Pub Date : 2024-08-23DOI: 10.1016/j.bprint.2024.e00355
Shadil Ibrahim Wani , Tanveer Ahmad Mir , Makoto Nakamura , Tomoshi Tsuchiya , Alaa Alzhrani , Shintaroh Iwanaga , Kenichi Arai , Eman A. Alshehri , Talal Shamma , Dalia A. Obeid , Raja Chinnappan , Abdullah M. Assiri , Ahmed Yaqinuddin , Yogesh K. Vashist , Dieter C. Broering
Chronic liver disease and related disorders are responsible for millions of deaths each year worldwide. In clinical practice, liver transplantation is recognized as an effective means of saving the lives of patients with severe complications. The shortage of organ donors has necessitated the development of bioengineered therapies that promote regeneration of the defective site and the creation of closely mimicking in vitro models for early prediction of disease states, hepatotoxicity testing, and accurate diagnostics. Despite tremendous research efforts, bioengineering of fully functional livers, detailed information on rare pathological mechanisms, and reliable bioartificial tissue-based therapies remain limited. On the other hand, 2D monolayer culture techniques are too simple to mimic and reproduce the functional characteristics of the liver accurately, its structural microenvironment, and the dynamic situation of cells in vivo. Therefore, tissue engineering-based 3D constructs outperform 2D culture systems. In this review, we provide insight into liver-related health complications, and the use of different cell types for tissue engineering. We also assess the current state of materiobiology and bioengineering technologies for fabricating 3D constructs. Afterward, we highlight the recent progress in liver tissue engineering, and outline the most relevant studies applying co-culture systems, spheroids, and organoid approaches, microfluidics, and 3D-bioprinting techniques. Finally, current dilemmas and possible future directions are explored.
{"title":"A review of current state-of-the-art materiobiology and technological approaches for liver tissue engineering","authors":"Shadil Ibrahim Wani , Tanveer Ahmad Mir , Makoto Nakamura , Tomoshi Tsuchiya , Alaa Alzhrani , Shintaroh Iwanaga , Kenichi Arai , Eman A. Alshehri , Talal Shamma , Dalia A. Obeid , Raja Chinnappan , Abdullah M. Assiri , Ahmed Yaqinuddin , Yogesh K. Vashist , Dieter C. Broering","doi":"10.1016/j.bprint.2024.e00355","DOIUrl":"10.1016/j.bprint.2024.e00355","url":null,"abstract":"<div><p>Chronic liver disease and related disorders are responsible for millions of deaths each year worldwide. In clinical practice, liver transplantation is recognized as an effective means of saving the lives of patients with severe complications. The shortage of organ donors has necessitated the development of bioengineered therapies that promote regeneration of the defective site and the creation of closely mimicking in vitro models for early prediction of disease states, hepatotoxicity testing, and accurate diagnostics. Despite tremendous research efforts, bioengineering of fully functional livers, detailed information on rare pathological mechanisms, and reliable bioartificial tissue-based therapies remain limited. On the other hand, 2D monolayer culture techniques are too simple to mimic and reproduce the functional characteristics of the liver accurately, its structural microenvironment, and the dynamic situation of cells in vivo. Therefore, tissue engineering-based 3D constructs outperform 2D culture systems. In this review, we provide insight into liver-related health complications, and the use of different cell types for tissue engineering. We also assess the current state of materiobiology and bioengineering technologies for fabricating 3D constructs. Afterward, we highlight the recent progress in liver tissue engineering, and outline the most relevant studies applying co-culture systems, spheroids, and organoid approaches, microfluidics, and 3D-bioprinting techniques. Finally, current dilemmas and possible future directions are explored.</p></div>","PeriodicalId":37770,"journal":{"name":"Bioprinting","volume":"42 ","pages":"Article e00355"},"PeriodicalIF":0.0,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142137129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-14DOI: 10.1016/j.bprint.2024.e00354
Debashish Gogoi , Manjesh Kumar , Jasvinder Singh
This study aims to enhance the mechanical properties of 3D-printed scaffolds by optimizing a composite of Poly-ε-caprolactone (PCL), poly-hydroxybutyrate (PHB), and synthetic fluorapatite (FHAp) using Response Surface Methodology (RSM). The research targets the intricate relationships between PCL, PHB, and FHAp concentrations, crucial for achieving optimal tensile, compressive, and flexural strengths. The solvent-cast process successfully yielded FHAp-reinforced PCL composites, confirmed by XRD and FTIR spectra. The findings indicate that an optimal PHB content of over 15 % wt/v and PCL under 10 % wt/v significantly enhance tensile strength, achieving values up to 48 MPa. Compressive strength peaked at PHB concentrations of 13–16 % wt/v and PCL concentrations of 9–13 % wt/v, showcasing effective stress transmission, with the highest recorded value being 90 MPa. Flexural strength exceeded 100 MPa with lower concentrations of PCL and PHB, emphasizing the need for a balance of rigidity and flexibility. The study identifies the optimum composition for these mechanical properties at PCL 9.432 % wt/v, PHB 16.568 % wt/v, and FHAp 24.933 % wt/v, crucial for advanced biomedical implant applications.
{"title":"Enhancing mechanical performance of solvent-cast 3D printed PCL composites: A comprehensive optimization approach","authors":"Debashish Gogoi , Manjesh Kumar , Jasvinder Singh","doi":"10.1016/j.bprint.2024.e00354","DOIUrl":"10.1016/j.bprint.2024.e00354","url":null,"abstract":"<div><p>This study aims to enhance the mechanical properties of 3D-printed scaffolds by optimizing a composite of Poly-ε-caprolactone (PCL), poly-hydroxybutyrate (PHB), and synthetic fluorapatite (FHAp) using Response Surface Methodology (RSM). The research targets the intricate relationships between PCL, PHB, and FHAp concentrations, crucial for achieving optimal tensile, compressive, and flexural strengths. The solvent-cast process successfully yielded FHAp-reinforced PCL composites, confirmed by XRD and FTIR spectra. The findings indicate that an optimal PHB content of over 15 % wt/v and PCL under 10 % wt/v significantly enhance tensile strength, achieving values up to 48 MPa. Compressive strength peaked at PHB concentrations of 13–16 % wt/v and PCL concentrations of 9–13 % wt/v, showcasing effective stress transmission, with the highest recorded value being 90 MPa. Flexural strength exceeded 100 MPa with lower concentrations of PCL and PHB, emphasizing the need for a balance of rigidity and flexibility. The study identifies the optimum composition for these mechanical properties at PCL 9.432 % wt/v, PHB 16.568 % wt/v, and FHAp 24.933 % wt/v, crucial for advanced biomedical implant applications.</p></div>","PeriodicalId":37770,"journal":{"name":"Bioprinting","volume":"42 ","pages":"Article e00354"},"PeriodicalIF":0.0,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141997553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-02DOI: 10.1016/j.bprint.2024.e00353
Taha Jafari , Seyed Morteza Naghib , Mehdi Rahmanian , M.R. Mozafari
This article examines 3D-printed structures that have self-healing properties. Additive manufacturing, also known as additive printing or 3D printing, is a sophisticated and adaptable technology that enables rapid, on-demand manufacturing of solid items made through a construction process based on a virtual computer-aided design (CAD) model. A technique known as 3D printing (3DP) enables the rapid creation of complex geometric shapes with previously unimaginable precision and performance. However, the availability of tunable-quality materials, especially those developed for additive manufacturing, remains a barrier to the widespread use of 3DP technology. This may increase the lifetime and performance of structural elements and even enable the propagation of living tissues for use in biomedical applications, including organ printing. This study discusses and analyzes the most relevant findings from the recent publication of 3D printable and self-healing polymer materials, by providing a chemical and physical self-healing process that may be used in 3D printing, as well as drug production and drug delivery devices. Finally, a critical discussion of the current landscape and possible development scenarios will take place.
{"title":"3D printing of self-healing materials for drug delivery applications: Promises, advances and outlooks","authors":"Taha Jafari , Seyed Morteza Naghib , Mehdi Rahmanian , M.R. Mozafari","doi":"10.1016/j.bprint.2024.e00353","DOIUrl":"10.1016/j.bprint.2024.e00353","url":null,"abstract":"<div><p>This article examines 3D-printed structures that have self-healing properties. Additive manufacturing, also known as additive printing or 3D printing, is a sophisticated and adaptable technology that enables rapid, on-demand manufacturing of solid items made through a construction process based on a virtual computer-aided design (CAD) model. A technique known as 3D printing (3DP) enables the rapid creation of complex geometric shapes with previously unimaginable precision and performance. However, the availability of tunable-quality materials, especially those developed for additive manufacturing, remains a barrier to the widespread use of 3DP technology. This may increase the lifetime and performance of structural elements and even enable the propagation of living tissues for use in biomedical applications, including organ printing. This study discusses and analyzes the most relevant findings from the recent publication of 3D printable and self-healing polymer materials, by providing a chemical and physical self-healing process that may be used in 3D printing, as well as drug production and drug delivery devices. Finally, a critical discussion of the current landscape and possible development scenarios will take place.</p></div>","PeriodicalId":37770,"journal":{"name":"Bioprinting","volume":"42 ","pages":"Article e00353"},"PeriodicalIF":0.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141993900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-31DOI: 10.1016/j.bprint.2024.e00352
Giada Loi , Franca Scocozza , Laura Benedetti , Ferdinando Auricchio , Stefania Marconi , Elena Delgrosso , Gabriella Cusella , Gabriele Ceccarelli , Michele Conti
In recent years, great efforts have been spent to create engineered muscle constructs recapitulating the 3D architecture and applying external stimulations. In this regard, tissue engineering approaches could be very promising in regenerating skeletal muscle, in which bioprinting techniques have produced encouraging results especially regarding 3D architecture. Tensile stimuli showed a fundamental role in regulating the behavior of muscle cells both in terms of 3D organizations and protein expression. Despite this promising premise, the combination of 3D bioprinting and mechanical stimulation has been poorly investigated, calling for novel approaches dealing with the mechanical stimulation of the 3D bioprinted construct and the integration of the bioprinting phase into the stimulation device. To this aim, the present work proposes the design, manufacturing, and benchmarking of a bioprinting-integrated mechanical platform conceived for mechanically stimulating a 3D muscle model directly printed into the bioreactor to foster the integration of printing and stimulation. The study consists of three main steps: 1) the design, fabrication, and mechanical characterization of stretchable supports suitable for bioprinting and long-term cell culture; 2) the design, assisted by computational tools, and the fabrication of the smart Petri dish containing the stimulation mechanism and of the final cyclic mechanical platform; 3) the in-vitro validation of the proposed platform in terms of transmission of the mechanical stimulation to the 3D construct and the biological effect of dynamic culture on 3D bioprinted muscle cells. The results highlighted excellent viability and demonstrated that the external stimulus influences the murine myoblasts behavior already after 7 days of culture. In conclusion, prototypes are now available of a mechanical platform that integrates the 3D bioprinting and is capable of stimulating 3D biological constructs for applications in the field of muscle tissue engineering.
{"title":"Design, development, and benchmarking of a bioreactor integrated with 3D bioprinting: Application to skeletal muscle regeneration","authors":"Giada Loi , Franca Scocozza , Laura Benedetti , Ferdinando Auricchio , Stefania Marconi , Elena Delgrosso , Gabriella Cusella , Gabriele Ceccarelli , Michele Conti","doi":"10.1016/j.bprint.2024.e00352","DOIUrl":"10.1016/j.bprint.2024.e00352","url":null,"abstract":"<div><p>In recent years, great efforts have been spent to create engineered muscle constructs recapitulating the 3D architecture and applying external stimulations. In this regard, tissue engineering approaches could be very promising in regenerating skeletal muscle, in which bioprinting techniques have produced encouraging results especially regarding 3D architecture. Tensile stimuli showed a fundamental role in regulating the behavior of muscle cells both in terms of 3D organizations and protein expression. Despite this promising premise, the combination of 3D bioprinting and mechanical stimulation has been poorly investigated, calling for novel approaches dealing with the mechanical stimulation of the 3D bioprinted construct and the integration of the bioprinting phase into the stimulation device. To this aim, the present work proposes the design, manufacturing, and benchmarking of a bioprinting-integrated mechanical platform conceived for mechanically stimulating a 3D muscle model directly printed into the bioreactor to foster the integration of printing and stimulation. The study consists of three main steps: 1) the design, fabrication, and mechanical characterization of stretchable supports suitable for bioprinting and long-term cell culture; 2) the design, assisted by computational tools, and the fabrication of the smart Petri dish containing the stimulation mechanism and of the final cyclic mechanical platform; 3) the <em>in-vitro</em> validation of the proposed platform in terms of transmission of the mechanical stimulation to the 3D construct and the biological effect of dynamic culture on 3D bioprinted muscle cells. The results highlighted excellent viability and demonstrated that the external stimulus influences the murine myoblasts behavior already after 7 days of culture. In conclusion, prototypes are now available of a mechanical platform that integrates the 3D bioprinting and is capable of stimulating 3D biological constructs for applications in the field of muscle tissue engineering.</p></div>","PeriodicalId":37770,"journal":{"name":"Bioprinting","volume":"42 ","pages":"Article e00352"},"PeriodicalIF":0.0,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141961580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-02DOI: 10.1016/j.bprint.2024.e00351
Christophe A. Marquette , Laura Chastagnier , Benjamin Da Sousa , Carlos Chocarro-Wrona , Edwin-Joffrey Courtial , Elea Rae , Céline Thomann , Albane Carre , Lucie Essayan , Ana J. Pasuch , Alizée Mosnier , Chloé Devillard , Emma Petiot , Lucas Lemarié , Eva-Laure Matera , Meigge Simoes , Charles Dumontet , Cristina Cuella Martin , Léa Pechtimaldjian , Eve-Isabelle Pécheur , Sarah Pragnère
The composition of soft tissues in mammals can be simplified as approximately 60–65 % water, 16 % protein, 16 % fat, 1 % carbohydrate, and trillions of cells. This report brings together unpublished results from a collaborative efforts of 10 research groups over the past five years, all dedicated to producing mammalian tissues through extrusion-based bioprinting. What unified these studies was a common approach, with a shared bioink composition consisting of gelatin, alginate, and fibrinogen, and a post-printing consolidation strategy involving transglutaminase crosslinking, calcium chelation, and thrombin-mediated fibrin production. The range of Young’s moduli achievable was 0.17–105 kPa, perfectly align with of tissue properties.
By consolidating the findings of these studies, it was conclusively demonstrated that bioprinting and culturing all 19 cells tested from 14 different organs was indeed achievable. These remarkable outcomes were attributed not only to the bio-inspired nature of the common bioink but also to its unique rheological properties, such as significant shear-thinning and a sufficiently high static yield stress.
The majority of these cells exhibited behaviours consistent with their natural in vivo environments. Clearly identifiable microstructures and organizations showcased intricate morphogenesis mechanisms resulting in the formation of micro-tubules, micro-vessels, and micro-acini. It is now evident that microextrusion bioprinting, especially when using bio-inspired bioink formulations, represents a promising avenue for generating a wide range of mammalian soft tissues.
{"title":"Unlocking the potential of bio-inspired bioinks: A collective breakthrough in mammalian tissue bioprinting","authors":"Christophe A. Marquette , Laura Chastagnier , Benjamin Da Sousa , Carlos Chocarro-Wrona , Edwin-Joffrey Courtial , Elea Rae , Céline Thomann , Albane Carre , Lucie Essayan , Ana J. Pasuch , Alizée Mosnier , Chloé Devillard , Emma Petiot , Lucas Lemarié , Eva-Laure Matera , Meigge Simoes , Charles Dumontet , Cristina Cuella Martin , Léa Pechtimaldjian , Eve-Isabelle Pécheur , Sarah Pragnère","doi":"10.1016/j.bprint.2024.e00351","DOIUrl":"https://doi.org/10.1016/j.bprint.2024.e00351","url":null,"abstract":"<div><p>The composition of soft tissues in mammals can be simplified as approximately 60–65 % water, 16 % protein, 16 % fat, 1 % carbohydrate, and trillions of cells. This report brings together unpublished results from a collaborative efforts of 10 research groups over the past five years, all dedicated to producing mammalian tissues through extrusion-based bioprinting. What unified these studies was a common approach, with a shared bioink composition consisting of gelatin, alginate, and fibrinogen, and a post-printing consolidation strategy involving transglutaminase crosslinking, calcium chelation, and thrombin-mediated fibrin production. The range of Young’s moduli achievable was 0.17–105 kPa, perfectly align with of tissue properties.</p><p>By consolidating the findings of these studies, it was conclusively demonstrated that bioprinting and culturing all 19 cells tested from 14 different organs was indeed achievable. These remarkable outcomes were attributed not only to the bio-inspired nature of the common bioink but also to its unique rheological properties, such as significant shear-thinning and a sufficiently high static yield stress.</p><p>The majority of these cells exhibited behaviours consistent with their natural <em>in vivo</em> environments. Clearly identifiable microstructures and organizations showcased intricate morphogenesis mechanisms resulting in the formation of micro-tubules, micro-vessels, and micro-acini. It is now evident that microextrusion bioprinting, especially when using bio-inspired bioink formulations, represents a promising avenue for generating a wide range of mammalian soft tissues.</p></div>","PeriodicalId":37770,"journal":{"name":"Bioprinting","volume":"41 ","pages":"Article e00351"},"PeriodicalIF":0.0,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S240588662400023X/pdfft?md5=99581dcb4a152ca6c03425cd2fc6864f&pid=1-s2.0-S240588662400023X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141541623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The complications in liver functioning arising due to hepatic disorders are a major contributor of mortality worldwide, with transplantation being the only resort for patients with severe cases. Due to liver's direct role in drug metabolism, fabrication on functional liver tissue models is eventually becoming a necessity for high-throughput drug screening applications. Tissue engineering approaches could provide an answer to the drooping supply by allowing for the fabrication and printing of a fully operational, implantable, and sustainable liver tissues. Moreover, such bioengineered tissues can be made to resemble their native counterparts. 3D bioengineering strategies including 3D bioprinting and microfluidic-based liver-on-chip models stand out in this regard due to their potential to create physiologically relevant microenvironment/niches for the biofabricated tissues. Nonetheless, achieving vascularization in such bioengineered tissues is still considered one of the biggest bottlenecks for engineers. The incorporation of blood vessels made from endothelial cells (ECs) is addressed in vasculogenesis while angiogenesis investigates generating new vessels from preexisting vasculature. Overall, vascularization is essential for the survival, function, and integration of bioprinted liver tissues, making it a key focus area in the development of functional liver substitutes for regenerative medicine and drug testing applications. This review paper focuses on the opportunities and difficulties of performing vascularization and angiogenesis in 3D bioengineered-based liver tissue models. Particularly, this paper delves into aspects such as methods of bioengineering, bioinks used, analysis techniques, advantages, limitations, and prospects related to 3D bioengineered liver tissue models as well as vascular engineering in general.
{"title":"Current landscape and opportunities in the development of bioengineered in-vitro vascularized liver tissue models","authors":"Kshama Kumari , Arka Sanyal , Preeti Rawat , Vinit Kumar , Manoj Garg , Debrupa Lahiri , Sourabh Ghosh , Prakash Baligar","doi":"10.1016/j.bprint.2024.e00350","DOIUrl":"https://doi.org/10.1016/j.bprint.2024.e00350","url":null,"abstract":"<div><p>The complications in liver functioning arising due to hepatic disorders are a major contributor of mortality worldwide, with transplantation being the only resort for patients with severe cases. Due to liver's direct role in drug metabolism, fabrication on functional liver tissue models is eventually becoming a necessity for high-throughput drug screening applications. Tissue engineering approaches could provide an answer to the drooping supply by allowing for the fabrication and printing of a fully operational, implantable, and sustainable liver tissues. Moreover, such bioengineered tissues can be made to resemble their native counterparts. 3D bioengineering strategies including 3D bioprinting and microfluidic-based liver-on-chip models stand out in this regard due to their potential to create physiologically relevant microenvironment/niches for the biofabricated tissues. Nonetheless, achieving vascularization in such bioengineered tissues is still considered one of the biggest bottlenecks for engineers. The incorporation of blood vessels made from endothelial cells (ECs) is addressed in vasculogenesis while angiogenesis investigates generating new vessels from preexisting vasculature. Overall, vascularization is essential for the survival, function, and integration of bioprinted liver tissues, making it a key focus area in the development of functional liver substitutes for regenerative medicine and drug testing applications. This review paper focuses on the opportunities and difficulties of performing vascularization and angiogenesis in 3D bioengineered-based liver tissue models. Particularly, this paper delves into aspects such as methods of bioengineering, bioinks used, analysis techniques, advantages, limitations, and prospects related to 3D bioengineered liver tissue models as well as vascular engineering in general.</p></div>","PeriodicalId":37770,"journal":{"name":"Bioprinting","volume":"41 ","pages":"Article e00350"},"PeriodicalIF":0.0,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141482873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-15DOI: 10.1016/j.bprint.2024.e00348
Leo Lou , Boris Rubinsky
Temperature Controlled Cryoprinting (TCC), is a tissue engineering technique wherein each deposited voxel is frozen with precise control over cooling rates and the direction of freezing. This control allows for the generation of ice crystals with controlled shape and orientation. Recently we found that the macroscale fidelity of the TCC print is substantially improved by using a 3D printing ink composed of a mixture of two compounds: one that solidifies through chemical crosslinking (sodium alginate) and another that solidifies through physical (thermal) effects (agar). In this study we examine the hypothesis that the combination of sodium alginate and agar, affects also the fidelity of the microstructure and thereby the diffusivity of the scaffold. The ability of this technology to generate controlled diffusivity within the tissue scaffold was examined with a directional solidified TCC sample using fluorescence recovery after photobleaching (FRAP) and scanning electron microscope (SEM). We find that the diffusion coefficient in m2/s × 10−10 is: 1.62 1.27 for the unfrozen sample, 2.40 .54 for the rapidly frozen sample and 4.50 for the slow frozen sample. This points to two conclusions. One is that the diffusivity is slow frozen samples is higher than that in unfrozen samples and in rapidly frozen sample. A second observation is that a relatively narrow range of diffusivity variance was obtained when using 2%w/v sodium alginate and 2%w/v of agar. However, when the concentration of agar was reduced to 0.5w/v a much wider spread of diffusivities was measure, .65. This suggests that the addition of agar has also an effect on the microscale fidelity, and consequently the diffusivity. The anisotropic diffusion properties of TCC-printed directional solidification samples were also validated through both FRAP and SEM.
{"title":"Diffusion coefficients in scaffolds made with temperature controlled cryoprinting and an ink made of sodium alginate and agar","authors":"Leo Lou , Boris Rubinsky","doi":"10.1016/j.bprint.2024.e00348","DOIUrl":"10.1016/j.bprint.2024.e00348","url":null,"abstract":"<div><p>Temperature Controlled Cryoprinting (TCC), is a tissue engineering technique wherein each deposited voxel is frozen with precise control over cooling rates and the direction of freezing. This control allows for the generation of ice crystals with controlled shape and orientation. Recently we found that the macroscale fidelity of the TCC print is substantially improved by using a 3D printing ink composed of a mixture of two compounds: one that solidifies through chemical crosslinking (sodium alginate) and another that solidifies through physical (thermal) effects (agar). In this study we examine the hypothesis that the combination of sodium alginate and agar, affects also the fidelity of the microstructure and thereby the diffusivity of the scaffold. The ability of this technology to generate controlled diffusivity within the tissue scaffold was examined with a directional solidified TCC sample using fluorescence recovery after photobleaching (FRAP) and scanning electron microscope (SEM). We find that the diffusion coefficient in m<sup>2</sup>/s × 10<sup>−10</sup> is: 1.62 <span><math><mrow><mo>±</mo></mrow></math></span> 1.27 for the unfrozen sample, 2.40 <span><math><mrow><mo>±</mo><mspace></mspace><mn>1</mn></mrow></math></span>.54 for the rapidly frozen sample and <span><math><mrow><mn>9.72</mn><mo>±</mo></mrow></math></span> 4.50 for the slow frozen sample. This points to two conclusions. One is that the diffusivity is slow frozen samples is higher than that in unfrozen samples and in rapidly frozen sample. A second observation is that a relatively narrow range of diffusivity variance was obtained when using 2%w/v sodium alginate and 2%w/v of agar. However, when the concentration of agar was reduced to 0.5w/v a much wider spread of diffusivities was measure, <span><math><mrow><mn>4.07</mn><mo>±</mo><mn>1</mn></mrow></math></span>.65. This suggests that the addition of agar has also an effect on the microscale fidelity, and consequently the diffusivity. The anisotropic diffusion properties of TCC-printed directional solidification samples were also validated through both FRAP and SEM.</p></div>","PeriodicalId":37770,"journal":{"name":"Bioprinting","volume":"41 ","pages":"Article e00348"},"PeriodicalIF":0.0,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141403908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
While β titanium alloys have garnered extensive attention as a new generation of biomedical materials designed to mitigate stress shielding due to their low modulus, the realm of additive manufacturing for these alloys is still in its nascent stages. This study focuses on the additive manufacturing of Ti–35Nb–5Ta–7Zr alloy powder via directed energy deposition (DED). The primary objectives were assessing the feasibility of employing DED for this alloy powder and identifying processing parameters to achieve nearly dense components. Systematic exploration of the effect of various processing parameters was performed, and the resultant impact on the densification of the produced specimens was studied. Comprehensive analysis of the microstructure, mechanical properties, electrochemical behavior, and cell studies of fully dense sample coupons were performed. These fully dense samples were found to exclusively comprise the β phase of titanium, resulting in a reduced modulus of elasticity (approximately 44–47 GPa) resulting in high yield strength to elastic modulus ratio. Microstructural examinations revealed the presence of both columnar and equiaxed dendrites, with grains transitioning from columnar to equiaxed (known as CET). Electrochemical testing of the coupons indicated exceptional corrosion resistance in the additively manufactured TNZT alloy. Pre-osteoblasts cultured on the alloys showed good attachment, viability, and growth to confirm cytocompatibility. These findings unveiled the attainment of high strength, favorable ductility, a low elastic modulus, excellent corrosion resistance, and cytocompatibility in dense samples created via DED of Ti–35Nb–5Ta–7Zr. These outcomes hold immense significance for the production of patient-specific medical implants manufactured from β-Ti alloys.
{"title":"Additive manufacturing of a low modulus biomedical Ti–Nb–Ta–Zr alloy by directed energy deposition","authors":"Saurabh Kumar Gupta , Sriram Bharath Gugulothu , Eugene Ivanov , Satyam Suwas , Kaushik Chatterjee","doi":"10.1016/j.bprint.2024.e00349","DOIUrl":"10.1016/j.bprint.2024.e00349","url":null,"abstract":"<div><p>While β titanium alloys have garnered extensive attention as a new generation of biomedical materials designed to mitigate stress shielding due to their low modulus, the realm of additive manufacturing for these alloys is still in its nascent stages. This study focuses on the additive manufacturing of Ti–35Nb–5Ta–7Zr alloy powder via directed energy deposition (DED). The primary objectives were assessing the feasibility of employing DED for this alloy powder and identifying processing parameters to achieve nearly dense components. Systematic exploration of the effect of various processing parameters was performed, and the resultant impact on the densification of the produced specimens was studied. Comprehensive analysis of the microstructure, mechanical properties, electrochemical behavior, and cell studies of fully dense sample coupons were performed. These fully dense samples were found to exclusively comprise the β phase of titanium, resulting in a reduced modulus of elasticity (approximately 44–47 GPa) resulting in high yield strength to elastic modulus ratio. Microstructural examinations revealed the presence of both columnar and equiaxed dendrites, with grains transitioning from columnar to equiaxed (known as CET). Electrochemical testing of the coupons indicated exceptional corrosion resistance in the additively manufactured TNZT alloy. Pre-osteoblasts cultured on the alloys showed good attachment, viability, and growth to confirm cytocompatibility. These findings unveiled the attainment of high strength, favorable ductility, a low elastic modulus, excellent corrosion resistance, and cytocompatibility in dense samples created via DED of Ti–35Nb–5Ta–7Zr. These outcomes hold immense significance for the production of patient-specific medical implants manufactured from β-Ti alloys.</p></div>","PeriodicalId":37770,"journal":{"name":"Bioprinting","volume":"41 ","pages":"Article e00349"},"PeriodicalIF":0.0,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141404510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-07DOI: 10.1016/j.bprint.2024.e00347
Joseph P. Licata, Helena Slupianek, Shahrizoda Rizokulova, Jonathan A. Gerstenhaber, Peter I. Lelkes
Three-dimensional (3D) printing has the potential to be used for rapid-prototyping and inexpensive fabrication of bioreactors for advanced cell and tissue culture. However, the suitability of materials used for 3D printing these bioreactors that will be in direct contact with cells and culture media remains to be established. Many of the most common low-cost materials have not been thoroughly tested under stringent cell culture conditions, especially not with highly sensitive human cell types, such as induced pluripotent stem cells (hiPSCs). This study aims to characterize some 3D printed plastics, such as thermoplastics and photopolymers, focusing on the toxicity/cytocompatibility of the materials as assessed by hiPSC viability, retention of pluripotency, and cardiogenic differentiation potential. Experiments were conducted in a manner that simulates contact between 3D printed plastics and cell culture media, as found in a 3D printed bioreactor. Both photopolymers tested here reduced the viability of hiPSCs, but not of primary human fibroblasts, highlighting the importance of carrying out these tests with the cells of interest. The thermoplastics did not adversely affect stem cell viability, pluripotency, or cardiac differentiation potential. However, except for Nylon12, all thermoplastics deformed during autoclaving, leading us to choose Nylon12 as the most suitable material for bioreactor fabrication. This study represents a step forward in the use of 3D printing for the rapid, low-cost fabrication of custom-designed bioreactors.
三维(3D)打印技术可用于快速成型和廉价制造用于先进细胞和组织培养的生物反应器。然而,用于三维打印这些与细胞和培养基直接接触的生物反应器的材料的适用性仍有待确定。许多最常见的低成本材料还没有在严格的细胞培养条件下进行过全面测试,特别是没有与诱导多能干细胞(hiPSC)等高敏感人类细胞类型进行过测试。本研究旨在描述一些3D打印塑料(如热塑性塑料和光聚合物)的特性,重点是通过hiPSC的存活率、多能性保持率和心源性分化潜能来评估材料的毒性/细胞相容性。实验以模拟 3D 打印生物反应器中 3D 打印塑料与细胞培养基接触的方式进行。这里测试的两种光聚合物都降低了hiPSCs的存活率,但没有降低原代人类成纤维细胞的存活率,这凸显了用相关细胞进行这些测试的重要性。热塑性塑料不会对干细胞的活力、多能性或心脏分化潜能产生不利影响。不过,除尼龙12外,所有热塑性塑料在高压灭菌时都会变形,因此我们选择尼龙12作为最适合生物反应器制造的材料。这项研究表明,利用三维打印技术快速、低成本地制造定制设计的生物反应器向前迈进了一步。
{"title":"Biocompatibility of 3D printed plastics for use in bioreactors","authors":"Joseph P. Licata, Helena Slupianek, Shahrizoda Rizokulova, Jonathan A. Gerstenhaber, Peter I. Lelkes","doi":"10.1016/j.bprint.2024.e00347","DOIUrl":"https://doi.org/10.1016/j.bprint.2024.e00347","url":null,"abstract":"<div><p>Three-dimensional (3D) printing has the potential to be used for rapid-prototyping and inexpensive fabrication of bioreactors for advanced cell and tissue culture. However, the suitability of materials used for 3D printing these bioreactors that will be in direct contact with cells and culture media remains to be established. Many of the most common low-cost materials have not been thoroughly tested under stringent cell culture conditions, especially not with highly sensitive human cell types, such as induced pluripotent stem cells (hiPSCs). This study aims to characterize some 3D printed plastics, such as thermoplastics and photopolymers, focusing on the toxicity/cytocompatibility of the materials as assessed by hiPSC viability, retention of pluripotency, and cardiogenic differentiation potential. Experiments were conducted in a manner that simulates contact between 3D printed plastics and cell culture media, as found in a 3D printed bioreactor. Both photopolymers tested here reduced the viability of hiPSCs, but not of primary human fibroblasts, highlighting the importance of carrying out these tests with the cells of interest. The thermoplastics did not adversely affect stem cell viability, pluripotency, or cardiac differentiation potential. However, except for Nylon12, all thermoplastics deformed during autoclaving, leading us to choose Nylon12 as the most suitable material for bioreactor fabrication. This study represents a step forward in the use of 3D printing for the rapid, low-cost fabrication of custom-designed bioreactors.</p></div>","PeriodicalId":37770,"journal":{"name":"Bioprinting","volume":"40 ","pages":"Article e00347"},"PeriodicalIF":0.0,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141302514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-03DOI: 10.1016/j.bprint.2024.e00346
Rafay Ul Azeem , Shokraneh K. Moghaddam , Richard Kaye , Malcolm MacKenzie , Vincenzo Di Ilio , Yusuf Umar , Yuen-Ki Cheong
Additive manufacturing and 3D printing is being widely adopted by the medical industry. This study provides a comprehensive overview of the current state of 3D printing technology in NHS trusts across the UK. Data was collected through a survey using the freedom of information act. The survey revealed that 53 NHS trusts (∼25 %) across the UK are utilising the technology, with a diverse range of strategies and applications. The most common application was the creation of guides and models, used for pre-operative planning, intraoperative guidance, and educational purposes. The study also highlights the regulatory and ethical considerations involved in 3D printing in healthcare. The findings indicate that there are no 3D printing specific standards or guidelines being followed for medical devices and therefore underscores the need for clear and consistent regulatory guidelines to be established. As the 3D printing technology continues to advance, its applications in healthcare are expected to expand rapidly, warranting further research into its impact on patient outcomes and healthcare costs.
医疗行业正在广泛采用快速成型制造和 3D 打印技术。本研究全面概述了英国国家医疗服务系统信托机构的 3D 打印技术现状。数据是通过信息自由法案调查收集的。调查显示,全英国有 53 家 NHS 信托公司(占 25%)正在使用该技术,其策略和应用多种多样。最常见的应用是创建指南和模型,用于术前规划、术中指导和教育目的。该研究还强调了医疗保健领域 3D 打印所涉及的监管和伦理问题。研究结果表明,目前还没有针对医疗设备的3D打印具体标准或指南,因此强调了制定明确一致的监管指南的必要性。随着 3D 打印技术的不断进步,其在医疗保健领域的应用预计将迅速扩大,因此有必要进一步研究其对患者治疗效果和医疗成本的影响。
{"title":"3D printing adoption in NHS trusts within the United Kingdom","authors":"Rafay Ul Azeem , Shokraneh K. Moghaddam , Richard Kaye , Malcolm MacKenzie , Vincenzo Di Ilio , Yusuf Umar , Yuen-Ki Cheong","doi":"10.1016/j.bprint.2024.e00346","DOIUrl":"10.1016/j.bprint.2024.e00346","url":null,"abstract":"<div><p>Additive manufacturing and 3D printing is being widely adopted by the medical industry. This study provides a comprehensive overview of the current state of 3D printing technology in NHS trusts across the UK. Data was collected through a survey using the freedom of information act. The survey revealed that 53 NHS trusts (∼25 %) across the UK are utilising the technology, with a diverse range of strategies and applications. The most common application was the creation of guides and models, used for pre-operative planning, intraoperative guidance, and educational purposes. The study also highlights the regulatory and ethical considerations involved in 3D printing in healthcare. The findings indicate that there are no 3D printing specific standards or guidelines being followed for medical devices and therefore underscores the need for clear and consistent regulatory guidelines to be established. As the 3D printing technology continues to advance, its applications in healthcare are expected to expand rapidly, warranting further research into its impact on patient outcomes and healthcare costs.</p></div>","PeriodicalId":37770,"journal":{"name":"Bioprinting","volume":"41 ","pages":"Article e00346"},"PeriodicalIF":0.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141279412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}