Purpose
To establish an optimal model to improve the malignancy prediction of BI-RADS 4 lesions and the preoperative prediction of tumor prognosis.
Materials and methods
Ninety-six patients with 126 histopathology-confirmed breast lesions were included in the study. Conventional imaging features, radiomic features based on 3.0 T multi-parametric MRI and patient`s clinical characteristics were analyzed and selected as model candidate features. The least absolute shrinkage and selection operator (Lasso) and Random Forest (RF) were used to construct the combined model. Receiver operating characteristic (ROC) and Net Reclassification Improvement Index (NRI) were performed to assess the diagnostic efficiency between the model and BI-RADS category. Relative ratio (RR) was calculated to assess the ability of model to predict the invasiveness of breast cancers. Finally, the malignant probability (MP) calculated by the optimal model, MRI-based size and lymph node (LN) stage were used by logistic algorithm to construct a preoperative Nottingham Prognostic Index (NPI) model.
Results
The combined model incorporating multi-parametric MRI and clinical characteristics was superior to BI-RADS category in the diagnosis of breast cancer (NRI: 1.71, p < 0.05), and had an accuracy of 94 % to predict the malignancy of BI-RADS 4 lesions. In addition, MP calculated by the combined model in association with MRI-based size and LN stage can accurately predict the NPI preoperatively (AUC: 92.1 %).
Conclusions
The combined model based on multi-parametric MRI and clinical characteristics improves the malignancy prediction of BI-RADS 4 lesions and the preoperative prediction of NPI, therefore providing comprehensive information on the characteristics and treatment plans for breast cancer.
扫码关注我们
求助内容:
应助结果提醒方式:
