the same time accelerating slower particles. The results reveal that a passive decelerator can reduce the velocity dispersion in molecular communications and, thus, guarantee a more packetized pulse shortly behind the decelerator but also after some distance. Compared with different decelerators, an elliptical-shaped one showed the best results, as it inverts the velocity profile.
在分子通信中,注入管道流中的磁性纳米颗粒被用作信息载体。由于层流状态下速度分布的抛物线形状,一个粒子的速度取决于其在管中的径向位置。这导致粒子脉冲在传播时间上的不希望的扩展。后续脉冲的潜在重叠会引起符号间干扰。只有很少的现有技术的研究直接降低了传播通道内的速度色散。据作者所知,这是第一篇数值研究非湍流状态下直接放置在通道中的不同被动障碍物的论文,以解决分散效应。这些障碍物起到减速器的作用,因为它们使最快的粒子减速,同时使较慢的粒子加速。结果表明,被动减速器可以减少分子通信中的速度色散,从而保证在减速器后面不久,但也在一定距离后,脉冲更加打包。与不同的减速器相比,椭圆形减速器表现出最好的效果,因为它颠倒了速度剖面。
{"title":"Reducing Dispersion in Molecular Communications by Placing Decelerators in the Propagation Channel","authors":"Angelika S. Thalmayer;Alisa Ladebeck;Samuel Zeising;Georg Fischer","doi":"10.1109/TMBMC.2023.3296828","DOIUrl":"https://doi.org/10.1109/TMBMC.2023.3296828","url":null,"abstract":"In molecular communications, magnetic nanoparticles, which are injected into a pipe flow, are used as information carriers. Due to the parabolic shape of the velocity profile in laminar flow regimes, the speed of one particle depends on its radial position in the tube. This results in an unwanted extension of a particle pulse over the propagation time. Potential overlapping of subsequent pulses induces intersymbol interference. Only few research of the current state of the art reduces velocity dispersion directly within the propagation channel. To the best of the authors’ knowledge, this is the first paper that numerically investigates different passive obstacles which are placed directly in the channel for non-turbulent flow regimes to address the dispersion effects. These obstacles serve as decelerators, as they decelerate the fastest particles while at the same time accelerating slower particles. The results reveal that a passive decelerator can reduce the velocity dispersion in molecular communications and, thus, guarantee a more packetized pulse shortly behind the decelerator but also after some distance. Compared with different decelerators, an elliptical-shaped one showed the best results, as it inverts the velocity profile.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"9 3","pages":"334-339"},"PeriodicalIF":2.2,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67982991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
m-MSC: Molecular Communication-Based Analysis for Controlled MSC Treatment of Cytokine Storm m-MSC:基于分子通讯的细胞因子风暴MSC控制治疗分析
IF 2.2 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-07-18 DOI: 10.1109/TMBMC.2023.3296430
Saswati Pal;Sudip Misra;Nabiul Islam
COVID-19-induced cytokine storm, which is formed due to the excessive secretion of cytokine molecules, causes multi-organ damage and subsequently, the death of COVID-19 patients. Mesenchymal Stem Cells (MSCs) are regarded as cellular vaccines to combat the hyper-inflammatory response to cytokine storms. However, determining the required dose of MSCs to be infused within a certain time period is challenging due to the complex vascular networks and varying individual immune responses. In this work, we propose a molecular communication-based system to model the transmission, propagation, and immuno-modulatory response of MSCs to the cytokine storm. The proposed analytical model provides valuable insights into the behavior of the system and can be used as a framework for further experimental-based studies to estimate the required dose of MSCs. We analyze the varying shapes and geometries of the vascular channel on the propagation of the MSCs. We observe that the higher shear stress hinders MSC signal propagation, while lower shear stress induces propagation along the channel. Simulation results show that the MSC signal peaks in four simulation days upon administering the MSCs. Further, the results reveal that repeating the MSC infusion on alternate days is required to maintain a prolonged immuno-modulating effect on the cytokine storm.
COVID-19诱导的细胞因子风暴是由于细胞因子分子的过度分泌而形成的,会导致多器官损伤,随后导致COVID-19]患者死亡。间充质干细胞(MSCs)被认为是对抗细胞因子风暴的超炎症反应的细胞疫苗。然而,由于复杂的血管网络和不同的个体免疫反应,确定在一定时间内输注MSC的所需剂量是具有挑战性的。在这项工作中,我们提出了一个基于分子通讯的系统来模拟MSC对细胞因子风暴的传播、繁殖和免疫调节反应。所提出的分析模型为系统的行为提供了有价值的见解,并可作为进一步基于实验的研究的框架,以估计MSC的所需剂量。我们分析了MSCs传播过程中血管通道的不同形状和几何形状。我们观察到,较高的剪切应力阻碍了MSC信号的传播,而较低的剪应力诱导了沿着通道的传播。模拟结果显示MSC信号在施用MSC后的四个模拟日内达到峰值。此外,结果表明,需要每隔几天重复MSC输注,以维持对细胞因子风暴的长期免疫调节作用。
{"title":"m-MSC: Molecular Communication-Based Analysis for Controlled MSC Treatment of Cytokine Storm","authors":"Saswati Pal;Sudip Misra;Nabiul Islam","doi":"10.1109/TMBMC.2023.3296430","DOIUrl":"https://doi.org/10.1109/TMBMC.2023.3296430","url":null,"abstract":"COVID-19-induced cytokine storm, which is formed due to the excessive secretion of cytokine molecules, causes multi-organ damage and subsequently, the death of COVID-19 patients. Mesenchymal Stem Cells (MSCs) are regarded as cellular vaccines to combat the hyper-inflammatory response to cytokine storms. However, determining the required dose of MSCs to be infused within a certain time period is challenging due to the complex vascular networks and varying individual immune responses. In this work, we propose a molecular communication-based system to model the transmission, propagation, and immuno-modulatory response of MSCs to the cytokine storm. The proposed analytical model provides valuable insights into the behavior of the system and can be used as a framework for further experimental-based studies to estimate the required dose of MSCs. We analyze the varying shapes and geometries of the vascular channel on the propagation of the MSCs. We observe that the higher shear stress hinders MSC signal propagation, while lower shear stress induces propagation along the channel. Simulation results show that the MSC signal peaks in four simulation days upon administering the MSCs. Further, the results reveal that repeating the MSC infusion on alternate days is required to maintain a prolonged immuno-modulating effect on the cytokine storm.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"9 3","pages":"286-294"},"PeriodicalIF":2.2,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67982984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Affinity-Division Multiplexing for Molecular Communications With Promiscuous Ligand Receptors 与混杂配体受体进行分子通讯的亲和分裂复用
IF 2.2 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-07-13 DOI: 10.1109/TMBMC.2023.3295338
Ahmet R. Emirdagi;M. Serkan Kopuzlu;M. Okan Araz;Murat Kuscu
A key challenge in Molecular Communications (MC) is low data transmission rates, which can be addressed by channel multiplexing techniques. One way to achieve channel multiplexing in MC is to leverage the diversity of different molecule types with respect to their receptor binding characteristics, such as affinity and kinetic binding/unbinding rates. In this study, we propose a practical multiplexing scheme for MC, which is based on the diversity of ligand-receptor binding affinities. This method requires only a single type of promiscuous receptor on the receiver side, capable of interacting with multiple ligand types. We analytically derive the mean Bit Error Probability (BEP) over all multiplexed MC channels as a function of similarity among ligands in terms of their receptor affinities, the number of receptors, the number of multiplexed channels, and the ratio of concentrations encoding bit-1 and bit-0. We investigate the impact of each design parameter on the performance of multiplexed MC system.
分子通信(MC)的一个关键挑战是低数据传输速率,这可以通过信道复用技术来解决。在MC中实现通道复用的一种方法是利用不同分子类型在受体结合特性方面的多样性,如亲和力和动力学结合/解结合率。在这项研究中,我们提出了一种实用的MC多路复用方案,该方案基于配体-受体结合亲和力的多样性。这种方法只需要受体侧的单一类型的混杂受体,能够与多种配体类型相互作用。我们分析推导了所有多路复用MC通道的平均误比特概率(BEP),作为配体之间相似性的函数,包括它们的受体亲和力、受体数量、多路复用通道数量以及编码比特-1和比特-0的浓度比。研究了各设计参数对多路复用MC系统性能的影响。
{"title":"Affinity-Division Multiplexing for Molecular Communications With Promiscuous Ligand Receptors","authors":"Ahmet R. Emirdagi;M. Serkan Kopuzlu;M. Okan Araz;Murat Kuscu","doi":"10.1109/TMBMC.2023.3295338","DOIUrl":"https://doi.org/10.1109/TMBMC.2023.3295338","url":null,"abstract":"A key challenge in Molecular Communications (MC) is low data transmission rates, which can be addressed by channel multiplexing techniques. One way to achieve channel multiplexing in MC is to leverage the diversity of different molecule types with respect to their receptor binding characteristics, such as affinity and kinetic binding/unbinding rates. In this study, we propose a practical multiplexing scheme for MC, which is based on the diversity of ligand-receptor binding affinities. This method requires only a single type of promiscuous receptor on the receiver side, capable of interacting with multiple ligand types. We analytically derive the mean Bit Error Probability (BEP) over all multiplexed MC channels as a function of similarity among ligands in terms of their receptor affinities, the number of receptors, the number of multiplexed channels, and the ratio of concentrations encoding bit-1 and bit-0. We investigate the impact of each design parameter on the performance of multiplexed MC system.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"9 3","pages":"318-322"},"PeriodicalIF":2.2,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67982988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Stochastic Biofilm Disruption Model Based on Quorum Sensing Mimickers 基于群体感应模拟的随机生物膜破坏模型
IF 2.2 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-07-05 DOI: 10.1109/TMBMC.2023.3292321
Fatih Gulec;Andrew W. Eckford
Quorum sensing (QS) mimickers can be used as an effective tool to disrupt biofilms which consist of communicating bacteria and extracellular polymeric substances (EPS). In this paper, a stochastic biofilm disruption model based on the usage of QS mimickers is proposed. A chemical reaction network (CRN) involving four different states is employed to model the biological processes during the biofilm formation and its disruption via QS mimickers. In addition, a state-based stochastic simulation algorithm is proposed to simulate this CRN. The proposed model is validated by the in vitro experimental results of Pseudomonas aeruginosa biofilm and its disruption by rosmarinic acid as the QS mimicker. Our results show that there is an uncertainty in state transitions due to the effect of the randomness in the CRN. In addition to the QS activation threshold, the presented work demonstrates that there are underlying two more thresholds for the disruption of EPS and bacteria, which provides a realistic modeling for biofilm disruption with QS mimickers.
群体感应(QS)模拟物可以作为一种有效的工具来破坏由通讯细菌和细胞外聚合物(EPS)组成的生物膜。本文提出了一种基于QS拟态器的随机生物膜破坏模型。采用涉及四种不同状态的化学反应网络(CRN),通过QS拟态器对生物膜形成及其破坏过程进行建模。此外,还提出了一种基于状态的随机模拟算法来模拟这种CRN。通过铜绿假单胞菌生物膜的体外实验结果以及迷迭香酸作为QS拟态物对其的破坏,验证了所提出的模型。我们的结果表明,由于CRN中随机性的影响,状态转换存在不确定性。除了QS激活阈值外,所提出的工作表明,EPS和细菌的破坏还有另外两个阈值,这为QS拟态物破坏生物膜提供了一个现实的模型。
{"title":"A Stochastic Biofilm Disruption Model Based on Quorum Sensing Mimickers","authors":"Fatih Gulec;Andrew W. Eckford","doi":"10.1109/TMBMC.2023.3292321","DOIUrl":"https://doi.org/10.1109/TMBMC.2023.3292321","url":null,"abstract":"Quorum sensing (QS) mimickers can be used as an effective tool to disrupt biofilms which consist of communicating bacteria and extracellular polymeric substances (EPS). In this paper, a stochastic biofilm disruption model based on the usage of QS mimickers is proposed. A chemical reaction network (CRN) involving four different states is employed to model the biological processes during the biofilm formation and its disruption via QS mimickers. In addition, a state-based stochastic simulation algorithm is proposed to simulate this CRN. The proposed model is validated by the in vitro experimental results of Pseudomonas aeruginosa biofilm and its disruption by rosmarinic acid as the QS mimicker. Our results show that there is an uncertainty in state transitions due to the effect of the randomness in the CRN. In addition to the QS activation threshold, the presented work demonstrates that there are underlying two more thresholds for the disruption of EPS and bacteria, which provides a realistic modeling for biofilm disruption with QS mimickers.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"9 3","pages":"346-350"},"PeriodicalIF":2.2,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67982994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
IEEE Transactions on Molecular, Biological, and Multi-Scale Communications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1