Optoelectronic memories have gained remarkable attention owing to their inherent capability of manipulating charge carriers under the influence of both electrical and light stimuli. The emerging optoelectronic neuromorphic devices can be used in diverse applications, including logical data processing, confidential information recording, and next-generation bionic visual systems. Photosensitive materials are foundational to many technologies, including solar cells, sensors, thin-film transistors, and light-emitting diodes. Recently, two-dimensional (2D) photosensitive materials have found application in bionic visual hardware based on optoelectronic synaptic memristor and memtransistor devices. The synthesis and growth of optoelectronic memories driven by 2D photosensitive materials have opened new horizons in the field of bionic visual systems due to their diverse optical properties, atomic scalability, and ultrafast charge carrier dynamics. This review highlights the recent developments in bionic visual hardware based on optoelectronic synaptic memristive devices and memtransistors, wherein various 2D photosensitive materials and device structures have been utilised. We first summarise the limitations of traditional computing, highlight the key advantages of this novel computing paradigm, and discuss the fundamentals of bio-vision formation. Next, we comprehensively review the various device structures and operating mechanisms of optoelectronic memristive and memtransistor architectures. The recent developments in optoelectronic synaptic devices by incorporating various 2D photosensitive materials and their application in the field of bionic visual perception are also discussed. Finally, we outline the current drawbacks and challenges of optoelectronic neuromorphic devices and the future perspective of bionic visual hardware on real system realisation.
扫码关注我们
求助内容:
应助结果提醒方式:
