Pub Date : 2021-03-01DOI: 10.11591/IJPEDS.V12.I1.PP160-169
A. Subki, Z. Manap, Mohd Zaidi Mohd Tumari, A. Z. Jidin, Shahrizal Saat, A. F. Z. Abidin, M. Saealal
This work proposes a comparative analysis of sinusoidal and third harmonic injected reference signal modulation accompany with level-shifted PWM technique named as phase disposition (LSPD), phase opposition disposition (LSPOD), and alternate phase opposition disposition (LSAPOD) and phase-shifted PWM technique. Switching pulses from both reference signal and PWM technique have been fed into three phase eleven level cascaded H-bridge multilevel inverter (CHBMLI) fed on a resistive-inductive load with the modulation depth (MD) set to varied from 80% to 100%. For voltage source inverter, total harmonic distortion (THD) content is critical and must be within the allowable range. To prove the feasibility of the reference signal with carrier signal schemes, the entire simulation of the modulation techniques is established and conducted via the Simulink environment. According to the analyzed result, the performance is acceptable in terms of %THDV and %THDI values. Simulation analysis also indicates, at full modulation depth, due to higher fundamental output voltage component produces via the THIPWM modulation technique compared to the SPWM technique, this causes higher %THDV value.
{"title":"Analysis on three phase cascaded H-bridge multilevel inverter based on sinusoidal and third harmonic injected pulse width modulation via level shifted and phase shifted modulation technique","authors":"A. Subki, Z. Manap, Mohd Zaidi Mohd Tumari, A. Z. Jidin, Shahrizal Saat, A. F. Z. Abidin, M. Saealal","doi":"10.11591/IJPEDS.V12.I1.PP160-169","DOIUrl":"https://doi.org/10.11591/IJPEDS.V12.I1.PP160-169","url":null,"abstract":"This work proposes a comparative analysis of sinusoidal and third harmonic injected reference signal modulation accompany with level-shifted PWM technique named as phase disposition (LSPD), phase opposition disposition (LSPOD), and alternate phase opposition disposition (LSAPOD) and phase-shifted PWM technique. Switching pulses from both reference signal and PWM technique have been fed into three phase eleven level cascaded H-bridge multilevel inverter (CHBMLI) fed on a resistive-inductive load with the modulation depth (MD) set to varied from 80% to 100%. For voltage source inverter, total harmonic distortion (THD) content is critical and must be within the allowable range. To prove the feasibility of the reference signal with carrier signal schemes, the entire simulation of the modulation techniques is established and conducted via the Simulink environment. According to the analyzed result, the performance is acceptable in terms of %THDV and %THDI values. Simulation analysis also indicates, at full modulation depth, due to higher fundamental output voltage component produces via the THIPWM modulation technique compared to the SPWM technique, this causes higher %THDV value.","PeriodicalId":38280,"journal":{"name":"International Journal of Power Electronics and Drive Systems","volume":"12 1","pages":"160-169"},"PeriodicalIF":0.0,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42839675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-03-01DOI: 10.11591/IJPEDS.V12.I1.PP511-519
R. Roul, Awadhesh Kumar
The present work includes a study of the impact of varying pitch angles and angular velocity on the performance parameters of a horizontal axis wind turbine using computational fluid dynamics. Simulations have been made using commercial Ansys 15 software. Seven pitch angles are chosen for study, i.e., 0° , 5 ° , 10° , 15° , 20° , 25° , and 28°, and two angular velocity values of 1.57 rad/sec and 2.22 rad/sec are used for simulation. The turbulence model used is shear stress transport (SST) K-ω. A detailed study of the influence of pitch angle on the aerodynamic characteristics of the wind turbine is highlighted. Performance parameters like torque and power have been found to exhibit random variability with a change in wind velocity and pitch angle. The verification of computational fluid dynamics (CFD) with the standard empirical formula is highlighted. The best pitch angle is noted for the best power coefficient.
{"title":"Effect of blade pitch angle on the aerodynamic characteristics of a twisted blade horizontal axis wind turbine based on numerical simulations","authors":"R. Roul, Awadhesh Kumar","doi":"10.11591/IJPEDS.V12.I1.PP511-519","DOIUrl":"https://doi.org/10.11591/IJPEDS.V12.I1.PP511-519","url":null,"abstract":"The present work includes a study of the impact of varying pitch angles and angular velocity on the performance parameters of a horizontal axis wind turbine using computational fluid dynamics. Simulations have been made using commercial Ansys 15 software. Seven pitch angles are chosen for study, i.e., 0° , 5 ° , 10° , 15° , 20° , 25° , and 28°, and two angular velocity values of 1.57 rad/sec and 2.22 rad/sec are used for simulation. The turbulence model used is shear stress transport (SST) K-ω. A detailed study of the influence of pitch angle on the aerodynamic characteristics of the wind turbine is highlighted. Performance parameters like torque and power have been found to exhibit random variability with a change in wind velocity and pitch angle. The verification of computational fluid dynamics (CFD) with the standard empirical formula is highlighted. The best pitch angle is noted for the best power coefficient.","PeriodicalId":38280,"journal":{"name":"International Journal of Power Electronics and Drive Systems","volume":"12 1","pages":"511-519"},"PeriodicalIF":0.0,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44679939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-03-01DOI: 10.11591/IJPEDS.V12.I1.PP130-138
A. Hota, S. Mishra, D. Mishra, S. Salkuti
This paper presents a branch exchange (BE) based heuristic network reconfiguration technique where, the proposed bus classification strategy remodels dynamically as per the modified topology in order to provide a reconfigured network with minimum loss. Further, for fair allocation of the active power losses, it develops a new active power loss allocation (APLA) technique which eradicates the influence of cross-term analytically from loss formulation without any assumptions and approximations. The effectiveness of the proposed procedure has been investigated against other established methods using a 69-bus radial distribution network (RDN). The results of APLA achieved for original and reconfigured 69-bus RDN are found to be promising and judicious as regard to their load demands and geographical locations. The implementation of present reconfiguration procedure provides a total loss reduction benefit of 55.73% to the utility which highlights the significance of the developed procedure against other established techniques.
{"title":"Allocating active power loss with network reconfiguration in electrical power distribution systems","authors":"A. Hota, S. Mishra, D. Mishra, S. Salkuti","doi":"10.11591/IJPEDS.V12.I1.PP130-138","DOIUrl":"https://doi.org/10.11591/IJPEDS.V12.I1.PP130-138","url":null,"abstract":"This paper presents a branch exchange (BE) based heuristic network reconfiguration technique where, the proposed bus classification strategy remodels dynamically as per the modified topology in order to provide a reconfigured network with minimum loss. Further, for fair allocation of the active power losses, it develops a new active power loss allocation (APLA) technique which eradicates the influence of cross-term analytically from loss formulation without any assumptions and approximations. The effectiveness of the proposed procedure has been investigated against other established methods using a 69-bus radial distribution network (RDN). The results of APLA achieved for original and reconfigured 69-bus RDN are found to be promising and judicious as regard to their load demands and geographical locations. The implementation of present reconfiguration procedure provides a total loss reduction benefit of 55.73% to the utility which highlights the significance of the developed procedure against other established techniques.","PeriodicalId":38280,"journal":{"name":"International Journal of Power Electronics and Drive Systems","volume":"12 1","pages":"130-138"},"PeriodicalIF":0.0,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49531868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-03-01DOI: 10.11591/IJPEDS.V12.I1.PP627-636
S. Kakar, S. Ayob, M. Saad bin Arif, N. M. Nordin, Z. Daud, R. Ayop
This paper presents a new multilevel inverter based on the switched-capacitor technique. The topology aims for renewable energy and fuel cell applications that demand high magnitude output ac voltage. This configuration of the inverter can produce a total of thirteen voltage levels using a single DC source. The topology features voltage boosting with a triple gain of the input voltage source without utilizing a boost DC-DC converter. Furthermore, the voltages of the capacitors are self-balanced at any desired voltage level during each cycle. Therefore, auxiliary circuits are no longer needed. A comparative study of the presented inverter with the classical topologies and recently introduced topologies has been done in power switches, driver circuits, blocking voltage of the switches, and boosting the input voltage. A simple fundamental switching scheme is applied to the proposed topology to validate the viability of the topology.
{"title":"A new multilevel inverter topology based on switched-capacitor technique","authors":"S. Kakar, S. Ayob, M. Saad bin Arif, N. M. Nordin, Z. Daud, R. Ayop","doi":"10.11591/IJPEDS.V12.I1.PP627-636","DOIUrl":"https://doi.org/10.11591/IJPEDS.V12.I1.PP627-636","url":null,"abstract":"This paper presents a new multilevel inverter based on the switched-capacitor technique. The topology aims for renewable energy and fuel cell applications that demand high magnitude output ac voltage. This configuration of the inverter can produce a total of thirteen voltage levels using a single DC source. The topology features voltage boosting with a triple gain of the input voltage source without utilizing a boost DC-DC converter. Furthermore, the voltages of the capacitors are self-balanced at any desired voltage level during each cycle. Therefore, auxiliary circuits are no longer needed. A comparative study of the presented inverter with the classical topologies and recently introduced topologies has been done in power switches, driver circuits, blocking voltage of the switches, and boosting the input voltage. A simple fundamental switching scheme is applied to the proposed topology to validate the viability of the topology.","PeriodicalId":38280,"journal":{"name":"International Journal of Power Electronics and Drive Systems","volume":"12 1","pages":"627-636"},"PeriodicalIF":0.0,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49078568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-03-01DOI: 10.11591/IJPEDS.V12.I1.PP393-403
Nada Zine Laabidine, A. Errarhout, Chakib El Bakkali, K. Mohammed, B. Bossoufi
This paper aims to implement a new contribution for sliding mode control (SMC) of permanent magnet synchronous generator (PMSG) for wind systems conversion with track the maximum power point tracking (MPPT) power. The SMC is a very popular approach due to its robustness in dealing with the non-linear electrical power systems. In this work, the application of the SMC control is by using the non lineare model of the PMSG. The objective of this work is to control stator active and stator reactive power, and the voltage-frequency for a better injection into the network. The results obtained show better robustness.
{"title":"Sliding mode control design of wind power generation system based on permanent magnet synchronous generator","authors":"Nada Zine Laabidine, A. Errarhout, Chakib El Bakkali, K. Mohammed, B. Bossoufi","doi":"10.11591/IJPEDS.V12.I1.PP393-403","DOIUrl":"https://doi.org/10.11591/IJPEDS.V12.I1.PP393-403","url":null,"abstract":"This paper aims to implement a new contribution for sliding mode control (SMC) of permanent magnet synchronous generator (PMSG) for wind systems conversion with track the maximum power point tracking (MPPT) power. The SMC is a very popular approach due to its robustness in dealing with the non-linear electrical power systems. In this work, the application of the SMC control is by using the non lineare model of the PMSG. The objective of this work is to control stator active and stator reactive power, and the voltage-frequency for a better injection into the network. The results obtained show better robustness.","PeriodicalId":38280,"journal":{"name":"International Journal of Power Electronics and Drive Systems","volume":"12 1","pages":"393-403"},"PeriodicalIF":0.0,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47281977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-03-01DOI: 10.11591/IJPEDS.V12.I1.PP212-216
S. W. Shneen, Fatin Nabeel Abdullah, D. H. Shaker
This work is presenting under the title simulation model of single phase PWM inverter by using MATLAB/Simulink. There are many researchers’ works in this field with the different ways because it is important field and it has many applications. The converter DC power to AC power for any system that mean it need the power electronic device (inverter). The inverter is using when the source DC power and the load AC power. In this work, the simulation system includes the source 300V DC power, inverter, LC filter and load (R). The simulation result shows the waveform of all part in this system like input and output current and voltage.
{"title":"Simulation model of single phase PWM inverter by using MATLAB/Simulink","authors":"S. W. Shneen, Fatin Nabeel Abdullah, D. H. Shaker","doi":"10.11591/IJPEDS.V12.I1.PP212-216","DOIUrl":"https://doi.org/10.11591/IJPEDS.V12.I1.PP212-216","url":null,"abstract":"This work is presenting under the title simulation model of single phase PWM inverter by using MATLAB/Simulink. There are many researchers’ works in this field with the different ways because it is important field and it has many applications. The converter DC power to AC power for any system that mean it need the power electronic device (inverter). The inverter is using when the source DC power and the load AC power. In this work, the simulation system includes the source 300V DC power, inverter, LC filter and load (R). The simulation result shows the waveform of all part in this system like input and output current and voltage.","PeriodicalId":38280,"journal":{"name":"International Journal of Power Electronics and Drive Systems","volume":"12 1","pages":"212-216"},"PeriodicalIF":0.0,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43906449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-03-01DOI: 10.11591/IJPEDS.V12.I1.PP542-550
A. Iqbal, Deng Ying, F. Akhter, M. Panjwani, Danish Khan
Renewable energy sources could be the main contributor to fulfilling the world’s energy requirement. Wind energy is grabbing the world’s attention due to its abundant nature and reliability. Wind energy is a prominent renewable energy source due to its availability and higher reliability. Despite the aforementioned benefits, there are some challenges such as wind measurement and prediction due to the turbulent nature of the wind. Lidar (light detection and ranging) technology is used in wind turbines to preview the wind and act it accordingly. Wind speed along with the direction is measured by the Lidar before it reaches the wind turbine plane and the control system of the wind turbine utilizes this data for optimal results. It enhances the control system along with it optimizes the output power. This paper presents the Lidar simulation model, which previews the wind earlier than the conventional feedback method. The Lidar simulation model is prepared and implemented on the horizontal axis wind turbine. The simulation is performed in GH Bladed at a 2.0 MW wind turbine. The output results are analyzed with the former method. The power extracted, pitch angle, rotor torque obtained from the proposed methodology proves its efficacy.
{"title":"Design and simulation of Lidar based control system for wind turbine","authors":"A. Iqbal, Deng Ying, F. Akhter, M. Panjwani, Danish Khan","doi":"10.11591/IJPEDS.V12.I1.PP542-550","DOIUrl":"https://doi.org/10.11591/IJPEDS.V12.I1.PP542-550","url":null,"abstract":"Renewable energy sources could be the main contributor to fulfilling the world’s energy requirement. Wind energy is grabbing the world’s attention due to its abundant nature and reliability. Wind energy is a prominent renewable energy source due to its availability and higher reliability. Despite the aforementioned benefits, there are some challenges such as wind measurement and prediction due to the turbulent nature of the wind. Lidar (light detection and ranging) technology is used in wind turbines to preview the wind and act it accordingly. Wind speed along with the direction is measured by the Lidar before it reaches the wind turbine plane and the control system of the wind turbine utilizes this data for optimal results. It enhances the control system along with it optimizes the output power. This paper presents the Lidar simulation model, which previews the wind earlier than the conventional feedback method. The Lidar simulation model is prepared and implemented on the horizontal axis wind turbine. The simulation is performed in GH Bladed at a 2.0 MW wind turbine. The output results are analyzed with the former method. The power extracted, pitch angle, rotor torque obtained from the proposed methodology proves its efficacy.","PeriodicalId":38280,"journal":{"name":"International Journal of Power Electronics and Drive Systems","volume":"12 1","pages":"542-550"},"PeriodicalIF":0.0,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47059507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-03-01DOI: 10.11591/IJPEDS.V12.I1.PP80-87
V. Kodkin, A. Anikin
The article presents a technique for experimental research of variable frequency drives experiencing periodic torque disturbances of variable frequency. The technique is based on the nonlinear transfer function of a link of an asynchronous electric motor, which forms an electromagnetic torque, proposed in previously published articles. The dependence of the transfer function on the frequency of the stator voltage and slip determines the research methodology. Experiments have shown the advantage of the dynamic characteristics of a drive with a positive feedback on the stator current over electric drives with traditional control methods (vector and scalar sensorless), and in terms of dynamic characteristics they also exceed drives with a vector control closed in motor speed. These advantages are retained when the frequency of change of the disturbing torque is changed from 0 to 5 Hz.
{"title":"Experimental study of the VFD’s speed stabilization efficiency under torque disturbances","authors":"V. Kodkin, A. Anikin","doi":"10.11591/IJPEDS.V12.I1.PP80-87","DOIUrl":"https://doi.org/10.11591/IJPEDS.V12.I1.PP80-87","url":null,"abstract":"The article presents a technique for experimental research of variable frequency drives experiencing periodic torque disturbances of variable frequency. The technique is based on the nonlinear transfer function of a link of an asynchronous electric motor, which forms an electromagnetic torque, proposed in previously published articles. The dependence of the transfer function on the frequency of the stator voltage and slip determines the research methodology. Experiments have shown the advantage of the dynamic characteristics of a drive with a positive feedback on the stator current over electric drives with traditional control methods (vector and scalar sensorless), and in terms of dynamic characteristics they also exceed drives with a vector control closed in motor speed. These advantages are retained when the frequency of change of the disturbing torque is changed from 0 to 5 Hz.","PeriodicalId":38280,"journal":{"name":"International Journal of Power Electronics and Drive Systems","volume":"12 1","pages":"80-87"},"PeriodicalIF":0.0,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45548473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-03-01DOI: 10.11591/IJPEDS.V12.I1.PP99-111
Eder A. Molina-Viloria, John Edwin Candelo Becerra, F. H. Velasco
This paper presents a new autonomous effective power distribution control strategy for three-phase parallel inverters. The proposal uses a controller that can provide the system with accurate power sharing among distributed generators installed in the microgrid once some load variations are presented in the network. The methodology uses a virtual current loop introduced into the current controller of the inverter to optimize the output signal, which goes directly to the PWM. This virtual current is obtained by using a virtual impedance loop. Furthermore, a small-signal model of the system is used to check stability of the proposed control strategy, which was developed for island mode operation of the microgrid. Simulations were performed for a microgrid with two generators and a load with five households and implemented in MATLAB/Simulink software. The results show that the model provides a wide margin of stability and a rapid response when electrical loads change, thus fulfilling the reactive power sharing among generators. The proposed method shows a large margin of stability and a rapid transient response of the system.
{"title":"Reactive power sharing among distributed generators in a microgrid by using virtual current","authors":"Eder A. Molina-Viloria, John Edwin Candelo Becerra, F. H. Velasco","doi":"10.11591/IJPEDS.V12.I1.PP99-111","DOIUrl":"https://doi.org/10.11591/IJPEDS.V12.I1.PP99-111","url":null,"abstract":"This paper presents a new autonomous effective power distribution control strategy for three-phase parallel inverters. The proposal uses a controller that can provide the system with accurate power sharing among distributed generators installed in the microgrid once some load variations are presented in the network. The methodology uses a virtual current loop introduced into the current controller of the inverter to optimize the output signal, which goes directly to the PWM. This virtual current is obtained by using a virtual impedance loop. Furthermore, a small-signal model of the system is used to check stability of the proposed control strategy, which was developed for island mode operation of the microgrid. Simulations were performed for a microgrid with two generators and a load with five households and implemented in MATLAB/Simulink software. The results show that the model provides a wide margin of stability and a rapid response when electrical loads change, thus fulfilling the reactive power sharing among generators. The proposed method shows a large margin of stability and a rapid transient response of the system.","PeriodicalId":38280,"journal":{"name":"International Journal of Power Electronics and Drive Systems","volume":"12 1","pages":"99-111"},"PeriodicalIF":0.0,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42344945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-03-01DOI: 10.11591/IJPEDS.V12.I1.PP474-488
M. Abdullahi, A. Mas’ud, I. A. Masud, J. Ardila-Rey, F. Muhammad-Sukki, Ridoan Karim, A. Saudi, N. Bani, Asan Vernyuy Wirba
The building integrated photovoltaic (BIPV) system have recently drawn interest and have demonstrated high potential to assist building owners supply both thermal and electrical loads. In this paper, the BIPV technology has been reviewed, in terms of its performance, efficiency and power generation capacity. Specifically, the applications of the BIPV in tropical climate regions have been discussed, together with its prospects and challenges. For these schemes to be implemented in a tropical climatic region, the following issues must be considered: 1) Certain studies must be done relating to electrical load demand, predicted PV output, location of the buildings and its integration and constraints associated with roof design; 2) For the highest energy production from solar PV, the solar collectors need to be with the right tilt depending on the location; 3) Design criteria such as safety, efficiency, durability, flexibility and constructive issues need to be considered; 4) The government of such countries must train electricians and carpenters on PV installations; 5) The BIPV roofing must perform same function as normal roofing materials, such as noise protection, water tightness, insulation and climate protection, and 6) As practiced around the world, these countries must establish design standards for the BIPV.
{"title":"A review of building integrated photovoltaic: case study of tropical climatic regions","authors":"M. Abdullahi, A. Mas’ud, I. A. Masud, J. Ardila-Rey, F. Muhammad-Sukki, Ridoan Karim, A. Saudi, N. Bani, Asan Vernyuy Wirba","doi":"10.11591/IJPEDS.V12.I1.PP474-488","DOIUrl":"https://doi.org/10.11591/IJPEDS.V12.I1.PP474-488","url":null,"abstract":"The building integrated photovoltaic (BIPV) system have recently drawn interest and have demonstrated high potential to assist building owners supply both thermal and electrical loads. In this paper, the BIPV technology has been reviewed, in terms of its performance, efficiency and power generation capacity. Specifically, the applications of the BIPV in tropical climate regions have been discussed, together with its prospects and challenges. For these schemes to be implemented in a tropical climatic region, the following issues must be considered: 1) Certain studies must be done relating to electrical load demand, predicted PV output, location of the buildings and its integration and constraints associated with roof design; 2) For the highest energy production from solar PV, the solar collectors need to be with the right tilt depending on the location; 3) Design criteria such as safety, efficiency, durability, flexibility and constructive issues need to be considered; 4) The government of such countries must train electricians and carpenters on PV installations; 5) The BIPV roofing must perform same function as normal roofing materials, such as noise protection, water tightness, insulation and climate protection, and 6) As practiced around the world, these countries must establish design standards for the BIPV.","PeriodicalId":38280,"journal":{"name":"International Journal of Power Electronics and Drive Systems","volume":"12 1","pages":"474-488"},"PeriodicalIF":0.0,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44300697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}