首页 > 最新文献

Materials Science and Engineering: R: Reports最新文献

英文 中文
Biodegradable polymers from lignocellulosic biomass and synthetic plastic waste: An emerging alternative for biomedical applications 从木质纤维素生物质和合成塑料废物中提取的可生物降解聚合物:生物医学应用的新兴替代方案
IF 31 1区 材料科学 Q1 Engineering Pub Date : 2023-10-31 DOI: 10.1016/j.mser.2023.100761
Krishanu Ghosal , Santanu Ghosh

In the current era of globalization, the exponential surge in the production, consumption, and disposal of agricultural and post-consumer polymeric waste material has emerged as a pressing environmental concern of paramount importance. The current situation, wherein the presence of plastic particles and other plastic-based contaminants in the food supply chain is increasingly evident, poses a profound health risk to mankind. In this regard, the utilization of conventional waste management practices, such as, open burning, landfilling, and incineration, leads to adverse consequences, like, the emission of greenhouse gases and substantial economic losses. To encounter such problems, researchers are actively engaged in the development of innovative recycling processes aimed at closed-loop circular economy by transforming these wastes into sustainable value added products. This comprehensive review emphasizes the necessity of sustainable recycling of lignocellulosic biomass and synthetic plastic wastes, with a specific focus on their transformation into biodegradable polymers and their potential biomedical applications. Moreover, we have critically discussed the recent trends and drivers in this field, global environment threat, different recycling route of lignocellulosic biomass and synthetic polymer wastes. Furthermore, this review provides a detailed discussion on the applications of these biodegradable polymers in the field of tissue engineering, drug delivery, and antimicrobial applications. Additionally, we have also addressed the critical challenges involved in this field and possible solutions to overcome them.

在当今全球化时代,农业和消费后聚合物废料的生产、消费和处置呈指数级增长,已成为最紧迫的环境问题。目前,食品供应链中塑料颗粒和其他塑料污染物的存在日益明显,对人类的健康构成严重威胁。在这方面,利用传统的废物管理做法,例如露天焚烧、堆填和焚化,会产生不利后果,例如排放温室气体和造成重大经济损失。为了解决这些问题,研究人员积极致力于开发创新的回收工艺,旨在将这些废物转化为可持续的增值产品,以实现闭环循环经济。这篇综合综述强调了可持续回收木质纤维素生物质和合成塑料废物的必要性,特别关注了它们转化为可生物降解聚合物及其潜在的生物医学应用。此外,我们还批判性地讨论了该领域的最新趋势和驱动因素,全球环境威胁,木质纤维素生物质和合成聚合物废物的不同回收途径。此外,本文还对这些生物可降解聚合物在组织工程、药物传递和抗菌等领域的应用进行了详细的讨论。此外,我们还讨论了该领域涉及的关键挑战以及克服这些挑战的可能解决方案。
{"title":"Biodegradable polymers from lignocellulosic biomass and synthetic plastic waste: An emerging alternative for biomedical applications","authors":"Krishanu Ghosal ,&nbsp;Santanu Ghosh","doi":"10.1016/j.mser.2023.100761","DOIUrl":"https://doi.org/10.1016/j.mser.2023.100761","url":null,"abstract":"<div><p><span>In the current era of globalization, the exponential surge in the production, consumption, and disposal of agricultural and post-consumer polymeric waste material has emerged as a pressing environmental concern of paramount importance. The current situation, wherein the presence of plastic particles and other plastic-based contaminants in the food supply chain is increasingly evident, poses a profound health risk to mankind. In this regard, the utilization of conventional waste management practices, such as, open burning, landfilling, and incineration, leads to adverse consequences, like, the emission of greenhouse gases and substantial economic losses. To encounter such problems, researchers are actively engaged in the development of innovative recycling processes aimed at closed-loop circular economy by transforming these wastes into sustainable value added products. This comprehensive review emphasizes the necessity of sustainable recycling of lignocellulosic biomass and synthetic plastic wastes, with a specific focus on their transformation into biodegradable polymers and their potential biomedical applications. Moreover, we have critically discussed the recent trends and drivers in this field, global environment threat, different recycling route of lignocellulosic biomass and </span>synthetic polymer wastes. Furthermore, this review provides a detailed discussion on the applications of these biodegradable polymers in the field of tissue engineering, drug delivery, and antimicrobial applications. Additionally, we have also addressed the critical challenges involved in this field and possible solutions to overcome them.</p></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":null,"pages":null},"PeriodicalIF":31.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138086416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent progress on performance-enhancing strategies in flexible photodetectors: From structural engineering to flexible integration 柔性光电探测器性能提升策略的最新进展:从结构工程到柔性集成
IF 31 1区 材料科学 Q1 Engineering Pub Date : 2023-10-27 DOI: 10.1016/j.mser.2023.100759
Pu Wang , Yingying Lan , Changmeng Huan , Jilong Luo , Wenchen Cai , Juntian Fan , Xinjun He , Zhanfeng Huang , Lu Zhu , Qingqing Ke , Guangyu Zhang , Shenghuang Lin

As an important component of future electronic devices, photodetectors require mechanical flexibility, and stretchability to meet the demands of conformal, portable, and lightweight applications. As expected, flexible photodetectors (FPDs) were born timely and have obtained rapid development driven by the considerable progress of the optoelectronic industry. Especially, FPDs appear to serve as a bridge between electronic information systems and biological systems due to their potential functional applications including wearable devices, artificial intelligence, bionics devices, etc. However, the poor mechanical stability, narrow spectral response range, low responsivities and difficulty in miniaturization of traditional FPDs have greatly limited their commercial and industrial applications. One of the most promising routes toward addressing the inherent shortcomings of FPDs is through constructing novel micro/nano-structured integrated flexible detection systems to achieve diverse functions and enhance performance, hence facilitating flexible integration. In this review, the recent advances in performance-enhancing strategies for FPDs are outlined and discussed. First, the detection mechanism, performance enhancement mode, and key figures-of-merit of FPDs are summarized and basic design principles of the FPDs are discussed emphatically. Then, recent progress in structural engineering-based performance enhancement of FPDs is reviewed, categorized by the types of enhancement, electric field manipulation engineering, strain engineering, and optical field manipulation engineering. Moreover, this review also summarizes the integration strategies for the application of FPDs and finally puts forward the challenges and future research directions in these fields.

作为未来电子器件的重要组成部分,光电探测器需要机械灵活性和可拉伸性,以满足保形、便携和轻量化应用的要求。柔性光电探测器(FPDs)应运而生,并在光电工业长足进步的推动下得到了迅速发展。特别是,由于其潜在的功能应用,包括可穿戴设备,人工智能,仿生设备等,FPDs似乎成为电子信息系统和生物系统之间的桥梁。然而,传统FPDs的机械稳定性差、光谱响应范围窄、响应率低、小型化难度大,极大地限制了其商业和工业应用。通过构建新型的微/纳米结构集成柔性检测系统,实现功能的多样化和性能的提高,从而促进柔性集成,是解决FPDs固有缺陷的最有希望的途径之一。在这篇综述中,概述和讨论了fpd性能提高策略的最新进展。首先,总结了fpga的检测机制、性能增强模式和关键优值,重点讨论了fpga的基本设计原则。其次,综述了近年来基于结构工程的FPDs性能增强的研究进展,并将其分为增强类型、电场操纵工程、应变工程和光场操纵工程。此外,本文还总结了FPDs应用的集成策略,并提出了这些领域面临的挑战和未来的研究方向。
{"title":"Recent progress on performance-enhancing strategies in flexible photodetectors: From structural engineering to flexible integration","authors":"Pu Wang ,&nbsp;Yingying Lan ,&nbsp;Changmeng Huan ,&nbsp;Jilong Luo ,&nbsp;Wenchen Cai ,&nbsp;Juntian Fan ,&nbsp;Xinjun He ,&nbsp;Zhanfeng Huang ,&nbsp;Lu Zhu ,&nbsp;Qingqing Ke ,&nbsp;Guangyu Zhang ,&nbsp;Shenghuang Lin","doi":"10.1016/j.mser.2023.100759","DOIUrl":"https://doi.org/10.1016/j.mser.2023.100759","url":null,"abstract":"<div><p>As an important component of future electronic devices, photodetectors<span><span> require mechanical flexibility, and stretchability to meet the demands of conformal, portable, and lightweight applications. As expected, flexible photodetectors (FPDs) were born timely and have obtained rapid development driven by the considerable progress of the optoelectronic industry. Especially, FPDs appear to serve as a bridge between electronic information systems and biological systems due to their potential functional applications including </span>wearable devices, artificial intelligence, bionics devices, etc. However, the poor mechanical stability, narrow spectral response range, low responsivities and difficulty in miniaturization of traditional FPDs have greatly limited their commercial and industrial applications. One of the most promising routes toward addressing the inherent shortcomings of FPDs is through constructing novel micro/nano-structured integrated flexible detection systems to achieve diverse functions and enhance performance, hence facilitating flexible integration. In this review, the recent advances in performance-enhancing strategies for FPDs are outlined and discussed. First, the detection mechanism, performance enhancement mode, and key figures-of-merit of FPDs are summarized and basic design principles of the FPDs are discussed emphatically. Then, recent progress in structural engineering-based performance enhancement of FPDs is reviewed, categorized by the types of enhancement, electric field manipulation engineering, strain engineering, and optical field manipulation engineering. Moreover, this review also summarizes the integration strategies for the application of FPDs and finally puts forward the challenges and future research directions in these fields.</span></p></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":null,"pages":null},"PeriodicalIF":31.0,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138086906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Electrical tracking, erosion and flammability resistance of high voltage outdoor composite insulation: Research, innovation and future outlook 高压室外复合绝缘的电跟踪、耐蚀性和耐燃性:研究、创新和未来展望
IF 31 1区 材料科学 Q1 Engineering Pub Date : 2023-10-14 DOI: 10.1016/j.mser.2023.100757
M. Tariq Nazir , Arslan Khalid , Shakeel Akram , Palash Mishra , Imrana I. Kabir , Guan H. Yeoh , B. Toan Phung , Khoi Loon Wong

Ensuring the fire safety of high voltage (HV) outdoor insulators is key to maintain the reliable operation of the electrical grid. This requires the careful selection of suitable polymeric composite materials with excellent electrical tracking, erosion, and fire resistance characteristics. To improve their performance against electrical tracking and potential combustion issues, inorganic additives are commonly integrated into these materials. The focus of this review article is on describing the progress and innovations in enhancing the electrical tracking, erosion, and fire performance of polymeric materials by incorporating inorganic additives. The main objective is to explore the development of these materials and showcase their evaluation through laboratory testing. This study highlights significant state-of-the-art advancements in the field, providing valuable insights into its current progress. Additionally, the research outlines prospects, offering a peek at how upcoming studies are expected to further advance the scientific knowledge in the field. By disseminating critical information about the development, testing, and future potential of polymeric materials containing inorganic additives, this work is expected to facilitate researchers in advancing their work in HV outdoor insulation, leading to more efficient electrical insulation solutions for safer and reliable electrical grids.

确保室外高压绝缘子的消防安全是维持电网可靠运行的关键。这需要仔细选择合适的聚合物复合材料,具有优异的电跟踪,侵蚀和耐火特性。为了提高其抗电跟踪和潜在燃烧问题的性能,无机添加剂通常集成到这些材料中。本文综述了无机添加剂在增强高分子材料电跟踪、耐蚀和防火性能方面的研究进展和创新。主要目的是探索这些材料的发展,并通过实验室测试展示它们的评估。这项研究突出了该领域的重大进展,为其当前进展提供了有价值的见解。此外,该研究概述了前景,提供了未来的研究如何有望进一步推进该领域的科学知识的一瞥。通过传播关于含有无机添加剂的聚合物材料的开发、测试和未来潜力的关键信息,这项工作有望促进研究人员推进高压室外绝缘工作,为更安全可靠的电网提供更有效的电气绝缘解决方案。
{"title":"Electrical tracking, erosion and flammability resistance of high voltage outdoor composite insulation: Research, innovation and future outlook","authors":"M. Tariq Nazir ,&nbsp;Arslan Khalid ,&nbsp;Shakeel Akram ,&nbsp;Palash Mishra ,&nbsp;Imrana I. Kabir ,&nbsp;Guan H. Yeoh ,&nbsp;B. Toan Phung ,&nbsp;Khoi Loon Wong","doi":"10.1016/j.mser.2023.100757","DOIUrl":"https://doi.org/10.1016/j.mser.2023.100757","url":null,"abstract":"<div><p>Ensuring the fire safety of high voltage (HV) outdoor insulators is key to maintain the reliable operation of the electrical grid. This requires the careful selection of suitable polymeric composite materials with excellent electrical tracking, erosion, and fire resistance characteristics. To improve their performance against electrical tracking and potential combustion issues, inorganic additives are commonly integrated into these materials. The focus of this review article is on describing the progress and innovations in enhancing the electrical tracking, erosion, and fire performance of polymeric materials by incorporating inorganic additives. The main objective is to explore the development of these materials and showcase their evaluation through laboratory testing. This study highlights significant state-of-the-art advancements in the field, providing valuable insights into its current progress. Additionally, the research outlines prospects, offering a peek at how upcoming studies are expected to further advance the scientific knowledge in the field. By disseminating critical information about the development, testing, and future potential of polymeric materials containing inorganic additives, this work is expected to facilitate researchers in advancing their work in HV outdoor insulation, leading to more efficient electrical insulation solutions for safer and reliable electrical grids.</p></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":null,"pages":null},"PeriodicalIF":31.0,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0927796X23000438/pdfft?md5=363c52bd844ec0416429993cf01fcd02&pid=1-s2.0-S0927796X23000438-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138086903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rational designs of mechanical metamaterials: Formulations, architectures, tessellations and prospects 机械超材料的合理设计:配方、结构、镶嵌与展望
IF 31 1区 材料科学 Q1 Engineering Pub Date : 2023-10-07 DOI: 10.1016/j.mser.2023.100755
Jie Gao , Xiaofei Cao , Mi Xiao , Zhiqiang Yang , Xiaoqiang Zhou , Ying Li , Liang Gao , Wentao Yan , Timon Rabczuk , Yiu-Wing Mai

Mechanical Metamaterials (MMs) are artificially designed structures with extraordinary properties that are dependent on micro architectures and spatial tessellations of unit cells, rather than constitutive compositions. They have demonstrated promising and attractive application potentials in practical engineering. Recently, how to rationally design novel MMs and discover their multifunctional behaviors has received tremendous discussions with rapid progress, particularly in the last ten years with an enormous increase of publications and citations. Herein, we present a comprehensive overview of considerable advances of MMs, including critical focuses at different scales, forward and inverse design mechanisms with optimization formulations, micro architectures of unit cells, and their spatial tessellations in discovering novel MMs and future prospects. The implications in clarifying the four focuses at levels from the global to the physical in MMs are highlighted, that is, unique structures designed for unique functions, unique micro unit cells placed in unique locations, unique micro unit cells designed for unique properties and unique micro unit cells evaluated by unique mechanisms. We examine the inverse designs of MMs with intrinsic mechanisms of structure-property driven characteristics to achieve unprecedented behaviors, which are involved into material designs and multiscale designs. The former primarily optimizes micro architectures to explore novel MMs, and the latter focuses on micro architectures and spatial tessellations to promote multifunctional applications of MMs in engineering. Finally, we propose several promising research topics with serious challenges in design formulations, micro architectures, spatial tessellations and industrial applications.

机械超材料(mm)是人工设计的具有非凡性能的结构,它依赖于微结构和单位细胞的空间镶嵌,而不是本构成分。它们在实际工程中具有良好的应用潜力。近年来,如何合理地设计新型mm并发现其多功能行为受到了广泛的讨论,特别是近十年来,研究进展迅速,出版物和引用量大幅增加。在此,我们全面概述了mm的重大进展,包括不同尺度上的关键焦点,优化配方的正向和逆设计机制,单位细胞的微结构,以及它们在发现新型mm和未来前景方面的空间镶嵌。强调了在mm中从全局到物理层面阐明四个重点的含义,即为独特功能设计的独特结构,放置在独特位置的独特微单元,为独特性能设计的独特微单元以及由独特机制评估的独特微单元。我们研究了具有结构-性能驱动特性的内在机制的mm的逆设计,以实现前所未有的行为,这涉及到材料设计和多尺度设计。前者主要对微结构进行优化,探索新型mm模型;后者主要研究微结构和空间镶嵌,促进mm模型在工程中的多功能应用。最后,我们提出了在设计配方、微架构、空间镶嵌和工业应用方面面临严峻挑战的几个有前景的研究课题。
{"title":"Rational designs of mechanical metamaterials: Formulations, architectures, tessellations and prospects","authors":"Jie Gao ,&nbsp;Xiaofei Cao ,&nbsp;Mi Xiao ,&nbsp;Zhiqiang Yang ,&nbsp;Xiaoqiang Zhou ,&nbsp;Ying Li ,&nbsp;Liang Gao ,&nbsp;Wentao Yan ,&nbsp;Timon Rabczuk ,&nbsp;Yiu-Wing Mai","doi":"10.1016/j.mser.2023.100755","DOIUrl":"https://doi.org/10.1016/j.mser.2023.100755","url":null,"abstract":"<div><p>Mechanical Metamaterials (MMs) are artificially designed structures with extraordinary properties that are dependent on micro architectures and spatial tessellations of unit cells, rather than constitutive compositions. They have demonstrated promising and attractive application potentials in practical engineering. Recently, how to rationally design novel MMs and discover their multifunctional behaviors has received tremendous discussions with rapid progress, particularly in the last ten years with an enormous increase of publications and citations. Herein, we present a comprehensive overview of considerable advances of MMs, including critical focuses at different scales, forward and inverse design mechanisms with optimization formulations, micro architectures of unit cells, and their spatial tessellations in discovering novel MMs and future prospects. The implications in clarifying the four focuses at levels from the global to the physical in MMs are highlighted, that is, <em><strong>unique structures designed for unique functions</strong>, <strong>unique micro unit cells placed in unique locations</strong>, <strong>unique micro unit cells designed for unique properties</strong> and <strong>unique micro unit cells evaluated by unique mechanisms</strong>.</em> We examine the inverse designs of MMs with intrinsic mechanisms of structure-property driven characteristics to achieve unprecedented behaviors, which are involved into material designs and multiscale designs. The former primarily optimizes micro architectures to explore novel MMs, and the latter focuses on micro architectures and spatial tessellations to promote multifunctional applications of MMs in engineering. Finally, we propose several promising research topics with serious challenges in design formulations, micro architectures, spatial tessellations and industrial applications.</p></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":null,"pages":null},"PeriodicalIF":31.0,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138086899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Lead-free perovskites and derivatives enable direct and scintillation-type X-ray detection 无铅钙钛矿及其衍生物可实现直接和闪烁型x射线检测
IF 31 1区 材料科学 Q1 Engineering Pub Date : 2023-10-05 DOI: 10.1016/j.mser.2023.100756
Chao Zhou , Mingyue Han , Yingrui Xiao , Wenyan Tan , Xi Jin , Xiaoxue Wu , Yuxuan Yang , Siyuan Zhu , Haobo Lin , Shenghuang Lin , Qi Chen , Qijie Liang , Jinsong Hu , Wei Zhang , Yan Jiang

Lead halide perovskites with excellent optoelectronic properties have attracted extensive attention and made amazing progress for X-ray detectors and imaging. However, lead is highly toxic to humans, animals and ecosystems, posing a great safety concern to its commercial application. It has become an urgent need to develop stable and environment-friendly lead-free alternatives. In this review, we summarize recent progress in lead-free halide perovskites (LFHPs) and derivatives toward X-ray detectors and imaging. First, we introduce the working principle of X-ray detectors and the key figure of merit in direct and indirect detection processes. In addition, we summarize state-of-the-art lead-free halide perovskites preparation methods. Furthermore, we comprehensively discuss the structural dimensions, optoelectronic properties of lead-free halide perovskites and their recent advances in X-ray detection and imaging. Meanwhile, the stabilities of LFHPs-based X-ray detectors are discussed. Finally, we outline several main issues of state-of-the-art LFHPs-based X-ray detectors and provide prospects to overcome these limitations.

卤化铅钙钛矿以其优异的光电性能引起了人们的广泛关注,并在x射线探测器和成像方面取得了惊人的进展。然而,铅对人类、动物和生态系统都有很高的毒性,对其商业应用构成了很大的安全问题。开发稳定、环保的无铅替代品已成为迫切需要。本文综述了近年来无铅卤化物钙钛矿及其衍生物在x射线探测器和成像方面的研究进展。首先,我们介绍了x射线探测器的工作原理以及在直接和间接探测过程中的关键性能指标。此外,我们总结了最新的无铅卤化物钙钛矿的制备方法。此外,我们还全面讨论了无铅卤化物钙钛矿的结构尺寸、光电性能及其在x射线探测和成像方面的最新进展。同时,讨论了基于lfhps的x射线探测器的稳定性。最后,我们概述了最先进的基于lfhps的x射线探测器的几个主要问题,并提供了克服这些限制的前景。
{"title":"Lead-free perovskites and derivatives enable direct and scintillation-type X-ray detection","authors":"Chao Zhou ,&nbsp;Mingyue Han ,&nbsp;Yingrui Xiao ,&nbsp;Wenyan Tan ,&nbsp;Xi Jin ,&nbsp;Xiaoxue Wu ,&nbsp;Yuxuan Yang ,&nbsp;Siyuan Zhu ,&nbsp;Haobo Lin ,&nbsp;Shenghuang Lin ,&nbsp;Qi Chen ,&nbsp;Qijie Liang ,&nbsp;Jinsong Hu ,&nbsp;Wei Zhang ,&nbsp;Yan Jiang","doi":"10.1016/j.mser.2023.100756","DOIUrl":"https://doi.org/10.1016/j.mser.2023.100756","url":null,"abstract":"<div><p><span>Lead halide </span>perovskites<span> with excellent optoelectronic properties have attracted extensive attention and made amazing progress for X-ray detectors and imaging. However, lead is highly toxic to humans, animals and ecosystems, posing a great safety concern to its commercial application. It has become an urgent need to develop stable and environment-friendly lead-free alternatives. In this review, we summarize recent progress in lead-free halide perovskites (LFHPs) and derivatives toward X-ray detectors and imaging. First, we introduce the working principle of X-ray detectors and the key figure of merit in direct and indirect detection processes. In addition, we summarize state-of-the-art lead-free halide perovskites preparation methods. Furthermore, we comprehensively discuss the structural dimensions, optoelectronic properties of lead-free halide perovskites and their recent advances in X-ray detection and imaging. Meanwhile, the stabilities of LFHPs-based X-ray detectors are discussed. Finally, we outline several main issues of state-of-the-art LFHPs-based X-ray detectors and provide prospects to overcome these limitations.</span></p></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":null,"pages":null},"PeriodicalIF":31.0,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138086418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D printed electrochemical devices for bio-chemical sensing: A review 用于生化传感的3D打印电化学装置:综述
IF 31 1区 材料科学 Q1 Engineering Pub Date : 2023-09-15 DOI: 10.1016/j.mser.2023.100754
Abhinav Sharma , Hendrik Faber , Ajit Khosla , Thomas D. Anthopoulos

Portable, affordable, and miniaturized electrochemical sensors for point-of-care diagnostic devices represent a step towards achieving the United Nations’ Sustainable Development Goal 3: Good Health and Well-Being. Over the last 10 years, rapid advancements in three-dimensional (3D) printing technology (additive manufacturing) have enabled the production of low-cost, miniature 3D printed (3DP) devices for bio-chemical sensing, enabling innovation in healthcare diagnostics for everyone regardless of their economic background or geographical location. Compared to traditional manufacturing processes, 3D printing offers numerous advantages for miniaturized electrochemical point-of-care diagnostic devices, such as rapid prototyping, custom-shaped devices, flexible fabrication designs, low energy consumption, reduced time to market, and reduced waste generation. This article reviews recent developments in 3DP electrochemical sensors, including the printing of composite materials, advanced electrode architectures, activation and functionalization methods, and electrochemical sensing performance (i.e. sensitivity, linear range, limits of detection) towards various analytes, including heavy metals/water pollutants, toxic/explosive substances, neurotransmitters/stimulants, metabolites, DNA, amino acids, proteins, viruses, and food pathogens. Moreover, we discuss the remaining challenges and gaps in current knowledge and solutions to improve the electroanalytic performance of 3DP electrodes for future biomedical applications in wearable and smart-implantable sensor systems of the future.

用于护理点诊断装置的便携式、可负担得起的小型化电化学传感器是朝着实现联合国可持续发展目标3:良好健康和福祉迈出的一步。在过去的10年里,三维(3D)打印技术(增材制造)的快速发展使得用于生化传感的低成本微型3D打印(3DP)设备的生产成为可能,为每个人提供医疗保健诊断方面的创新,无论其经济背景或地理位置如何。与传统制造工艺相比,3D打印为小型化电化学即时诊断设备提供了许多优势,例如快速成型、定制形状的设备、灵活的制造设计、低能耗、缩短上市时间和减少废物产生。本文综述了3d打印电化学传感器的最新发展,包括复合材料的打印、先进的电极结构、激活和功能化方法,以及对各种分析物的电化学传感性能(即灵敏度、线性范围、检测限),包括重金属/水污染物、有毒/爆炸性物质、神经递质/兴奋剂、代谢物、DNA、氨基酸、蛋白质、病毒和食品病原体。此外,我们讨论了当前知识和解决方案中的剩余挑战和差距,以提高3d打印电极的电分析性能,用于未来可穿戴和智能植入传感器系统的未来生物医学应用。
{"title":"3D printed electrochemical devices for bio-chemical sensing: A review","authors":"Abhinav Sharma ,&nbsp;Hendrik Faber ,&nbsp;Ajit Khosla ,&nbsp;Thomas D. Anthopoulos","doi":"10.1016/j.mser.2023.100754","DOIUrl":"https://doi.org/10.1016/j.mser.2023.100754","url":null,"abstract":"<div><p><span>Portable, affordable, and miniaturized electrochemical sensors<span> for point-of-care diagnostic devices<span> represent a step towards achieving the United Nations’ Sustainable Development Goal 3: Good Health and Well-Being. Over the last 10 years, rapid advancements in three-dimensional (3D) printing technology (additive manufacturing) have enabled the production of low-cost, miniature 3D printed (3DP) devices for bio-chemical sensing, enabling innovation in healthcare diagnostics for everyone regardless of their economic background or geographical location. Compared to traditional manufacturing processes, 3D printing offers numerous advantages for miniaturized electrochemical point-of-care diagnostic devices, such as rapid prototyping, custom-shaped devices, flexible fabrication designs, low energy consumption, reduced time to market, and reduced waste generation. This article reviews recent developments in 3DP electrochemical sensors, including the printing of composite materials, advanced electrode architectures, activation and functionalization methods, and electrochemical sensing performance (i.e. sensitivity, linear range, limits of detection) towards various analytes, including heavy metals/water pollutants, toxic/explosive substances, neurotransmitters/stimulants, metabolites, DNA, amino acids, proteins, viruses, and food pathogens. Moreover, we discuss the remaining challenges and gaps in current knowledge and solutions to improve the electroanalytic performance of 3DP electrodes for future biomedical applications in wearable and smart-implantable </span></span></span>sensor systems of the future.</p></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":null,"pages":null},"PeriodicalIF":31.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6720087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent progress in vanadium dioxide: The multi-stimuli responsive material and its applications 二氧化钒多刺激响应材料及其应用研究进展
IF 31 1区 材料科学 Q1 Engineering Pub Date : 2023-07-04 DOI: 10.1016/j.mser.2023.100747
Saranya Bhupathi , Shancheng Wang , Yujie Ke , Yi Long

The reversible phase transition in vanadium dioxide (VO2) with light, heat, electric, magnetic, and mechanical stimuli is the enabling concept to function as a smart material. It is the basis for the development of numerous varieties of VO2-based optical, electrochemical, electrical, mechanical, and energy storage devices in micron- to nano-meter scale dimensions on rigid and flexible platforms. Due to its near room temperature (RT) phase transition, VO2 is considered an excellent alternative and promising candidate to replace the conventional materials used in various applications. Ample interests have been growing to apply VO2 in novel devices, exploring the device functionality by structural manipulation of VO2 that could lead to impressive innovations. Much effort is invested in resolving the practical challenges to deal with real-life applications, along with finding out industrially feasible large-scale VO2-based device fabrication methodology which may act as a stepping stone to embark on the commercial market. In this context, it is crucial to review the recent advancements in devices that use VO2 smart material as a building element in the device architecture along with the device operation controlled by the phase transition mechanism in VO2. This review summarizes the new applications of VO2 in various devices. We start with a brief introduction of the present landscape of various phase transition mechanisms involved in VO2 followed by significant advantages of VO2 as a functional material for various applications. In the main part of the paper, the recent five years’ progress in VO2-based single-stimulus, multi-stimuli, and multifunctional devices, their operation mechanism, and important experimental and theoretical breakthroughs are summarized under each device. Although VO2 plays a significant role in controlling the device operation, various practical challenges are there to be rectified to further enhance the device performance that would accelerate VO2-based devices in reaching the commercial platform. Future trends, possible challenges in VO2-based devices, and potential solutions are presented with perspectives in the final part of the paper.

二氧化钒(VO2)在光、热、电、磁和机械刺激下的可逆相变是智能材料的使能概念。它是在刚性和柔性平台上开发各种基于二氧化氧的光学、电化学、电气、机械和能量存储设备的基础。由于其近室温(RT)相变,VO2被认为是替代各种应用中使用的传统材料的极好选择和有前途的候选材料。人们对将VO2应用于新型器件的兴趣日益浓厚,通过对VO2的结构操纵来探索器件功能,这可能会带来令人印象深刻的创新。在解决实际挑战以应对现实应用方面投入了大量精力,同时还找到了工业上可行的大规模基于二氧化硅的设备制造方法,这可能是进入商业市场的踏脚石。在这种背景下,回顾使用VO2智能材料作为器件体系结构中的构建元素的器件的最新进展以及由VO2相变机制控制的器件操作是至关重要的。本文综述了VO2在各种器件中的新应用。我们首先简要介绍了VO2中涉及的各种相变机制的现状,然后介绍了VO2作为一种功能材料在各种应用中的显著优势。在论文的主体部分,综述了近五年来基于vo2的单刺激、多刺激和多功能装置的研究进展、运行机制以及各装置下的重要实验和理论突破。虽然VO2在控制设备运行方面发挥着重要作用,但为了进一步提高设备性能,加速基于VO2的设备走向商业平台,还需要纠正各种实际挑战。未来的趋势,可能的挑战,在基于vo2的设备,和潜在的解决方案提出了展望在论文的最后一部分。
{"title":"Recent progress in vanadium dioxide: The multi-stimuli responsive material and its applications","authors":"Saranya Bhupathi ,&nbsp;Shancheng Wang ,&nbsp;Yujie Ke ,&nbsp;Yi Long","doi":"10.1016/j.mser.2023.100747","DOIUrl":"https://doi.org/10.1016/j.mser.2023.100747","url":null,"abstract":"<div><p>The reversible phase transition in vanadium dioxide (VO<sub>2</sub>) with light, heat, electric, magnetic, and mechanical stimuli is the enabling concept to function as a smart material. It is the basis for the development of numerous varieties of VO<sub>2</sub>-based optical, electrochemical, electrical, mechanical, and energy storage devices in micron- to nano-meter scale dimensions on rigid and flexible platforms. Due to its near room temperature (RT) phase transition, VO<sub>2</sub> is considered an excellent alternative and promising candidate to replace the conventional materials used in various applications. Ample interests have been growing to apply VO<sub>2</sub> in novel devices, exploring the device functionality by structural manipulation of VO<sub>2</sub> that could lead to impressive innovations. Much effort is invested in resolving the practical challenges to deal with real-life applications, along with finding out industrially feasible large-scale VO<sub>2</sub><span>-based device fabrication methodology which may act as a stepping stone to embark on the commercial market. In this context, it is crucial to review the recent advancements in devices that use VO</span><sub>2</sub> smart material as a building element in the device architecture along with the device operation controlled by the phase transition mechanism in VO<sub>2</sub>. This review summarizes the new applications of VO<sub>2</sub> in various devices. We start with a brief introduction of the present landscape of various phase transition mechanisms involved in VO<sub>2</sub> followed by significant advantages of VO<sub>2</sub> as a functional material for various applications. In the main part of the paper, the recent five years’ progress in VO<sub>2</sub>-based single-stimulus, multi-stimuli, and multifunctional devices, their operation mechanism, and important experimental and theoretical breakthroughs are summarized under each device. Although VO<sub>2</sub> plays a significant role in controlling the device operation, various practical challenges are there to be rectified to further enhance the device performance that would accelerate VO<sub>2</sub>-based devices in reaching the commercial platform. Future trends, possible challenges in VO<sub>2</sub>-based devices, and potential solutions are presented with perspectives in the final part of the paper.</p></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":null,"pages":null},"PeriodicalIF":31.0,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2703845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
3D printing of polymer composites to fabricate wearable sensors: A comprehensive review 3D打印聚合物复合材料制造可穿戴传感器:综述
IF 31 1区 材料科学 Q1 Engineering Pub Date : 2023-07-01 DOI: 10.1016/j.mser.2023.100734
Amr Osman , Jian Lu

The application of wearable sensors in domains related to healthcare systems, human motion detection, robotics, and human–machine interactions has attracted significant attention. Because these applications require stretchable, flexible, and non-invasive materials, polymer composites are now at the forefront of research aimed at preparing innovative wearable sensors. Three-dimensional (3D) printing techniques can be used to obtain highly customised and scalable polymer composites to fabricate wearable sensors, which is a challenging task for conventional fabrication techniques. This review provides insights into the prospects of commonly used conductive nanomaterials and 3D printing techniques to prepare wearable devices. Subsequently, the research progress, sensing mechanisms, and performance of 3D-printed wearable sensors, such as strain, pressure, temperature, and humidity sensors, are discussed. In addition, novel 3D-printed multifunctional sensors, such as multi-directional, multi-modal, self-healable, self-powered, in situ printed, and ultrasonic sensors, are highlighted. The challenges and future trends for further research development are clarified.

可穿戴传感器在医疗保健系统、人体运动检测、机器人和人机交互等领域的应用引起了人们的极大关注。由于这些应用需要可拉伸、柔性和非侵入性的材料,聚合物复合材料现在处于研究的前沿,旨在制备创新的可穿戴传感器。三维(3D)打印技术可用于获得高度定制和可扩展的聚合物复合材料,以制造可穿戴传感器,这对于传统制造技术来说是一项具有挑战性的任务。本文综述了常用的导电纳米材料和3D打印技术在制备可穿戴设备中的应用前景。随后,讨论了3d打印可穿戴传感器的研究进展、传感机制和性能,如应变、压力、温度和湿度传感器。此外,还重点介绍了新型3d打印多功能传感器,如多向、多模态、自修复、自供电、原位打印和超声波传感器。阐明了今后研究发展面临的挑战和趋势。
{"title":"3D printing of polymer composites to fabricate wearable sensors: A comprehensive review","authors":"Amr Osman ,&nbsp;Jian Lu","doi":"10.1016/j.mser.2023.100734","DOIUrl":"https://doi.org/10.1016/j.mser.2023.100734","url":null,"abstract":"<div><p>The application of wearable sensors in domains related to healthcare systems, human motion detection, robotics, and human–machine interactions has attracted significant attention. Because these applications require stretchable, flexible, and non-invasive materials, polymer composites are now at the forefront of research aimed at preparing innovative wearable sensors. Three-dimensional (3D) printing techniques can be used to obtain highly customised and scalable polymer composites to fabricate wearable sensors, which is a challenging task for conventional fabrication techniques. This review provides insights into the prospects of commonly used conductive nanomaterials and 3D printing techniques to prepare wearable devices. Subsequently, the research progress, sensing mechanisms, and performance of 3D-printed wearable sensors, such as strain, pressure, temperature, and humidity sensors, are discussed. In addition, novel 3D-printed multifunctional sensors, such as multi-directional, multi-modal, self-healable, self-powered, in situ printed, and ultrasonic sensors, are highlighted. The challenges and future trends for further research development are clarified.</p></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":null,"pages":null},"PeriodicalIF":31.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1869828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Capacitive contribution matters in facilitating high power battery materials toward fast-charging alkali metal ion batteries 电容贡献在促进高功率电池材料向快速充电的碱金属离子电池发展方面起着重要作用
IF 31 1区 材料科学 Q1 Engineering Pub Date : 2023-07-01 DOI: 10.1016/j.mser.2023.100737
Tianqi He , Xiaoya Kang , Fujuan Wang , Junlei Zhang , Tianyun Zhang , Fen Ran

In the past few decades, electrochemical energy storage systems, represented by alkali metal ion batteries and supercapacitors, have developed rapidly against the background of sustainable development. However, supercapacitors and alkali metal ion batteries, known for the high power density and high energy density, respectively, have struggled to meet the demand of high both power and energy densities energy storage devices. Therefore, integrating both energy storage mechanisms of supercapacitors and alkali metal ion batteries in the same system to attain device with comparatively high both power and energy densities has become the preferred approach for most researchers, and the representatives are assembling hybrid ion capacitors or introducing capacitive contribution into alkali metal ion batteries materials for fast-charging alkali metal ion batteries. For the former, many good quality publications have summarized and evaluated it, while the latter has not. In this review, we systematically summarize and insightfully discuss the phenomenon of introducing capacitive contribution into electrode materials of alkali metal ion batteries. Different methods of identifying capacitive and diffusive behaviors are reviewed, and the origin of the capacitive contribution in the battery materials combining the charge storage mechanism are explained, the influences of electrode materials’ capacitive contribution on battery’s energy and power densities are discussed in detail. Finally, we propose a design idea of electrode materials for battery with high both power and energy densities based on accurately understanding the rational capacitive contribution.

近几十年来,在可持续发展的背景下,以碱金属离子电池和超级电容器为代表的电化学储能系统得到了迅速发展。然而,分别以高功率密度和高能量密度著称的超级电容器和碱金属离子电池,在满足高功率和高能量密度储能设备的需求方面遇到了困难。因此,将超级电容器和碱金属离子电池的储能机制整合在同一系统中,获得功率密度和能量密度都较高的器件已成为大多数研究者的首选途径,有代表性的是组装混合离子电容器或在碱金属离子电池材料中引入电容贡献,用于碱金属离子电池的快速充电。对于前者,许多高质量的出版物对其进行了总结和评价,而后者则没有。本文对碱金属离子电池电极材料中引入电容贡献现象进行了系统总结和深入探讨。综述了电容性和扩散性的不同识别方法,阐述了结合电荷存储机制的电池材料中电容性贡献的来源,详细讨论了电极材料的电容性贡献对电池能量和功率密度的影响。最后,在准确理解合理电容贡献的基础上,提出了高功率和高能量密度电池电极材料的设计思路。
{"title":"Capacitive contribution matters in facilitating high power battery materials toward fast-charging alkali metal ion batteries","authors":"Tianqi He ,&nbsp;Xiaoya Kang ,&nbsp;Fujuan Wang ,&nbsp;Junlei Zhang ,&nbsp;Tianyun Zhang ,&nbsp;Fen Ran","doi":"10.1016/j.mser.2023.100737","DOIUrl":"https://doi.org/10.1016/j.mser.2023.100737","url":null,"abstract":"<div><p>In the past few decades, electrochemical energy storage systems, represented by alkali metal<span> ion batteries and supercapacitors<span>, have developed rapidly against the background of sustainable development. However, supercapacitors and alkali metal ion batteries, known for the high power density and high energy density, respectively, have struggled to meet the demand of high both power and energy densities energy storage devices. Therefore, integrating both energy storage mechanisms of supercapacitors and alkali metal ion batteries in the same system to attain device with comparatively high both power and energy densities has become the preferred approach for most researchers, and the representatives are assembling hybrid ion capacitors or introducing capacitive contribution into alkali metal ion batteries materials for fast-charging alkali metal ion batteries. For the former, many good quality publications have summarized and evaluated it, while the latter has not. In this review, we systematically summarize and insightfully discuss the phenomenon of introducing capacitive contribution into electrode materials of alkali metal ion batteries. Different methods of identifying capacitive and diffusive behaviors are reviewed, and the origin of the capacitive contribution in the battery materials combining the charge storage mechanism are explained, the influences of electrode materials’ capacitive contribution on battery’s energy and power densities are discussed in detail. Finally, we propose a design idea of electrode materials for battery with high both power and energy densities based on accurately understanding the rational capacitive contribution.</span></span></p></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":null,"pages":null},"PeriodicalIF":31.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1750371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
Aerogel-based solar-powered water production from atmosphere and ocean: A review 基于气凝胶的太阳能从大气和海洋中取水:综述
IF 31 1区 材料科学 Q1 Engineering Pub Date : 2023-07-01 DOI: 10.1016/j.mser.2023.100735
Jiaming Sun , Tingting Wu , Hui Wu , Wei Li , Lei Li , Shouxin Liu , Jing Wang , Wim J. Malfait , Shanyu Zhao

By imitating natural water circulation, artificial water generation processes can produce clean water by utilizing readily available and inexhaustible solar energy. Such a process can address the current global crises related to both energy and water shortages, and expand currently available water resources from rivers, ground water and ice to seawater, brackish water and atmospheric humidity. Among the many materials used for water generation, aerogels offer a great potential due to the inherent combination of three-dimensional, monolithic structure and porous, interconnected network. In this article, we review aerogel-based water generation from brine and atmospheric water. The unique features of aerogels are elucidated from the viewpoint of photo-thermal conversion and water transport. These two components are necessary to achieve efficient solar-driven water production systems. In addition to describing the material specifications, this paper reviews a diversity of structural designs that aim to improve the evaporation performance, including the assembly strategy of light absorption and thermal insulation layers, the reduction of evaporation enthalpy, and the salt-rejection control, as well as Marangoni effect. After evaluating different types of solar-powered water utilization technologies, the paper ends with the challenges for the commercialization and widespread use of aerogel-based water production systems: their disconnect from the current aerogel industry, high production cost and weak mechanical properties, and a lack of standardized performance testing, as well as our future perspective for their application opportunities.

通过模仿自然水循环,人工制水过程可以利用现成的、取之不尽的太阳能生产出清洁的水。这一过程可以解决当前与能源和水资源短缺有关的全球危机,并将目前可用的水资源从河流、地下水和冰扩展到海水、微咸水和大气湿度。在许多用于水生成的材料中,气凝胶由于其固有的三维整体结构和多孔互联网络的结合而具有巨大的潜力。本文综述了以盐水和大气水为原料的气凝胶制水技术。从光热转换和水输运的角度阐述了气凝胶的独特特性。这两个组成部分是实现高效的太阳能驱动的水生产系统所必需的。除了描述材料规格外,本文还回顾了旨在提高蒸发性能的各种结构设计,包括光吸收层和保温层的组装策略,蒸发焓的降低,排盐控制以及马兰戈尼效应。在评估了不同类型的太阳能水利用技术之后,本文最后指出了气凝胶产水系统商业化和广泛使用所面临的挑战:它们与当前气凝胶行业脱节,生产成本高,机械性能弱,缺乏标准化的性能测试,以及我们对其应用机会的未来展望。
{"title":"Aerogel-based solar-powered water production from atmosphere and ocean: A review","authors":"Jiaming Sun ,&nbsp;Tingting Wu ,&nbsp;Hui Wu ,&nbsp;Wei Li ,&nbsp;Lei Li ,&nbsp;Shouxin Liu ,&nbsp;Jing Wang ,&nbsp;Wim J. Malfait ,&nbsp;Shanyu Zhao","doi":"10.1016/j.mser.2023.100735","DOIUrl":"https://doi.org/10.1016/j.mser.2023.100735","url":null,"abstract":"<div><p>By imitating natural water circulation, artificial water generation processes can produce clean water by utilizing readily available and inexhaustible solar energy. Such a process can address the current global crises related to both energy and water shortages, and expand currently available water resources from rivers, ground water and ice to seawater, brackish water and atmospheric humidity. Among the many materials used for water generation, aerogels offer a great potential due to the inherent combination of three-dimensional, monolithic structure and porous, interconnected network. In this article, we review aerogel-based water generation from brine and atmospheric water. The unique features of aerogels are elucidated from the viewpoint of photo-thermal conversion and water transport. These two components are necessary to achieve efficient solar-driven water production systems. In addition to describing the material specifications, this paper reviews a diversity of structural designs that aim to improve the evaporation performance, including the assembly strategy of light absorption and thermal insulation layers, the reduction of evaporation enthalpy, and the salt-rejection control, as well as Marangoni effect. After evaluating different types of solar-powered water utilization technologies, the paper ends with the challenges for the commercialization and widespread use of aerogel-based water production systems: their disconnect from the current aerogel industry, high production cost and weak mechanical properties, and a lack of standardized performance testing, as well as our future perspective for their application opportunities.</p></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":null,"pages":null},"PeriodicalIF":31.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1635558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
期刊
Materials Science and Engineering: R: Reports
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1