Pub Date : 2023-08-30DOI: 10.3390/hydrology10090180
Eya Ben Saad, Mohsen Ben Alaya, J. Taupin, N. Patris, Najet Chaabane, R. Souissi
The Mediterranean coastal aquifer system of the Grombalia basin (NE Tunisia) offers immense potential as a source of fresh water for agriculture, industry, and drinking water supply. Nonetheless, due to its intricate hydrogeological characteristics and the prevailing issue of groundwater salinity, comprehending its groundwater system behavior becomes crucial for the effective and sustainable management of this aquifer system. Based on the hydrogeological characterization of the Grombalia basin, a novel 3D hydrogeological conceptual model was developed to enhance the understanding of its complex aquifer system. The integration of insights from geological, hydrogeological, hydrodynamic, and hydrochemical components facilitated the construction of the hydrogeological conceptual model. Although the model’s validity faced initial uncertainties due to spatial interpolation of lithological sequences, this study’s thorough and encompassing hydrogeological investigation overcame these limitations. As a result, a more informed comprehension of the aquifer system complexities was achieved. This study reveals that the basin is underlain by an extensive, cohesive Mio–Plio–Quaternary aquifer system. The model demonstrates vertical and lateral hydrogeological continuity between the Quaternary and underlying Mio–Pliocene deposits, enabling groundwater flow and exchange between these layers. Over-abstraction of the Mio–Plio–Quaternary aquifer system has led to a significant drop in piezometric levels and raised the risk of seawater intrusion. These findings emphasize the critical necessity of taking into account the interconnections among hydrogeological units to ensure sustainable groundwater management. The developed conceptual model offers a key tool for understanding the hydrodynamic functioning of the Grombalia aquifer system with a view toward guiding future groundwater management strategies. The application of this approach in the Grombalia basin suggests its potential applicability to other regional aquifers facing comparable challenges.
{"title":"A Hydrogeological Conceptual Model Refines the Behavior of a Mediterranean Coastal Aquifer System: A Key to Sustainable Groundwater Management (Grombalia, NE Tunisia)","authors":"Eya Ben Saad, Mohsen Ben Alaya, J. Taupin, N. Patris, Najet Chaabane, R. Souissi","doi":"10.3390/hydrology10090180","DOIUrl":"https://doi.org/10.3390/hydrology10090180","url":null,"abstract":"The Mediterranean coastal aquifer system of the Grombalia basin (NE Tunisia) offers immense potential as a source of fresh water for agriculture, industry, and drinking water supply. Nonetheless, due to its intricate hydrogeological characteristics and the prevailing issue of groundwater salinity, comprehending its groundwater system behavior becomes crucial for the effective and sustainable management of this aquifer system. Based on the hydrogeological characterization of the Grombalia basin, a novel 3D hydrogeological conceptual model was developed to enhance the understanding of its complex aquifer system. The integration of insights from geological, hydrogeological, hydrodynamic, and hydrochemical components facilitated the construction of the hydrogeological conceptual model. Although the model’s validity faced initial uncertainties due to spatial interpolation of lithological sequences, this study’s thorough and encompassing hydrogeological investigation overcame these limitations. As a result, a more informed comprehension of the aquifer system complexities was achieved. This study reveals that the basin is underlain by an extensive, cohesive Mio–Plio–Quaternary aquifer system. The model demonstrates vertical and lateral hydrogeological continuity between the Quaternary and underlying Mio–Pliocene deposits, enabling groundwater flow and exchange between these layers. Over-abstraction of the Mio–Plio–Quaternary aquifer system has led to a significant drop in piezometric levels and raised the risk of seawater intrusion. These findings emphasize the critical necessity of taking into account the interconnections among hydrogeological units to ensure sustainable groundwater management. The developed conceptual model offers a key tool for understanding the hydrodynamic functioning of the Grombalia aquifer system with a view toward guiding future groundwater management strategies. The application of this approach in the Grombalia basin suggests its potential applicability to other regional aquifers facing comparable challenges.","PeriodicalId":37372,"journal":{"name":"Hydrology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44891296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-28DOI: 10.3390/hydrology10090179
Claudia Sangüesa, R. Pizarro, B. Ingram, Alfredo Ibáñez, Diego Rivera, P. García-Chevesich, J. Pino, F. Pérez, F. Balocchi, Francisco Peña
Estimating intensity−duration−frequency (IDF) curves requires local historical information of precipitation intensity. When such information is unavailable, as in areas without rain gauges, it is necessary to consider other methods to estimate curve parameters. In this study, three methods were explored to estimate IDF curves in ungauged areas: Kriging (KG), Inverse Distance Weighting (IDW), and Storm Index (SI). To test the viability of these methods, historical data collected from 31 rain gauges distributed in central Chile, 35° S to 38° S, are used. As a result of the reduced number of rain gauges to evaluate the performance of each method, we used LOOCV (Leaving One Out Cross Validation). The results indicate that KG was limited due to the sparse distribution of rain gauges in central Chile. SI (a linear scaling method) showed the smallest prediction error in all of the ungauged locations, and outperformed both KG and IDW. However, the SI method does not provide estimates of uncertainty, as is possible with KG. The simplicity of SI renders it a viable method for extrapolating IDF curves to locations without data in the central zone of Chile.
估计强度-持续时间-频率(IDF)曲线需要降水强度的当地历史信息。当这些信息不可用时,如在没有雨量计的地区,有必要考虑其他方法来估计曲线参数。在本研究中,探索了三种方法来估计未经测量地区的IDF曲线:克里格(KG)、反向距离加权(IDW)和风暴指数(SI)。为了测试这些方法的可行性,使用了从智利中部35°S至38°S的31个雨量计收集的历史数据。由于评估每种方法性能的雨量计数量减少,我们使用了LOOCV(Leaving One Out Cross Validation)。结果表明,由于智利中部雨量计分布稀疏,KG受到限制。SI(一种线性定标方法)在所有未标定位置显示出最小的预测误差,并且优于KG和IDW。然而,SI方法不能像KG那样提供不确定性的估计。SI的简单性使其成为将IDF曲线外推到智利中部地区没有数据的位置的可行方法。
{"title":"Comparing Methods for the Regionalization of Intensity−Duration−Frequency (IDF) Curve Parameters in Sparsely-Gauged and Ungauged Areas of Central Chile","authors":"Claudia Sangüesa, R. Pizarro, B. Ingram, Alfredo Ibáñez, Diego Rivera, P. García-Chevesich, J. Pino, F. Pérez, F. Balocchi, Francisco Peña","doi":"10.3390/hydrology10090179","DOIUrl":"https://doi.org/10.3390/hydrology10090179","url":null,"abstract":"Estimating intensity−duration−frequency (IDF) curves requires local historical information of precipitation intensity. When such information is unavailable, as in areas without rain gauges, it is necessary to consider other methods to estimate curve parameters. In this study, three methods were explored to estimate IDF curves in ungauged areas: Kriging (KG), Inverse Distance Weighting (IDW), and Storm Index (SI). To test the viability of these methods, historical data collected from 31 rain gauges distributed in central Chile, 35° S to 38° S, are used. As a result of the reduced number of rain gauges to evaluate the performance of each method, we used LOOCV (Leaving One Out Cross Validation). The results indicate that KG was limited due to the sparse distribution of rain gauges in central Chile. SI (a linear scaling method) showed the smallest prediction error in all of the ungauged locations, and outperformed both KG and IDW. However, the SI method does not provide estimates of uncertainty, as is possible with KG. The simplicity of SI renders it a viable method for extrapolating IDF curves to locations without data in the central zone of Chile.","PeriodicalId":37372,"journal":{"name":"Hydrology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49626806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-26DOI: 10.3390/hydrology10090178
C. Konstantinou, Yuze Wang
Microbially induced calcium carbonate precipitation (MICP) is an innovative biocementation technique that facilitates the formation of calcium carbonate within a pore network. Initially gaining prominence in the field of geotechnical engineering, MICP has attracted significant attention since its inception (the last three decades) and expanded its reach across various engineering disciplines. Examples include rock mechanics, geology and the oil and gas industry fields through the generation of rock-like specimens, and plugging of fractures, in civil and architectural engineering and material science for concrete repair, protection, and for self-healing of building materials, and in environmental engineering for the study of biomimetic materials. In response to this burgeoning interest, the current paper aims to present a comprehensive review of the main biochemical mechanisms underlying MICP (bacterial ureolytic activity, reactions duration and settling times, and chemical solution properties), their direct relevance to altering hydraulic and mechanical properties, both at the microscale and macroscale responses, and the precipitation mechanisms, particularly in relation to water resources and hydrology applications. Four main categories of relevant applications are identified, namely, the groundwater and soil remediation, the applications related to the generation of a low hydraulic conductivity barrier, those related to gaining cohesion, and the applications related to fluid flow studies in artificially generated porous media. Moreover, this comprehensive review not only aims to identify the existing applications of MICP within hydrological fields but also strives to propose novel and promising applications that can further expand its utility in this domain. Along with the investigation of the potential of MICP to revolutionize water resources and hydrology, it is imperative to delve deeper into its environmental implications to ensure sustainable and ecologically responsible implementation.
{"title":"Unlocking the Potential of Microbially Induced Calcium Carbonate Precipitation (MICP) for Hydrological Applications: A Review of Opportunities, Challenges, and Environmental Considerations","authors":"C. Konstantinou, Yuze Wang","doi":"10.3390/hydrology10090178","DOIUrl":"https://doi.org/10.3390/hydrology10090178","url":null,"abstract":"Microbially induced calcium carbonate precipitation (MICP) is an innovative biocementation technique that facilitates the formation of calcium carbonate within a pore network. Initially gaining prominence in the field of geotechnical engineering, MICP has attracted significant attention since its inception (the last three decades) and expanded its reach across various engineering disciplines. Examples include rock mechanics, geology and the oil and gas industry fields through the generation of rock-like specimens, and plugging of fractures, in civil and architectural engineering and material science for concrete repair, protection, and for self-healing of building materials, and in environmental engineering for the study of biomimetic materials. In response to this burgeoning interest, the current paper aims to present a comprehensive review of the main biochemical mechanisms underlying MICP (bacterial ureolytic activity, reactions duration and settling times, and chemical solution properties), their direct relevance to altering hydraulic and mechanical properties, both at the microscale and macroscale responses, and the precipitation mechanisms, particularly in relation to water resources and hydrology applications. Four main categories of relevant applications are identified, namely, the groundwater and soil remediation, the applications related to the generation of a low hydraulic conductivity barrier, those related to gaining cohesion, and the applications related to fluid flow studies in artificially generated porous media. Moreover, this comprehensive review not only aims to identify the existing applications of MICP within hydrological fields but also strives to propose novel and promising applications that can further expand its utility in this domain. Along with the investigation of the potential of MICP to revolutionize water resources and hydrology, it is imperative to delve deeper into its environmental implications to ensure sustainable and ecologically responsible implementation.","PeriodicalId":37372,"journal":{"name":"Hydrology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45565860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-24DOI: 10.3390/hydrology10090177
Jean-Louis Cardi, A. Dussel, Clara Letessier, Isa Ebtehaj, S. Gumiere, H. Bonakdari
The Ottawa River Watershed is a vast area that stretches across Ontario and Quebec and holds great importance for Canada’s people, economy, and collective history, both in the present and the future. The river has faced numerous floods in recent years due to climate change. The most significant flood occurred in 2019, surpassing a 100-year flood event, and serves as a stark reminder of how climate change impacts our environment. Considering the limitations of machine learning (ML) models, which heavily rely on historical data used during training, they may struggle to accurately predict such “non-experienced” or “unseen” floods that were not encountered during the training process. To tackle this challenge, our study has utilized a combination of numerical modeling and ML to create an integrated methodology. Indeed, a comprehensive dataset of river flow discharge was generated using a numerical model, encompassing a wide range of potential future floods. This significantly improved the ML training process to generalize the accuracy of results. Utilizing this dataset, a novel ML model called the Expanded Framework of Group Method of Data Handling (EFGMDH) has been developed. Its purpose is to provide decision-makers with explicit equations for estimating three crucial hydrodynamic characteristics of the Ottawa River: floodplain width, flow velocity, and river flow depth. These predictions rely on various inputs, including the location of the desired cross-section, river slope, Manning roughness coefficient at different river sections (right, left, and middle), and river flow discharge. To establish practical models for each of the aforementioned hydrodynamic characteristics of the Ottawa River, different input combinations were tested to identify the most optimal ones. The EFGMDH model demonstrated high accuracy throughout the training and testing stages, achieving an R2 value exceeding 0.99. The proposed model’s exceptional performance demonstrates its reliability and practical applications for the study area.
{"title":"Modeling Hydrodynamic Behavior of the Ottawa River: Harnessing the Power of Numerical Simulation and Machine Learning for Enhanced Predictability","authors":"Jean-Louis Cardi, A. Dussel, Clara Letessier, Isa Ebtehaj, S. Gumiere, H. Bonakdari","doi":"10.3390/hydrology10090177","DOIUrl":"https://doi.org/10.3390/hydrology10090177","url":null,"abstract":"The Ottawa River Watershed is a vast area that stretches across Ontario and Quebec and holds great importance for Canada’s people, economy, and collective history, both in the present and the future. The river has faced numerous floods in recent years due to climate change. The most significant flood occurred in 2019, surpassing a 100-year flood event, and serves as a stark reminder of how climate change impacts our environment. Considering the limitations of machine learning (ML) models, which heavily rely on historical data used during training, they may struggle to accurately predict such “non-experienced” or “unseen” floods that were not encountered during the training process. To tackle this challenge, our study has utilized a combination of numerical modeling and ML to create an integrated methodology. Indeed, a comprehensive dataset of river flow discharge was generated using a numerical model, encompassing a wide range of potential future floods. This significantly improved the ML training process to generalize the accuracy of results. Utilizing this dataset, a novel ML model called the Expanded Framework of Group Method of Data Handling (EFGMDH) has been developed. Its purpose is to provide decision-makers with explicit equations for estimating three crucial hydrodynamic characteristics of the Ottawa River: floodplain width, flow velocity, and river flow depth. These predictions rely on various inputs, including the location of the desired cross-section, river slope, Manning roughness coefficient at different river sections (right, left, and middle), and river flow discharge. To establish practical models for each of the aforementioned hydrodynamic characteristics of the Ottawa River, different input combinations were tested to identify the most optimal ones. The EFGMDH model demonstrated high accuracy throughout the training and testing stages, achieving an R2 value exceeding 0.99. The proposed model’s exceptional performance demonstrates its reliability and practical applications for the study area.","PeriodicalId":37372,"journal":{"name":"Hydrology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44316497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-21DOI: 10.3390/hydrology10080176
Maria Kofidou, A. Gemitzi
The present work aims to highlight the possibility of improving model performance by assimilating soil moisture information in the calibration and validation process. The Soil and Water Assessment Tool (SWAT) within QGIS, i.e., QSWAT, was used to simulate the hydrological processes within the test basin, i.e., Vosvozis River Basin (VRB) in NE Greece. The model calibration and validation were conducted via SWAT-CUP for a four-year period from 2019 to 2022, in three different ways, i.e., using the traditional calibration process with river flow measurements, using satellite-based soil moisture only in the calibration, and finally incorporating satellite-based soil moisture datasets and calibrating using simultaneously flow and soil moisture information. All modeling approaches used the same set of input data related to topography, land cover, and soil information. This study utilized the recently released global scale daily downscaled soil moisture at 1 km from the Soil Moisture Active Passive (SMAP) mission to generate soil moisture datasets. Two performance indicators were evaluated: Nash Sutcliffe (NS) and coefficient of determination (R2). Results showed that QSWAT successfully simulated river flow in VRB with NS = 0.61 and R2 = 0.69 for the calibration process using river flow measurements at the outlet of VRB. However, comparing satellite-based soil moisture, NS and R2 were considerably lower with an average derived from the 19 subbasins (NS = 0.55, R2 = 0.66), indicating lower performance related to the simulation of soil moisture regime. Subsequently, introducing satellite-derived soil moisture as an additional parameter in the calibration process along with flow improved the acquired average soil moisture results of the 19 subbasins (NS = 0.85, R2 = 0.91), while preserving the satisfactory performance related to flow simulation (NS = 0.57, R2 = 0.66). Our work thus demonstrates how assimilating available satellite-derived soil moisture information into the SWAT model may offer considerable improvement in the description of soil moisture conditions, keeping the satisfactory performance in flow simulation.
{"title":"Assimilating Soil Moisture Information to Improve the Performance of SWAT Hydrological Model","authors":"Maria Kofidou, A. Gemitzi","doi":"10.3390/hydrology10080176","DOIUrl":"https://doi.org/10.3390/hydrology10080176","url":null,"abstract":"The present work aims to highlight the possibility of improving model performance by assimilating soil moisture information in the calibration and validation process. The Soil and Water Assessment Tool (SWAT) within QGIS, i.e., QSWAT, was used to simulate the hydrological processes within the test basin, i.e., Vosvozis River Basin (VRB) in NE Greece. The model calibration and validation were conducted via SWAT-CUP for a four-year period from 2019 to 2022, in three different ways, i.e., using the traditional calibration process with river flow measurements, using satellite-based soil moisture only in the calibration, and finally incorporating satellite-based soil moisture datasets and calibrating using simultaneously flow and soil moisture information. All modeling approaches used the same set of input data related to topography, land cover, and soil information. This study utilized the recently released global scale daily downscaled soil moisture at 1 km from the Soil Moisture Active Passive (SMAP) mission to generate soil moisture datasets. Two performance indicators were evaluated: Nash Sutcliffe (NS) and coefficient of determination (R2). Results showed that QSWAT successfully simulated river flow in VRB with NS = 0.61 and R2 = 0.69 for the calibration process using river flow measurements at the outlet of VRB. However, comparing satellite-based soil moisture, NS and R2 were considerably lower with an average derived from the 19 subbasins (NS = 0.55, R2 = 0.66), indicating lower performance related to the simulation of soil moisture regime. Subsequently, introducing satellite-derived soil moisture as an additional parameter in the calibration process along with flow improved the acquired average soil moisture results of the 19 subbasins (NS = 0.85, R2 = 0.91), while preserving the satisfactory performance related to flow simulation (NS = 0.57, R2 = 0.66). Our work thus demonstrates how assimilating available satellite-derived soil moisture information into the SWAT model may offer considerable improvement in the description of soil moisture conditions, keeping the satisfactory performance in flow simulation.","PeriodicalId":37372,"journal":{"name":"Hydrology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48056182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-18DOI: 10.3390/hydrology10080175
I. Myasnikov, G. Artemiev, E. Lavrinovich, I. Kazinskaya, Alexander Novikov, A. V. Safonov
The complex contamination of groundwater near radioactive waste repositories by nitrates and actinides is a common problem for many nuclear fuel cycle facilities. One of the effective methods to remove nitrates and reduce actinide migration activity is bioremediation through the activation of native microbial communities by soluble electron donors and carbon sources. This work evaluated the effectiveness of using simple and complex electron donors to remove nitrate in the microbial community in an aquifer near the B2 storage of the Siberian Chemical Combine (Seversk, Siberia). The addition of sugar and milk whey led to the maximum efficiency of nitrate-ion removal and a decrease in the redox potential of the system, creating optimal conditions for the immobilization of actinide. Special attention was paid to the behavior of uranium, plutonium, neptunium, and americium under conditions simulating groundwater when sugar, acetate, and milk whey were added and when microbial metabolic products were formed. Neither microbial metabolites nor organic solutions were found to have a significant effect on the leaching of neptunium. At the same time, for plutonium, a decrease in yield was observed when rocks were treated with organic solutions were compared to groundwater treatment without them. Plutonium leaching is significantly affected by rock composition. In rocks with a low clay fraction content, its yield can reach 40%. At the same time, microbial metabolites can increase americium (Am) desorption from rocks with a low clay fraction content. Additionally, particle size analysis was performed using a step-by-step filtration approach, aiming to evaluate the risks that are associated with colloidal phase formation. It was shown that microbiological stimulation resulted in particle enlargement, substantially diminishing the presence of actinides in the form of dissolved or sub-50 nm nanoparticles. This outcome significantly reduced the potential for colloidal and pseudocolloidal transfer, thereby lowering associated risks.
{"title":"Simple and Complex Substrates (Sugar, Acetate and Milk Whey) for In Situ Bioremediation of Groundwater with Nitrate and Actinide Contamination","authors":"I. Myasnikov, G. Artemiev, E. Lavrinovich, I. Kazinskaya, Alexander Novikov, A. V. Safonov","doi":"10.3390/hydrology10080175","DOIUrl":"https://doi.org/10.3390/hydrology10080175","url":null,"abstract":"The complex contamination of groundwater near radioactive waste repositories by nitrates and actinides is a common problem for many nuclear fuel cycle facilities. One of the effective methods to remove nitrates and reduce actinide migration activity is bioremediation through the activation of native microbial communities by soluble electron donors and carbon sources. This work evaluated the effectiveness of using simple and complex electron donors to remove nitrate in the microbial community in an aquifer near the B2 storage of the Siberian Chemical Combine (Seversk, Siberia). The addition of sugar and milk whey led to the maximum efficiency of nitrate-ion removal and a decrease in the redox potential of the system, creating optimal conditions for the immobilization of actinide. Special attention was paid to the behavior of uranium, plutonium, neptunium, and americium under conditions simulating groundwater when sugar, acetate, and milk whey were added and when microbial metabolic products were formed. Neither microbial metabolites nor organic solutions were found to have a significant effect on the leaching of neptunium. At the same time, for plutonium, a decrease in yield was observed when rocks were treated with organic solutions were compared to groundwater treatment without them. Plutonium leaching is significantly affected by rock composition. In rocks with a low clay fraction content, its yield can reach 40%. At the same time, microbial metabolites can increase americium (Am) desorption from rocks with a low clay fraction content. Additionally, particle size analysis was performed using a step-by-step filtration approach, aiming to evaluate the risks that are associated with colloidal phase formation. It was shown that microbiological stimulation resulted in particle enlargement, substantially diminishing the presence of actinides in the form of dissolved or sub-50 nm nanoparticles. This outcome significantly reduced the potential for colloidal and pseudocolloidal transfer, thereby lowering associated risks.","PeriodicalId":37372,"journal":{"name":"Hydrology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47241124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-18DOI: 10.3390/hydrology10080173
E. Ismail, D. Alexakis, M. A. Heleika, M. Hashem, M. Ahmed, Doha Hamdy, Ahmed Ali
The El-Minia district is a location of interest for future urban development. Using hydrochemistry and electrical resistivity studies, this work aimed to evaluate the groundwater potentiality and it’s suitable for various uses. The groundwater potential in the study area was evaluated based on 24 VESs (vertical electrical soundings), and its quality was determined based on the analyses of 57 groundwater samples. EC (salinity index), Na% (salt hazard), SAR (ratio of sodium adsorption), chloride risks, SSP (soluble sodium percentage), MH (magnesium hazard), and other indicators were used to determine whether the collected water samples were suitable for irrigation. Four layers in the study area are mentioned in the geoelectrical cross-sections that have been constructed. The first is made up of silt and clay from the Nile River, while the second is made up of sandy clay, which has a resistivity range of 15 to 32 Ohm.m and a range thickness of 2 to 68 m. Dry limestone makes up the third layer; its resistivity ranges from 1222 to 3000 Ohm.m and its thickness varies between 75 and 95 m. The Eocene aquifer in the research area is represented by the final layer, which has a thickness of more than 250 m and resistivity values that range from 602 to 860 Ohm.m. Most groundwater samples that were collected are safe for drinking; however, none of them are fit for home usage because of their extreme hardness. According to the SAR and US diagram, RSC, KR, and PI, most groundwater samples from the Pleistocene and Eocene aquifers are fit for irrigation.
El Minia区是未来城市发展的热点。通过水化学和电阻率研究,本工作旨在评估地下水的潜力,并使其适用于各种用途。根据24个VES(垂直电测深)对研究区域的地下水潜力进行了评估,并根据对57个地下水样本的分析确定了其质量。EC(盐度指数)、Na%(盐害)、SAR(钠吸附率)、氯化物风险、SSP(可溶性钠百分比)、MH(镁害)等指标用于确定采集的水样是否适合灌溉。在已经建造的地电横截面中提到了研究区域中的四层。第一层由尼罗河的淤泥和粘土组成,第二层由砂质粘土组成,其电阻率范围为15至32欧姆,厚度范围为2至68米。第三层为干燥石灰岩;其电阻率范围为1222至3000欧姆,厚度在75至95米之间。研究区域的始新世含水层以最终层为代表,其厚度超过250米,电阻率值范围为602至860欧姆。收集的大多数地下水样本可安全饮用;然而,它们都不适合在家里使用,因为它们非常坚硬。根据SAR和US图、RSC、KR和PI,更新世和始新世含水层的大多数地下水样本适合灌溉。
{"title":"Applying Geophysical and Hydrogeochemical Methods to Evaluate Groundwater Potential and Quality in Middle Egypt","authors":"E. Ismail, D. Alexakis, M. A. Heleika, M. Hashem, M. Ahmed, Doha Hamdy, Ahmed Ali","doi":"10.3390/hydrology10080173","DOIUrl":"https://doi.org/10.3390/hydrology10080173","url":null,"abstract":"The El-Minia district is a location of interest for future urban development. Using hydrochemistry and electrical resistivity studies, this work aimed to evaluate the groundwater potentiality and it’s suitable for various uses. The groundwater potential in the study area was evaluated based on 24 VESs (vertical electrical soundings), and its quality was determined based on the analyses of 57 groundwater samples. EC (salinity index), Na% (salt hazard), SAR (ratio of sodium adsorption), chloride risks, SSP (soluble sodium percentage), MH (magnesium hazard), and other indicators were used to determine whether the collected water samples were suitable for irrigation. Four layers in the study area are mentioned in the geoelectrical cross-sections that have been constructed. The first is made up of silt and clay from the Nile River, while the second is made up of sandy clay, which has a resistivity range of 15 to 32 Ohm.m and a range thickness of 2 to 68 m. Dry limestone makes up the third layer; its resistivity ranges from 1222 to 3000 Ohm.m and its thickness varies between 75 and 95 m. The Eocene aquifer in the research area is represented by the final layer, which has a thickness of more than 250 m and resistivity values that range from 602 to 860 Ohm.m. Most groundwater samples that were collected are safe for drinking; however, none of them are fit for home usage because of their extreme hardness. According to the SAR and US diagram, RSC, KR, and PI, most groundwater samples from the Pleistocene and Eocene aquifers are fit for irrigation.","PeriodicalId":37372,"journal":{"name":"Hydrology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48269318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-18DOI: 10.3390/hydrology10080174
Carmine Massarelli, Maria Silvia Binetti, M. Triozzi, V. Uricchio
The topic of diffuse pollution is of particular interest from technical, scientific, and administrative management points of view. Diffuse pollution is defined as the contamination or chemical, physical, or biological alterations of environmental matrices caused by diffuse sources and not attributable to a single origin. In this study, various sources of diffuse pollution such as nitrates, pesticides, metals, and plastics were analysed. This was aimed at the implementation of a decision support system able to represent the state of environmental matrices degradation, with particular attention to water resources, and to make decisions evaluating similar environmental contexts. The potential of the developed system makes it possible to identify areas with the same environmental characteristics, referring to the various activities that create diffuse pollution and areas with the same pressure values on the environmental matrices. The system provides the political decision-maker with greater awareness of the environmental state, thus enabling him to apply more accurate land management policies. The created system, based on open-source software, which can be implemented with additional available data sources, is characterised by a data processing workflow that provides output information at the municipal level, so that it can be managed both by mayors and regional managers who are able to share the same information with all.
{"title":"A First Step towards Developing a Decision Support System Based on the Integration of Environmental Monitoring Activities for Regional Water Resource Protection","authors":"Carmine Massarelli, Maria Silvia Binetti, M. Triozzi, V. Uricchio","doi":"10.3390/hydrology10080174","DOIUrl":"https://doi.org/10.3390/hydrology10080174","url":null,"abstract":"The topic of diffuse pollution is of particular interest from technical, scientific, and administrative management points of view. Diffuse pollution is defined as the contamination or chemical, physical, or biological alterations of environmental matrices caused by diffuse sources and not attributable to a single origin. In this study, various sources of diffuse pollution such as nitrates, pesticides, metals, and plastics were analysed. This was aimed at the implementation of a decision support system able to represent the state of environmental matrices degradation, with particular attention to water resources, and to make decisions evaluating similar environmental contexts. The potential of the developed system makes it possible to identify areas with the same environmental characteristics, referring to the various activities that create diffuse pollution and areas with the same pressure values on the environmental matrices. The system provides the political decision-maker with greater awareness of the environmental state, thus enabling him to apply more accurate land management policies. The created system, based on open-source software, which can be implemented with additional available data sources, is characterised by a data processing workflow that provides output information at the municipal level, so that it can be managed both by mayors and regional managers who are able to share the same information with all.","PeriodicalId":37372,"journal":{"name":"Hydrology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41433867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-17DOI: 10.3390/hydrology10080172
Christos Iliadis, P. Galiatsatou, V. Glenis, P. Prinos, C. Kilsby
The expansion of urban areas and the increasing frequency and magnitude of intense rainfall events are anticipated to contribute to the widespread escalation of urban flood risk across the globe. To effectively mitigate future flood risks, it is crucial to combine a comprehensive examination of intense rainfall events in urban areas with the utilization of detailed hydrodynamic models. This study combines extreme value analysis techniques applied to rainfall data ranging from sub-hourly to daily durations with a high-resolution flood modelling analysis at the building level in the centre of Thessaloniki, Greece. A scaling procedure is employed to rainfall return levels assessed by applying the generalised extreme value (GEV) distribution to annual maximum fine-temporal-scale data, and these scaling laws are then applied to more reliable daily rainfall return levels estimated by means of the generalised Pareto distribution (GPD), in order to develop storm profiles with durations of 1 h and 2 h. The advanced flood model, CityCAT, is then used for the simulation of pluvial flooding, providing reliable assessments of building-level exposure to flooding hazards. The results of the analysis conducted provide insights into flood depths and water flowpaths in the city centre of Thessaloniki, identifying major flowpaths along certain main streets resulting in localised flooding, and identifying around 165 and 186 buildings highly exposed to inundation risk in the study area for 50-year storm events with durations of 1 h and 2 h, respectively. For the first time in this study area, a detailed analysis of extreme rainfall events is combined with a high-resolution Digital Terrain Model (DTM), used as an input into the advanced and fully featured CityCAT hydrodynamic model, to assess critical flowpaths and buildings at high flood risk. The results of this study can aid in the planning and design of resilient solutions to combat urban flash floods, as well as contribute to targeted flood damage mitigation and flood risk reduction.
{"title":"Urban Flood Modelling under Extreme Rainfall Conditions for Building-Level Flood Exposure Analysis","authors":"Christos Iliadis, P. Galiatsatou, V. Glenis, P. Prinos, C. Kilsby","doi":"10.3390/hydrology10080172","DOIUrl":"https://doi.org/10.3390/hydrology10080172","url":null,"abstract":"The expansion of urban areas and the increasing frequency and magnitude of intense rainfall events are anticipated to contribute to the widespread escalation of urban flood risk across the globe. To effectively mitigate future flood risks, it is crucial to combine a comprehensive examination of intense rainfall events in urban areas with the utilization of detailed hydrodynamic models. This study combines extreme value analysis techniques applied to rainfall data ranging from sub-hourly to daily durations with a high-resolution flood modelling analysis at the building level in the centre of Thessaloniki, Greece. A scaling procedure is employed to rainfall return levels assessed by applying the generalised extreme value (GEV) distribution to annual maximum fine-temporal-scale data, and these scaling laws are then applied to more reliable daily rainfall return levels estimated by means of the generalised Pareto distribution (GPD), in order to develop storm profiles with durations of 1 h and 2 h. The advanced flood model, CityCAT, is then used for the simulation of pluvial flooding, providing reliable assessments of building-level exposure to flooding hazards. The results of the analysis conducted provide insights into flood depths and water flowpaths in the city centre of Thessaloniki, identifying major flowpaths along certain main streets resulting in localised flooding, and identifying around 165 and 186 buildings highly exposed to inundation risk in the study area for 50-year storm events with durations of 1 h and 2 h, respectively. For the first time in this study area, a detailed analysis of extreme rainfall events is combined with a high-resolution Digital Terrain Model (DTM), used as an input into the advanced and fully featured CityCAT hydrodynamic model, to assess critical flowpaths and buildings at high flood risk. The results of this study can aid in the planning and design of resilient solutions to combat urban flash floods, as well as contribute to targeted flood damage mitigation and flood risk reduction.","PeriodicalId":37372,"journal":{"name":"Hydrology","volume":"1 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70006978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this study, we analyzed the quality and the potential noncarcinogenic health risk of nitrate in groundwater in the El Milia plain, Kebir Rhumel Basin, Algeria. Moran’s I and the ordinary kriging (OK) interpolation technique were used to examine the spatial distribution pattern of the hydrochemical parameters in the groundwater. It was found that the hydrochemical parameters Ca, Cl, and HCO3 showed strong spatial autocorrelation in the El Milia plain, indicating a spatial dependence and clustering of these parameters in the groundwater. The groundwater quality was evaluated using the entropy water quality index (EWQI). The results showed that approximately 86% of the total groundwater samples in the study area fall within the moderate groundwater quality category. The spatial map of the EWQI values indicated an increasing trend from the south-west to the northeast, following the direction of groundwater flow. The highest EWQI values were observed near El Milia city in the center of the plain. This spatial pattern suggests variations in groundwater quality across the study area, with potentially higher risks near the city center. The potential noncarcinogenic health risks associated with nitrate contamination in groundwater for adults and children through the drinking water pathway were assessed using the hazard quotient (HQ). The results revealed that approximately 5.7% of the total groundwater samples exceeded the HQ limit for adults, indicating potential health risks. Moreover, a higher percentage, 14.28%, of the total groundwater samples exceeded the HQ limit for children, highlighting their increased vulnerability to noncarcinogenic health hazards associated with nitrate contamination in the study area. Taking timely action and ensuring strict compliance with regulations in groundwater management are crucial for protecting public health, preserving the environment, addressing water scarcity, and achieving sustainable development goals.
{"title":"Identification of the Groundwater Quality and Potential Noncarcinogenic Health Risk Assessment of Nitrate in the Groundwater of El Milia Plain, Kebir Rhumel Basin, Algeria","authors":"Djouhaina Brella, Lazhar Belkhiri, Ammar Tiri, Hichem Salhi, Fatma Elhadj Lakouas, Razki Nouibet, Adeltif Amrane, Ryma Merdoud, L. Mouni","doi":"10.3390/hydrology10080171","DOIUrl":"https://doi.org/10.3390/hydrology10080171","url":null,"abstract":"In this study, we analyzed the quality and the potential noncarcinogenic health risk of nitrate in groundwater in the El Milia plain, Kebir Rhumel Basin, Algeria. Moran’s I and the ordinary kriging (OK) interpolation technique were used to examine the spatial distribution pattern of the hydrochemical parameters in the groundwater. It was found that the hydrochemical parameters Ca, Cl, and HCO3 showed strong spatial autocorrelation in the El Milia plain, indicating a spatial dependence and clustering of these parameters in the groundwater. The groundwater quality was evaluated using the entropy water quality index (EWQI). The results showed that approximately 86% of the total groundwater samples in the study area fall within the moderate groundwater quality category. The spatial map of the EWQI values indicated an increasing trend from the south-west to the northeast, following the direction of groundwater flow. The highest EWQI values were observed near El Milia city in the center of the plain. This spatial pattern suggests variations in groundwater quality across the study area, with potentially higher risks near the city center. The potential noncarcinogenic health risks associated with nitrate contamination in groundwater for adults and children through the drinking water pathway were assessed using the hazard quotient (HQ). The results revealed that approximately 5.7% of the total groundwater samples exceeded the HQ limit for adults, indicating potential health risks. Moreover, a higher percentage, 14.28%, of the total groundwater samples exceeded the HQ limit for children, highlighting their increased vulnerability to noncarcinogenic health hazards associated with nitrate contamination in the study area. Taking timely action and ensuring strict compliance with regulations in groundwater management are crucial for protecting public health, preserving the environment, addressing water scarcity, and achieving sustainable development goals.","PeriodicalId":37372,"journal":{"name":"Hydrology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42919729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}