Pub Date : 2021-01-01DOI: 10.5267/j.esm.2021.5.003
A. Velychkovych, O. Bedzir, V. Shopa
The study presented herein describes promising designs of shell vibration isolators. The feature of the proposed designs is the cut thin-walled shell usage as the main bearing link. These resilient elements have high load capacity and, on the other hand, can provide the desired level of damping. From the point of view of mechanics, shell resilient elements are considered as the deformable systems with dry friction. When simulating these systems, structurally nonlinear non-conservative mixed contact issues of cut shell – resilient body frictional interaction arise. In order to take into account all essential options of the aforementioned issues and specify shell resilient element peculiarities of behavior under operational loads, the authors used the method of laboratory experiments for research. We considered two different contact systems. The first one is a cylindrical shell cut along its generatrix, which contacts a deformable filler. The second system is a cylindrical shell with several incomplete slots interacting with the elastic filler. The stress state and radial displacements of the shells, pliability of the resilient elements, and energy dissipation in the contact systems were time-tracked. As a result, we obtained relations for monitored options of the contact bodies and deformation diagrams for different physical-mechanical and geometrical options of the systems It was found that for a fixed cycle asymmetry coefficient with an increase in the friction coefficient between the shell and the filler, the amount of energy dissipated per cycle gradually decreases. The idea of optimizing shell vibration protection devices according to the criterion of maximum absorption of energy from external influences by determining the required tribological properties of contacting pairs is declared.
{"title":"Laboratory experimental study of contact interaction between cut shells and resilient bodies","authors":"A. Velychkovych, O. Bedzir, V. Shopa","doi":"10.5267/j.esm.2021.5.003","DOIUrl":"https://doi.org/10.5267/j.esm.2021.5.003","url":null,"abstract":"The study presented herein describes promising designs of shell vibration isolators. The feature of the proposed designs is the cut thin-walled shell usage as the main bearing link. These resilient elements have high load capacity and, on the other hand, can provide the desired level of damping. From the point of view of mechanics, shell resilient elements are considered as the deformable systems with dry friction. When simulating these systems, structurally nonlinear non-conservative mixed contact issues of cut shell – resilient body frictional interaction arise. In order to take into account all essential options of the aforementioned issues and specify shell resilient element peculiarities of behavior under operational loads, the authors used the method of laboratory experiments for research. We considered two different contact systems. The first one is a cylindrical shell cut along its generatrix, which contacts a deformable filler. The second system is a cylindrical shell with several incomplete slots interacting with the elastic filler. The stress state and radial displacements of the shells, pliability of the resilient elements, and energy dissipation in the contact systems were time-tracked. As a result, we obtained relations for monitored options of the contact bodies and deformation diagrams for different physical-mechanical and geometrical options of the systems It was found that for a fixed cycle asymmetry coefficient with an increase in the friction coefficient between the shell and the filler, the amount of energy dissipated per cycle gradually decreases. The idea of optimizing shell vibration protection devices according to the criterion of maximum absorption of energy from external influences by determining the required tribological properties of contacting pairs is declared.","PeriodicalId":37952,"journal":{"name":"Engineering Solid Mechanics","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70760134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.5267/j.esm.2021.6.001
N. T. Tung
The braking force of the tractor semi-trailer depends on many random factors and road parameters. Therefore, determining the braking force based on theoretical calculation or simulation is not accurate. This paper presents the method of setting up the braking force measurement system of the tractor semi-trailer on the road and constructing the braking dynamics model of the tractor semi-trailer to investigate the braking force using Matlab-Simulink software. The study results show that the average error between the simulation and experimental results of the tractor semi-trailer braking force is 9,81%.
{"title":"Setting up the braking force measurement system of the tractor semi-trailer","authors":"N. T. Tung","doi":"10.5267/j.esm.2021.6.001","DOIUrl":"https://doi.org/10.5267/j.esm.2021.6.001","url":null,"abstract":"The braking force of the tractor semi-trailer depends on many random factors and road parameters. Therefore, determining the braking force based on theoretical calculation or simulation is not accurate. This paper presents the method of setting up the braking force measurement system of the tractor semi-trailer on the road and constructing the braking dynamics model of the tractor semi-trailer to investigate the braking force using Matlab-Simulink software. The study results show that the average error between the simulation and experimental results of the tractor semi-trailer braking force is 9,81%.","PeriodicalId":37952,"journal":{"name":"Engineering Solid Mechanics","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70760171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.5267/J.ESM.2021.3.002
R. Lumor, Lawrence Abladey, D. Tikoli, Alfred Gand, Ezekiel Osei Owusu, K. Offei-Nyako, I. E. Edim
With the increase of construction activities in Ghana, there is an increasing demand in building materials leading to the shortage of the conventional materials. The informal sector is gradually seeing the introduction of quarry dust as a substitute of sand in block production. This paper focuses on a comparative analysis of the quality of sandcrete blocks and quarry dust cement blocks. Block samples were gathered from various suppliers around the Prampram and Dawhenya areas and through various laboratory tests were tested for their dimension tolerance, water absorption and compressive strengths. Aggregate samples were also taken from suppliers for sieve analyses. The study revealed that the quarry dust cement blocks contained relatively higher percentages of coarse grade particles compared to the sandcrete blocks. The total average water absorption of sandcrete blocks was found to be 3.90% while quarry dust showed an improved value of 3.28%. Sandcrete blocks were averagely found to be of a higher compressive strength of 4.31N/mm2, with quarry dust at 3.0N/mm2. The study suggested the likelihood of a lesser use of cement in the production of quarry dust cement blocks due to the similarities in colour between the quarry dust and cement, hence, negatively affecting its compressive strength.
{"title":"A comparative study of the quality of sandcrete cement blocks and quarry dust cement blocks","authors":"R. Lumor, Lawrence Abladey, D. Tikoli, Alfred Gand, Ezekiel Osei Owusu, K. Offei-Nyako, I. E. Edim","doi":"10.5267/J.ESM.2021.3.002","DOIUrl":"https://doi.org/10.5267/J.ESM.2021.3.002","url":null,"abstract":"With the increase of construction activities in Ghana, there is an increasing demand in building materials leading to the shortage of the conventional materials. The informal sector is gradually seeing the introduction of quarry dust as a substitute of sand in block production. This paper focuses on a comparative analysis of the quality of sandcrete blocks and quarry dust cement blocks. Block samples were gathered from various suppliers around the Prampram and Dawhenya areas and through various laboratory tests were tested for their dimension tolerance, water absorption and compressive strengths. Aggregate samples were also taken from suppliers for sieve analyses. The study revealed that the quarry dust cement blocks contained relatively higher percentages of coarse grade particles compared to the sandcrete blocks. The total average water absorption of sandcrete blocks was found to be 3.90% while quarry dust showed an improved value of 3.28%. Sandcrete blocks were averagely found to be of a higher compressive strength of 4.31N/mm2, with quarry dust at 3.0N/mm2. The study suggested the likelihood of a lesser use of cement in the production of quarry dust cement blocks due to the similarities in colour between the quarry dust and cement, hence, negatively affecting its compressive strength.","PeriodicalId":37952,"journal":{"name":"Engineering Solid Mechanics","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70759771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.5267/J.ESM.2021.2.001
S. Rizvi, R. Singh, S. Gupta
The basic aim of this study was to find a relationship between heat input and mechanical properties of high strength low alloy steel (HSLA) welded joints and also elaborate its effect on microstructure. The combined effect of welding current, voltage and speed i.e. Heat Input on mechanical properties of High Strength Low Alloy Steel (ASTM A242 type-II) weldments have been studied in the present work. HSLA steel work pieces were welded by Gas metal arc welding (GMAW) process under varying welding current, arc voltage, and welding speed. Total nine samples were prepared at different heat input level i.e. 1.872 kJ/mm, 1.9333 kJ/mm, 2.0114 kJ/mm, 2.1 kJ/mm, 2.1956 kJ/mm, 2.296 kJ/mm, 2.4 kJ/mm, 2.5067 kJ/mm and 2.6154 kJ/mm It was observed that as heat input increases the ultimate tensile strength and microhardness of weldment decreased while impact strength increased and it was also observed that on increasing the heat input grain size of microstructure tends to coarsening it is only due to decreasing in cooling rate.
{"title":"The impact of heat input on the mechanical properties and microstructure of High Strength Low Alloy steel welded joint by GMA welding process","authors":"S. Rizvi, R. Singh, S. Gupta","doi":"10.5267/J.ESM.2021.2.001","DOIUrl":"https://doi.org/10.5267/J.ESM.2021.2.001","url":null,"abstract":"The basic aim of this study was to find a relationship between heat input and mechanical properties of high strength low alloy steel (HSLA) welded joints and also elaborate its effect on microstructure. The combined effect of welding current, voltage and speed i.e. Heat Input on mechanical properties of High Strength Low Alloy Steel (ASTM A242 type-II) weldments have been studied in the present work. HSLA steel work pieces were welded by Gas metal arc welding (GMAW) process under varying welding current, arc voltage, and welding speed. Total nine samples were prepared at different heat input level i.e. 1.872 kJ/mm, 1.9333 kJ/mm, 2.0114 kJ/mm, 2.1 kJ/mm, 2.1956 kJ/mm, 2.296 kJ/mm, 2.4 kJ/mm, 2.5067 kJ/mm and 2.6154 kJ/mm It was observed that as heat input increases the ultimate tensile strength and microhardness of weldment decreased while impact strength increased and it was also observed that on increasing the heat input grain size of microstructure tends to coarsening it is only due to decreasing in cooling rate.","PeriodicalId":37952,"journal":{"name":"Engineering Solid Mechanics","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70759701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.5267/J.ESM.2021.1.006
O. Folorunso, Y. Hamam, R. Sadiku, S. Ray, Gbolahan Joseph Adekoya
In the search for the solution to energy storage problems, this study investigates the interfacial energy interaction and temperature stability of the composites made of polypyrrole-graphene-borophene (PPy-Gr-Bon) by using molecular dynamics simulations. From the calculated thermodynamics and interfacial energies of the system, comparisons between the ternary and the binary-binary systems were made. The materials in the entity show a good degree of temperature stability to a dynamic process at 300, 350, 400, and 450 K. Moreso, at 300 K, the interaction energy of PPy-Gr, PPy-Bon, and PPy-Gr-Bon are: -5.621e3 kcal/mol, -26.094e3 kcal/mol, and -28.206e3 kcal/mol respectively. The temperature stability of the systems is in the order of: PPy-Gr-Bon > PPy-Bon > PPy-Gr. The effect of temperature on the interaction energy of the systems was also investigated. The ternary system showed higher stability as the temperature increased. In addition, the radial distribution function computed for the three systems revealed that there is a strong, but non-chemical bonding interaction between PPy-Gr-Bon, Bon-PPy, and Gr-PPy. By considering the excellent mechanical properties of PPy-Gr-Bon and the already established high electrical conductivity and chemical stability of Gr, Bon and PPy, their composite is therefore suggested to be considered for the manufacturing of electrochemical electrodes.
{"title":"Comparative study of graphene-polypyrrole and borophene-polypyrrole composites: molecular dynamics modeling approach","authors":"O. Folorunso, Y. Hamam, R. Sadiku, S. Ray, Gbolahan Joseph Adekoya","doi":"10.5267/J.ESM.2021.1.006","DOIUrl":"https://doi.org/10.5267/J.ESM.2021.1.006","url":null,"abstract":"In the search for the solution to energy storage problems, this study investigates the interfacial energy interaction and temperature stability of the composites made of polypyrrole-graphene-borophene (PPy-Gr-Bon) by using molecular dynamics simulations. From the calculated thermodynamics and interfacial energies of the system, comparisons between the ternary and the binary-binary systems were made. The materials in the entity show a good degree of temperature stability to a dynamic process at 300, 350, 400, and 450 K. Moreso, at 300 K, the interaction energy of PPy-Gr, PPy-Bon, and PPy-Gr-Bon are: -5.621e3 kcal/mol, -26.094e3 kcal/mol, and -28.206e3 kcal/mol respectively. The temperature stability of the systems is in the order of: PPy-Gr-Bon > PPy-Bon > PPy-Gr. The effect of temperature on the interaction energy of the systems was also investigated. The ternary system showed higher stability as the temperature increased. In addition, the radial distribution function computed for the three systems revealed that there is a strong, but non-chemical bonding interaction between PPy-Gr-Bon, Bon-PPy, and Gr-PPy. By considering the excellent mechanical properties of PPy-Gr-Bon and the already established high electrical conductivity and chemical stability of Gr, Bon and PPy, their composite is therefore suggested to be considered for the manufacturing of electrochemical electrodes.","PeriodicalId":37952,"journal":{"name":"Engineering Solid Mechanics","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70759226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.5267/j.esm.2021.4.0r1
L. Afriani, G. Susilo, Sri Nawangrini, Iswan Iswan
The editors of Engineering Solid Mechanics retract this article [1] due to severe similarity between the paper and the one published in [2].
由于这篇文章与发表在b[2]上的文章非常相似,《工程固体力学》杂志的编辑撤回了这篇文章[1]。
{"title":"Retraction Note: Soil shrinkage and consolidation study on flood embankments in swamp irrigation areas","authors":"L. Afriani, G. Susilo, Sri Nawangrini, Iswan Iswan","doi":"10.5267/j.esm.2021.4.0r1","DOIUrl":"https://doi.org/10.5267/j.esm.2021.4.0r1","url":null,"abstract":"The editors of Engineering Solid Mechanics retract this article [1] due to severe similarity between the paper and the one published in [2].","PeriodicalId":37952,"journal":{"name":"Engineering Solid Mechanics","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70760267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.5267/J.ESM.2021.1.003
L. Afriani, G. Susilo, Sri Nawangrini, Iswan Iswan
Research in this paper discusses shrinking and consolidation of flood embankments soil in swamp irrigation areas. The flood embankments are made from swampy soil materials. The focus of this research is the reduction of dyke embankment height that occurs due to soil shrinkage and soil consolidation. Investigations about the time of consolidation and land subsidence that occurred on the embankment at certain periods after the embankment established were also carried out in this study. The research sites are some swamp irrigation areas in the Tulang Bawang Watershed, around North-East Lampung, Indonesia. This research was carried out by conducting laboratory tests on soil samples and field observations on the reduction in height of flood embankments in the study area. The research shows that the main cause of total decrease on the embankment is due to linear shrinkage, consolidation of soil under the embankment, an immediate subsidence, and the subsidence of the embankment themselves. Their contribution to total decrease of embankment is 42.51%, 34.48%, 18.32%, and 4.62%, respectively. Results also indicate that the ratio between the percentage of embankment consolidation in downstream area happen faster than the one in upstream area of the river.
{"title":"Soil shrinkage and consolidation study on flood embankments in swamp irrigation areas","authors":"L. Afriani, G. Susilo, Sri Nawangrini, Iswan Iswan","doi":"10.5267/J.ESM.2021.1.003","DOIUrl":"https://doi.org/10.5267/J.ESM.2021.1.003","url":null,"abstract":"Research in this paper discusses shrinking and consolidation of flood embankments soil in swamp irrigation areas. The flood embankments are made from swampy soil materials. The focus of this research is the reduction of dyke embankment height that occurs due to soil shrinkage and soil consolidation. Investigations about the time of consolidation and land subsidence that occurred on the embankment at certain periods after the embankment established were also carried out in this study. The research sites are some swamp irrigation areas in the Tulang Bawang Watershed, around North-East Lampung, Indonesia. This research was carried out by conducting laboratory tests on soil samples and field observations on the reduction in height of flood embankments in the study area. The research shows that the main cause of total decrease on the embankment is due to linear shrinkage, consolidation of soil under the embankment, an immediate subsidence, and the subsidence of the embankment themselves. Their contribution to total decrease of embankment is 42.51%, 34.48%, 18.32%, and 4.62%, respectively. Results also indicate that the ratio between the percentage of embankment consolidation in downstream area happen faster than the one in upstream area of the river.","PeriodicalId":37952,"journal":{"name":"Engineering Solid Mechanics","volume":"1 1","pages":"101-110"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70759077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}