Pub Date : 2024-12-02DOI: 10.1016/j.mser.2024.100894
Sin-Yi Pang , Weng Fu Io , Feng Guo , Yuqian Zhao , Jianhua Hao
MXenes, a fascinating family of two-dimensional transition metal carbides and nitrides, have attracted significant attention across various fields due to their unique properties, such as hydrophilicity and metallic conductivity. Despite the rising interest in their applications for nanoelectronics, there remains a gap in the understanding of how surface engineering and work function affect ion interactions and electronic properties. These factors are critical for integrating MXenes into information technology devices. In this review, we discuss and summarize recent advancements in MXene fabrication and examine both theoretical and experimental findings related to their properties in nanoelectronic applications. We also explore some device concepts that utilize these features. MXenes show great potential for enhancing nanoelectronic devices, while the challenges in their synthesis and functionalization to be addressed. This review summarizes current information and offers perceptions into the role of two-dimensional MXenes in information technology related nanotechnologies.
{"title":"Two-dimensional MXene-based devices for information technology","authors":"Sin-Yi Pang , Weng Fu Io , Feng Guo , Yuqian Zhao , Jianhua Hao","doi":"10.1016/j.mser.2024.100894","DOIUrl":"10.1016/j.mser.2024.100894","url":null,"abstract":"<div><div>MXenes, a fascinating family of two-dimensional transition metal carbides and nitrides, have attracted significant attention across various fields due to their unique properties, such as hydrophilicity and metallic conductivity. Despite the rising interest in their applications for nanoelectronics, there remains a gap in the understanding of how surface engineering and work function affect ion interactions and electronic properties. These factors are critical for integrating MXenes into information technology devices. In this review, we discuss and summarize recent advancements in MXene fabrication and examine both theoretical and experimental findings related to their properties in nanoelectronic applications. We also explore some device concepts that utilize these features. MXenes show great potential for enhancing nanoelectronic devices, while the challenges in their synthesis and functionalization to be addressed. This review summarizes current information and offers perceptions into the role of two-dimensional MXenes in information technology related nanotechnologies.</div></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"163 ","pages":"Article 100894"},"PeriodicalIF":31.6,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143160744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01DOI: 10.1016/j.mser.2024.100832
An Niza El Aisnada , Yuhki Yui , Ji-Eun Lee , Norio Kitadai , Ryuhei Nakamura , Masaya Ibe , Masahiro Miyauchi , Akira Yamaguchi
In the quest for sustainable electrochemical carbon dioxide reduction reaction (CO2RR) strategies, developing efficient and selective electrocatalysts remains a paramount challenge. Metal sulfides offer diverse types of adsorption sites, leading to a promising avenue to overcome the drawbacks of conventional catalysts, including metals and alloys. Since there are limited references and discussions to study the trend of metal sulfide as a CO2RR electrocatalyst, here we developed a less burdensome empirical workflow. The point of the methodology lies in the straightforward learning from experimental data, and the utilization of high-throughput experimental tools is not compulsory. Using the workflow, we aim to clarify what properties we should be concerned about to predict and further obtain optimal electrocatalysts in this early stage of exploration. The methodology integrates a careful analysis of experimental data with material informatics, leveraging density functional theory (DFT) calculations and machine learning (ML). For the case study, we specifically target the ternary metal sulfide selective for syngas carbon monoxide (CO) production. By employing high-dimensional regression ML models trained on a dataset of 18 samples, our analysis underlines the importance of considering crystal structure beyond atomic composition as the catalyst design strategy. We identify that ternary metal sulfides with hexagonal lattice systems and containing cations among Zn/In/Cd are optimal for CO-selective electrocatalysts. Our study offers insights into exploring uncharted materials for a sustainable CO2RR with a versatile and burdenless workflow adaptable to various application fields.
{"title":"An empirical approach-based analysis for the exploration of ternary metal sulfide as an active and selective CO2 reduction electrocatalyst","authors":"An Niza El Aisnada , Yuhki Yui , Ji-Eun Lee , Norio Kitadai , Ryuhei Nakamura , Masaya Ibe , Masahiro Miyauchi , Akira Yamaguchi","doi":"10.1016/j.mser.2024.100832","DOIUrl":"10.1016/j.mser.2024.100832","url":null,"abstract":"<div><div>In the quest for sustainable electrochemical carbon dioxide reduction reaction (CO<sub>2</sub>RR) strategies, developing efficient and selective electrocatalysts remains a paramount challenge. Metal sulfides offer diverse types of adsorption sites, leading to a promising avenue to overcome the drawbacks of conventional catalysts, including metals and alloys. Since there are limited references and discussions to study the trend of metal sulfide as a CO<sub>2</sub>RR electrocatalyst, here we developed a less burdensome empirical workflow. The point of the methodology lies in the straightforward learning from experimental data, and the utilization of high-throughput experimental tools is not compulsory. Using the workflow, we aim to clarify what properties we should be concerned about to predict and further obtain optimal electrocatalysts in this early stage of exploration. The methodology integrates a careful analysis of experimental data with material informatics, leveraging density functional theory (DFT) calculations and machine learning (ML). For the case study, we specifically target the ternary metal sulfide selective for syngas carbon monoxide (CO) production. By employing high-dimensional regression ML models trained on a dataset of 18 samples, our analysis underlines the importance of considering crystal structure beyond atomic composition as the catalyst design strategy. We identify that ternary metal sulfides with hexagonal lattice systems and containing cations among Zn/In/Cd are optimal for CO-selective electrocatalysts. Our study offers insights into exploring uncharted materials for a sustainable CO<sub>2</sub>RR with a versatile and burdenless workflow adaptable to various application fields.</div></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"161 ","pages":"Article 100832"},"PeriodicalIF":31.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143166805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-30DOI: 10.1016/j.mser.2024.100889
Qiang Liu , Mengyu Du , Hyacinthe Randriamahazaka , Wei Chen
Graphdiyne (GDY), as a novel two-dimensional carbon material, showcases immense potential in the field of smart materials due to its intrinsic properties and microstructure. Unlike conventional smart materials, GDY exhibits stimulus-responsive behaviors without the need for external chemical modifications, dopants, or composite materials. Its unique sp/sp2 hybridized carbon framework, porous structure, and abundance of highly reactive acetylenic linkages, enable this material to directly interact with environmental stimuli and exhibit superior performance across a variety of applications, including muscle-like actuators, wearable sensors, optoelectronic adaptive regulation, low-grade energy harvesting, and cutting-edge biomedical applications. As a new type of smart material, the application potential of GDY in many frontier fields still needs to be fully explored and exploited. The review provides a timely and comprehensive overview of the state-of-the-art in GDY-based smart materials and applications, emphasizing its unique molecular-scale activity and key challenges in synthesis, scalability, stability, and sensitivity. We believe that this article will provide very valuable insights into technological innovation and collaboration in the field of new material and artificial intelligence.
{"title":"Graphdiyne-based molecular active materials and devices for emerging smart applications","authors":"Qiang Liu , Mengyu Du , Hyacinthe Randriamahazaka , Wei Chen","doi":"10.1016/j.mser.2024.100889","DOIUrl":"10.1016/j.mser.2024.100889","url":null,"abstract":"<div><div>Graphdiyne (GDY), as a novel two-dimensional carbon material, showcases immense potential in the field of smart materials due to its intrinsic properties and microstructure. Unlike conventional smart materials, GDY exhibits stimulus-responsive behaviors without the need for external chemical modifications, dopants, or composite materials. Its unique sp/sp<sup>2</sup> hybridized carbon framework, porous structure, and abundance of highly reactive acetylenic linkages, enable this material to directly interact with environmental stimuli and exhibit superior performance across a variety of applications, including muscle-like actuators, wearable sensors, optoelectronic adaptive regulation, low-grade energy harvesting, and cutting-edge biomedical applications. As a new type of smart material, the application potential of GDY in many frontier fields still needs to be fully explored and exploited. The review provides a timely and comprehensive overview of the state-of-the-art in GDY-based smart materials and applications, emphasizing its unique molecular-scale activity and key challenges in synthesis, scalability, stability, and sensitivity. We believe that this article will provide very valuable insights into technological innovation and collaboration in the field of new material and artificial intelligence.</div></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"162 ","pages":"Article 100889"},"PeriodicalIF":31.6,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142748382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-29DOI: 10.1016/j.mser.2024.100887
Tongtong Li , Frank Krumeich , Luis K. Ono , Ting Guo , Ryusei Morimoto , Chenfeng Ding , Zhong Xu , Meilin Liu , Yabing Qi
The concomitant environmental issues related to the consumption of fossil fuels underscore the significance of accelerating the global electrification. However, the shift towards electrification increases the demands for greater energy density, charging speeds, and safety in electrical energy storage systems such as lithium-ion batteries (LIBs). In pursuit of this goal, one branch of LIBs’ anode research has focused on niobium oxide-based materials, which allow rapid lithium transport within their crystal structures. Although several review articles have offered an overview of the development of niobium oxide-based anode materials, a comprehensive understanding of the correlation between their structure and unique electrochemical property is still lacking. This review explores the intricate crystal structural chemistry of the niobium-oxide system, exploring the structural correlation between niobium pentoxide and its analogues and examining their structure-related electrochemical behaviors and lithium storage mechanism. It also highlights engineering strategies to improve the rate capability of these materials, along with recent advancements in the field. Additionally, this review outlines future research directions and challenges to bridge the gap to practical applications. The goal is to offer fresh perspectives on rational design of more efficient niobium oxide-based electrode materials and beyond, emphasizing both engineering and structural aspects to accelerate their application in fast-charging batteries.
{"title":"Exploring Niobium oxide-based materials for fast-charging lithium-ion anodes: Insights from structure to property","authors":"Tongtong Li , Frank Krumeich , Luis K. Ono , Ting Guo , Ryusei Morimoto , Chenfeng Ding , Zhong Xu , Meilin Liu , Yabing Qi","doi":"10.1016/j.mser.2024.100887","DOIUrl":"10.1016/j.mser.2024.100887","url":null,"abstract":"<div><div>The concomitant environmental issues related to the consumption of fossil fuels underscore the significance of accelerating the global electrification. However, the shift towards electrification increases the demands for greater energy density, charging speeds, and safety in electrical energy storage systems such as lithium-ion batteries (LIBs). In pursuit of this goal, one branch of LIBs’ anode research has focused on niobium oxide-based materials, which allow rapid lithium transport within their crystal structures. Although several review articles have offered an overview of the development of niobium oxide-based anode materials, a comprehensive understanding of the correlation between their structure and unique electrochemical property is still lacking. This review explores the intricate crystal structural chemistry of the niobium-oxide system, exploring the structural correlation between niobium pentoxide and its analogues and examining their structure-related electrochemical behaviors and lithium storage mechanism. It also highlights engineering strategies to improve the rate capability of these materials, along with recent advancements in the field. Additionally, this review outlines future research directions and challenges to bridge the gap to practical applications. The goal is to offer fresh perspectives on rational design of more efficient niobium oxide-based electrode materials and beyond, emphasizing both engineering and structural aspects to accelerate their application in fast-charging batteries.</div></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"162 ","pages":"Article 100887"},"PeriodicalIF":31.6,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142748484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-27DOI: 10.1016/j.mser.2024.100888
Xuan Huang , Nailin Yang , Shumin Sun , Yuan Cheng , Liang Cheng
Hydrogels, celebrated for their biocompatibility and adaptability, have become instrumental in the development of wearable and implantable bioelectronic devices. This evolution is driven by enhancements in mechanical strength, breathability, self-healing, water-retention, and adhesion capabilities, and the seamless integration of hydrogels with electronics, leading to improved device performance and user compliance. This review underscores the critical role of hydrogels in the sensing of mechanophysiological signals for health monitoring, showcasing their potential to revolutionize personalized medicine. Despite ongoing challenges, the intersection of material science, bioengineering, and advanced manufacturing techniques is fostering innovative solutions. These advancements are paving the way for the next generation of bioelectronics in medical technology, promising to transform health monitoring and personalized treatment approaches significantly.
{"title":"Recent progress of hydrogel-based bioelectronics for mechanophysiological signal sensing","authors":"Xuan Huang , Nailin Yang , Shumin Sun , Yuan Cheng , Liang Cheng","doi":"10.1016/j.mser.2024.100888","DOIUrl":"10.1016/j.mser.2024.100888","url":null,"abstract":"<div><div>Hydrogels, celebrated for their biocompatibility and adaptability, have become instrumental in the development of wearable and implantable bioelectronic devices. This evolution is driven by enhancements in mechanical strength, breathability, self-healing, water-retention, and adhesion capabilities, and the seamless integration of hydrogels with electronics, leading to improved device performance and user compliance. This review underscores the critical role of hydrogels in the sensing of mechanophysiological signals for health monitoring, showcasing their potential to revolutionize personalized medicine. Despite ongoing challenges, the intersection of material science, bioengineering, and advanced manufacturing techniques is fostering innovative solutions. These advancements are paving the way for the next generation of bioelectronics in medical technology, promising to transform health monitoring and personalized treatment approaches significantly.</div></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"162 ","pages":"Article 100888"},"PeriodicalIF":31.6,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142722864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-27DOI: 10.1016/j.mser.2024.100875
Yueyao Dong , Florine M. Rombach , Ganghong Min , Henry J. Snaith , Chieh-Ting Lin , Saif A. Haque , Thomas J. Macdonald
Organic semiconductors play a crucial role in the architecture of thin-film electronic devices, particularly as hole transport layers in solar cells. These materials are essential for overcoming significant barriers to improving device lifetime and performance. Among these materials, the small molecule 2,2′,7,7′-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9′-spirobifluorene, known as spiro-OMeTAD, has been instrumental in the development of high-efficiency perovskite solar cells (PSCs) for over a decade. During this time, the additives used to tune the properties of spiro-OMeTAD have undergone significant evolution. Based on current literature, this review examines how interactions in the doping of spiro-OMeTAD have influenced the performance of PSCs, discusses alternatives for future development by highlighting their advantages and limitations, and provides insights into whether spiro-OMeTAD remains the best hole transport material for n-i-p structured PSCs.
{"title":"Dopant-induced interactions in spiro-OMeTAD: Advancing hole transport for perovskite solar cells","authors":"Yueyao Dong , Florine M. Rombach , Ganghong Min , Henry J. Snaith , Chieh-Ting Lin , Saif A. Haque , Thomas J. Macdonald","doi":"10.1016/j.mser.2024.100875","DOIUrl":"10.1016/j.mser.2024.100875","url":null,"abstract":"<div><div>Organic semiconductors play a crucial role in the architecture of thin-film electronic devices, particularly as hole transport layers in solar cells. These materials are essential for overcoming significant barriers to improving device lifetime and performance. Among these materials, the small molecule 2,2′,7,7′-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9′-spirobifluorene, known as spiro-OMeTAD, has been instrumental in the development of high-efficiency perovskite solar cells (PSCs) for over a decade. During this time, the additives used to tune the properties of spiro-OMeTAD have undergone significant evolution. Based on current literature, this review examines how interactions in the doping of spiro-OMeTAD have influenced the performance of PSCs, discusses alternatives for future development by highlighting their advantages and limitations, and provides insights into whether spiro-OMeTAD remains the best hole transport material for n-i-p structured PSCs.</div></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"162 ","pages":"Article 100875"},"PeriodicalIF":31.6,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142722865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-26DOI: 10.1016/j.mser.2024.100883
Chang Liu , Shuaiqin Wu , Ying Zhang , Xudong Wang , Junhao Chu , Jianlu Wang
Two-dimensional (2D) semiconductors have garnered significant interest due to their atomically thin structure that greatly enhances 'More Moore' dimensional scaling and facilitates the advancement of 'More than Moore' technologies. While 2D transistors hold the promise of unprecedented breakthroughs in atomic-limit device performance, their actual performance has frequently fallen short of expectations. This discrepancy primarily arises from the complex nature of the few critical interfaces (e.g., metal/semiconductor, dielectric/semiconductor) that constitute 2D transistors, and therefore achieving high-quality heterogeneous interfaces is a major challenge for 2D transistor performance and system integration. In this review, we summarize these interfaces and classify them into four types: 1) metal/semiconductor contact interfaces, 2) dielectric/2D channel interfaces, 3) surface and substrate interfaces, and 4) interfaces in wafer-scale integration. From the perspective of forming high-quality interfaces through compatible integration techniques, we analyze in detail the current challenges, development trends and future prospects of these interfaces and highlight their importance in driving the development and future manufacturing integration of 2D transistors. We also present insights into leveraging advanced interface modulation techniques to push the performance boundaries of 2D transistors. This review aims to direct attention to the pivotal role of 2D transistor interfaces, steering scientific research towards enabling the transition of 2D semiconductors from the 'lab to fab' and realizing their full potential.
{"title":"Interfaces in two-dimensional transistors: Key to pushing performance and integration","authors":"Chang Liu , Shuaiqin Wu , Ying Zhang , Xudong Wang , Junhao Chu , Jianlu Wang","doi":"10.1016/j.mser.2024.100883","DOIUrl":"10.1016/j.mser.2024.100883","url":null,"abstract":"<div><div>Two-dimensional (2D) semiconductors have garnered significant interest due to their atomically thin structure that greatly enhances 'More Moore' dimensional scaling and facilitates the advancement of 'More than Moore' technologies. While 2D transistors hold the promise of unprecedented breakthroughs in atomic-limit device performance, their actual performance has frequently fallen short of expectations. This discrepancy primarily arises from the complex nature of the few critical interfaces (e.g., metal/semiconductor, dielectric/semiconductor) that constitute 2D transistors, and therefore achieving high-quality heterogeneous interfaces is a major challenge for 2D transistor performance and system integration. In this review, we summarize these interfaces and classify them into four types: 1) metal/semiconductor contact interfaces, 2) dielectric/2D channel interfaces, 3) surface and substrate interfaces, and 4) interfaces in wafer-scale integration. From the perspective of forming high-quality interfaces through compatible integration techniques, we analyze in detail the current challenges, development trends and future prospects of these interfaces and highlight their importance in driving the development and future manufacturing integration of 2D transistors. We also present insights into leveraging advanced interface modulation techniques to push the performance boundaries of 2D transistors. This review aims to direct attention to the pivotal role of 2D transistor interfaces, steering scientific research towards enabling the transition of 2D semiconductors from the 'lab to fab' and realizing their full potential.</div></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"162 ","pages":"Article 100883"},"PeriodicalIF":31.6,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142722863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-26DOI: 10.1016/j.mser.2024.100877
Subhadip Bhandari , Gaurav Vajpayee , Lucas Lemos da Silva , Manuel Hinterstein , Giorgia Franchin , Paolo Colombo
Piezoelectric ceramics are extensively used in several engineering applications in the field of sensors, actuators, energy harvesting, biomedical, and many more. Traditional ways of manufacturing piezoelectric devices result in better piezoelectric/ferroelectric performance. However, they are restricted to only simple shapes. With the widespread influence of additive manufacturing (AM), it is now possible to fabricate complex structures which were not possible by conventional technologies. In order to fabricate such complex structures with precision, it is necessary to understand in detail the factors influencing the feedstock preparation and the challenges associated with different AM technologies. With an emphasis on the most commonly used AM techniques (direct ink writing, fused filament fabrication, vat photopolymerization, binder jetting, and selective laser sintering) for fabricating ceramic parts, this review paper intends to provide a deep insight into the factors affecting the feedstock preparation as well as post-processing conditions required to develop a high-performance piezoelectric device. The summarized tables detailing the various piezoelectric ceramic compositions and additives or ingredients used in formulating a printable feedstock, along with the optimum printing and post-processing conditions, will aid the readers in developing their own printable formulations and determining the best post-processing parameters to achieve the best performance out of the fabricated piezoelectric device. The advantages and disadvantages of the AM technologies are analyzed with specific reference to piezoceramic materials and the remaining challenges that require further research are emphasized. Furthermore, with the ongoing and continuous developments in additive manufacturing of piezoelectric materials, it is expected that such advancements will progressively transition towards commercialization, with the ultimate goal of widely incorporating additively manufactured devices into practical applications.
压电陶瓷广泛应用于传感器、致动器、能量收集、生物医学等多个工程领域。传统的压电器件制造方法可以获得更好的压电/铁电性能。但是,它们仅限于简单的形状。随着增材制造(AM)技术的广泛应用,现在可以制造出传统技术无法制造的复杂结构。为了精确地制造这种复杂结构,有必要详细了解影响原料制备的因素以及与不同 AM 技术相关的挑战。本综述论文以制造陶瓷部件最常用的 AM 技术(直接墨水写入、熔融长丝制造、大桶光聚合、粘合剂喷射和选择性激光烧结)为重点,旨在深入探讨影响原料制备的因素以及开发高性能压电器件所需的后处理条件。汇总表详细列出了用于配制可印刷原料的各种压电陶瓷成分、添加剂或配料,以及最佳印刷和后处理条件,这将有助于读者开发自己的可印刷配方,并确定最佳后处理参数,使制造的压电器件达到最佳性能。该书分析了 AM 技术的优缺点,特别是压电陶瓷材料,并强调了需要进一步研究的其余挑战。此外,随着压电材料增材制造技术的不断发展,预计这种进步将逐步向商业化过渡,最终目标是将增材制造设备广泛应用于实际应用中。
{"title":"A review on additive manufacturing of piezoelectric ceramics: From feedstock development to properties of sintered parts","authors":"Subhadip Bhandari , Gaurav Vajpayee , Lucas Lemos da Silva , Manuel Hinterstein , Giorgia Franchin , Paolo Colombo","doi":"10.1016/j.mser.2024.100877","DOIUrl":"10.1016/j.mser.2024.100877","url":null,"abstract":"<div><div>Piezoelectric ceramics are extensively used in several engineering applications in the field of sensors, actuators, energy harvesting, biomedical, and many more. Traditional ways of manufacturing piezoelectric devices result in better piezoelectric/ferroelectric performance. However, they are restricted to only simple shapes. With the widespread influence of additive manufacturing (AM), it is now possible to fabricate complex structures which were not possible by conventional technologies. In order to fabricate such complex structures with precision, it is necessary to understand in detail the factors influencing the feedstock preparation and the challenges associated with different AM technologies. With an emphasis on the most commonly used AM techniques (direct ink writing, fused filament fabrication, vat photopolymerization, binder jetting, and selective laser sintering) for fabricating ceramic parts, this review paper intends to provide a deep insight into the factors affecting the feedstock preparation as well as post-processing conditions required to develop a high-performance piezoelectric device. The summarized tables detailing the various piezoelectric ceramic compositions and additives or ingredients used in formulating a printable feedstock, along with the optimum printing and post-processing conditions, will aid the readers in developing their own printable formulations and determining the best post-processing parameters to achieve the best performance out of the fabricated piezoelectric device. The advantages and disadvantages of the AM technologies are analyzed with specific reference to piezoceramic materials and the remaining challenges that require further research are emphasized. Furthermore, with the ongoing and continuous developments in additive manufacturing of piezoelectric materials, it is expected that such advancements will progressively transition towards commercialization, with the ultimate goal of widely incorporating additively manufactured devices into practical applications.</div></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"162 ","pages":"Article 100877"},"PeriodicalIF":31.6,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142707337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-26DOI: 10.1016/j.mser.2024.100869
Zhen Zhang , Fengkai Ma , Dapeng Jiang , Zhonghan Zhang , Jun Xu , Liangbi Su
Laser crystals have been developed by combination paradigm for more than sixty years, and the methodology is difficult to be continued in uncovering new laser materials. Recently, the local structure design has been proposed and advances have been obtained. This review systematically summarizes the development history of rare earth clusters, cluster structures, evolution characteristics, design principles and the utilization for regulating spectral properties and laser performance of rare earth doped fluorite crystals. We also highlight the future opportunities for development of new laser materials. It is believed that this review will provide valuable insights into rational design principles and new paradigm for development of laser materials.
{"title":"Laser crystals from combination paradigm to local structure design: A review on rational design principles, spectroscopic properties and laser applications","authors":"Zhen Zhang , Fengkai Ma , Dapeng Jiang , Zhonghan Zhang , Jun Xu , Liangbi Su","doi":"10.1016/j.mser.2024.100869","DOIUrl":"10.1016/j.mser.2024.100869","url":null,"abstract":"<div><div>Laser crystals have been developed by combination paradigm for more than sixty years, and the methodology is difficult to be continued in uncovering new laser materials. Recently, the local structure design has been proposed and advances have been obtained. This review systematically summarizes the development history of rare earth clusters, cluster structures, evolution characteristics, design principles and the utilization for regulating spectral properties and laser performance of rare earth doped fluorite crystals. We also highlight the future opportunities for development of new laser materials. It is believed that this review will provide valuable insights into rational design principles and new paradigm for development of laser materials.</div></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"162 ","pages":"Article 100869"},"PeriodicalIF":31.6,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142707338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-23DOI: 10.1016/j.mser.2024.100886
Xiaoqin Xu, Jingqi Guan
The pursuit of high metal utilization in multiphase catalysis has given rise to a growing interest in atomically dispersed catalysts. Dual-atom catalysts (DACs) possess distinctive advantages, including super electrocatalytic performance, maximum atomic utilization, and synergistic effect between the dual central atoms. Metal-organic frameworks (MOFs), a category of crystalline porous substances known for their abundant porosity, excellent designability, and tunable functionality, have been recognized as templates for the construction of DACs for advanced electrocatalysis. This article provides a comprehensive review of the recent advancements in MOF-derived DACs, encompassing their synthesis, structural modulation, and applications in electrocatalysis. The discussion begins by elucidating the synthesis methodologies of MOF-derived DACs and discussing the influence of different DAC architectures on electrocatalytic performance. Additionally, the review highlights the advancements in the synthesis of DACs from various MOF derivatives and their applications in electrocatalytic oxygen reduction (ORR), oxygen evolution reduction (OER), carbon dioxide reduction (CO2RR), hydrogen evolution reduction (HER), and nitrate reduction reactions (NO3RR). It would undoubtedly be prudent to anticipate further intriguing advancements in the domain of MOF-derived DACs, which offer tunable reactivity.
{"title":"Metal-organic-framework-derived dual-atom catalysts: from synthesis to electrocatalytic applications","authors":"Xiaoqin Xu, Jingqi Guan","doi":"10.1016/j.mser.2024.100886","DOIUrl":"10.1016/j.mser.2024.100886","url":null,"abstract":"<div><div>The pursuit of high metal utilization in multiphase catalysis has given rise to a growing interest in atomically dispersed catalysts. Dual-atom catalysts (DACs) possess distinctive advantages, including super electrocatalytic performance, maximum atomic utilization, and synergistic effect between the dual central atoms. Metal-organic frameworks (MOFs), a category of crystalline porous substances known for their abundant porosity, excellent designability, and tunable functionality, have been recognized as templates for the construction of DACs for advanced electrocatalysis. This article provides a comprehensive review of the recent advancements in MOF-derived DACs, encompassing their synthesis, structural modulation, and applications in electrocatalysis. The discussion begins by elucidating the synthesis methodologies of MOF-derived DACs and discussing the influence of different DAC architectures on electrocatalytic performance. Additionally, the review highlights the advancements in the synthesis of DACs from various MOF derivatives and their applications in electrocatalytic oxygen reduction (ORR), oxygen evolution reduction (OER), carbon dioxide reduction (CO<sub>2</sub>RR), hydrogen evolution reduction (HER), and nitrate reduction reactions (NO<sub>3</sub>RR). It would undoubtedly be prudent to anticipate further intriguing advancements in the domain of MOF-derived DACs, which offer tunable reactivity.</div></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"162 ","pages":"Article 100886"},"PeriodicalIF":31.6,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142707340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}