首页 > 最新文献

Materials Science and Engineering: R: Reports最新文献

英文 中文
Breaking the inactivity of MXenes to drive Ampere-level selective oxygen evolution reaction in seawater 打破 MXenes 在海水中驱动安培级选择性氧进化反应的不活跃性
IF 31.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-21 DOI: 10.1016/j.mser.2024.100835
Sharafadeen Gbadamasi , Suraj Loomba , Muhammad Haris , Muhammad Waqas Khan , Ashakiran Maibam , Seyed Mahdi Mousavi , Sofiu Mahmud , Lars Thomsen , Anton Tadich , Ravichandar Babarao , Jian Xian , Nasir Mahmood

The limited activity and stability of conventional anodes in seawater have posed a significant obstacle to sustainable green hydrogen production directly from seawater via electrolysis. To address these challenges, we engineered Ti3C2Tx-MXene by incorporating iron and boron into its matrix (tagged FBT) for selective oxygen evolution reaction (OER). Positioning B underneath the top layer induces charge disparity on the Fe-sites, which influences the subsequent growth of the ZIF-67 metal-organic framework (MOF) on the MXene surface through Fe-O-Co ionic bonds. DFT calculations reveal a favorable binding energy of −2.30 eV at the heterointerface for ZIF-67 adsorption to the surface of FBT via O-Co bond, a shortened bond length of 1.94 Å, confirming the formation of ionic bonds. These ionic bonds tune the active sites for an enhanced and selective OER over chlorine evolution reaction (CER), preventing active Fe species' leaching and ensuring stability at >1.56 A cm−2 in 6 M alkaline seawater over 370 hours. Further, FBT and ZIF-67/FBT require low overpotentials of 521.2 and 508 mV, respectively, to deliver 1 A cm−2 in 6 M alkaline seawater. Our findings demonstrate a robust strategy to significantly expand the potential of MXenes from simple conductive substrates to efficient OER catalysts for seawater splitting and beyond.

传统阳极在海水中的活性和稳定性有限,这严重阻碍了通过电解直接从海水中生产可持续的绿色氢气。为了应对这些挑战,我们在 Ti3C2Tx-MXene 的基体中加入了铁和硼(标记为 FBT),以进行选择性氧进化反应(OER)。将硼置于顶层之下会导致铁位上的电荷差异,从而通过铁-氧-钴离子键影响 ZIF-67 金属有机框架(MOF)在 MXene 表面的后续生长。DFT 计算显示,ZIF-67 通过 O-Co 键吸附到 FBT 表面时,在异质界面上的结合能为 -2.30 eV,键长缩短为 1.94 Å,这证实了离子键的形成。这些离子键调整了活性位点,增强了氯进化反应(CER)的选择性 OER,防止了活性铁物种的浸出,并确保了在 6 M 碱性海水中 370 小时内 1.56 A cm-2 的稳定性。此外,FBT 和 ZIF-67/FBT 分别需要 521.2 mV 和 508 mV 的低过电位,才能在 6 M 碱海水中达到 1 A cm-2。我们的研究结果表明了一种稳健的策略,可以将 MXenes 的潜力从简单的导电基底大幅扩展到高效的 OER 催化剂,用于海水分离及其他用途。
{"title":"Breaking the inactivity of MXenes to drive Ampere-level selective oxygen evolution reaction in seawater","authors":"Sharafadeen Gbadamasi ,&nbsp;Suraj Loomba ,&nbsp;Muhammad Haris ,&nbsp;Muhammad Waqas Khan ,&nbsp;Ashakiran Maibam ,&nbsp;Seyed Mahdi Mousavi ,&nbsp;Sofiu Mahmud ,&nbsp;Lars Thomsen ,&nbsp;Anton Tadich ,&nbsp;Ravichandar Babarao ,&nbsp;Jian Xian ,&nbsp;Nasir Mahmood","doi":"10.1016/j.mser.2024.100835","DOIUrl":"10.1016/j.mser.2024.100835","url":null,"abstract":"<div><p>The limited activity and stability of conventional anodes in seawater have posed a significant obstacle to sustainable green hydrogen production directly from seawater via electrolysis. To address these challenges, we engineered Ti<sub>3</sub>C<sub>2</sub>Tx-MXene by incorporating iron and boron into its matrix (tagged FBT) for selective oxygen evolution reaction (OER). Positioning B underneath the top layer induces charge disparity on the Fe-sites, which influences the subsequent growth of the ZIF-67 metal-organic framework (MOF) on the MXene surface through Fe-O-Co ionic bonds. DFT calculations reveal a favorable binding energy of −2.30 eV at the heterointerface for ZIF-67 adsorption to the surface of FBT via O-Co bond, a shortened bond length of 1.94 Å, confirming the formation of ionic bonds. These ionic bonds tune the active sites for an enhanced and selective OER over chlorine evolution reaction (CER), preventing active Fe species' leaching and ensuring stability at &gt;1.56 A cm<sup>−2</sup> in 6 M alkaline seawater over 370 hours. Further, FBT and ZIF-67/FBT require low overpotentials of 521.2 and 508 mV, respectively, to deliver 1 A cm<sup>−2</sup> in 6 M alkaline seawater. Our findings demonstrate a robust strategy to significantly expand the potential of MXenes from simple conductive substrates to efficient OER catalysts for seawater splitting and beyond.</p></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"160 ","pages":"Article 100835"},"PeriodicalIF":31.6,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0927796X24000652/pdfft?md5=1569b31ee3a48ea90badcc346bd8086b&pid=1-s2.0-S0927796X24000652-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142021150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanical properties of AlCoCrCuFeNi high-entropy alloys using molecular dynamics and machine learning 利用分子动力学和机器学习研究 AlCoCrCuFeNi 高熵合金的力学性能
IF 31.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-20 DOI: 10.1016/j.mser.2024.100833
Hoang-Giang Nguyen , Thanh-Dung Le , Hong-Giang Nguyen , Te-Hua Fang

High-entropy alloys (HEAs) stand out from multi-component alloys due to their attractive microstructures and mechanical properties. In this investigation, molecular dynamics (MD) simulation and machine learning (ML) were used to ascertain the deformation mechanism of AlCoCrCuFeNi HEAs under the influence of temperature, strain rate, and grain sizes. First, the MD simulation shows that the yield stress decreases significantly as the strain and temperature increase. In other cases, changes in strain rate and grain size have less effect on mechanical properties than changes in strain and temperature. The alloys exhibited superplastic behavior under all test conditions. The deformity mechanism discloses that strain and temperature are the main sources of beginning strain, and the shear bands move along the uniaxial tensile axis inside the workpiece. Furthermore, the fast phase shift of inclusion under mild strain indicates the relative instability of the inclusion phase of hexagonal close-packed (HCP). Ultimately, the dislocation evolution mechanism shows that the dislocations are transported to free surfaces under increased strain when they nucleate around the grain boundary. Surprisingly, the ML prediction results also confirm the same characteristics as those confirmed from the MD simulation. Hence, the combination of MD and ML reinforces the confidence in the findings of mechanical characteristics of HEA. Consequently, this combination fills the gaps between MD and ML, which can significantly save time, human power, and cost to conduct real experiments for testing HEA deformation in practice.

高熵合金(HEA)因其极具吸引力的微观结构和机械性能而在多组分合金中脱颖而出。本研究采用分子动力学(MD)模拟和机器学习(ML)来确定 AlCoCrCuFeNi 高熵合金在温度、应变率和晶粒尺寸影响下的变形机制。首先,MD 模拟表明,屈服应力随着应变和温度的增加而显著降低。在其他情况下,应变率和晶粒大小的变化对机械性能的影响要小于应变和温度的变化。在所有试验条件下,合金都表现出超塑性行为。变形机理表明,应变和温度是起始应变的主要来源,剪切带在工件内部沿着单轴拉伸轴移动。此外,轻微应变下包体的快速相移表明六方紧密堆积(HCP)包体相相对不稳定。最后,位错演化机制表明,位错在晶界周围成核时,会在应变增加的情况下向自由表面迁移。令人惊讶的是,ML 预测结果也证实了与 MD 模拟结果相同的特征。因此,MD 和 ML 的结合增强了对 HEA 力学特性研究结果的信心。因此,这种结合填补了 MD 和 ML 之间的空白,可大大节省实际测试 HEA 变形的时间、人力和成本。
{"title":"Mechanical properties of AlCoCrCuFeNi high-entropy alloys using molecular dynamics and machine learning","authors":"Hoang-Giang Nguyen ,&nbsp;Thanh-Dung Le ,&nbsp;Hong-Giang Nguyen ,&nbsp;Te-Hua Fang","doi":"10.1016/j.mser.2024.100833","DOIUrl":"10.1016/j.mser.2024.100833","url":null,"abstract":"<div><p>High-entropy alloys (HEAs) stand out from multi-component alloys due to their attractive microstructures and mechanical properties. In this investigation, molecular dynamics (MD) simulation and machine learning (ML) were used to ascertain the deformation mechanism of AlCoCrCuFeNi HEAs under the influence of temperature, strain rate, and grain sizes. First, the MD simulation shows that the yield stress decreases significantly as the strain and temperature increase. In other cases, changes in strain rate and grain size have less effect on mechanical properties than changes in strain and temperature. The alloys exhibited superplastic behavior under all test conditions. The deformity mechanism discloses that strain and temperature are the main sources of beginning strain, and the shear bands move along the uniaxial tensile axis inside the workpiece. Furthermore, the fast phase shift of inclusion under mild strain indicates the relative instability of the inclusion phase of hexagonal close-packed (HCP). Ultimately, the dislocation evolution mechanism shows that the dislocations are transported to free surfaces under increased strain when they nucleate around the grain boundary. Surprisingly, the ML prediction results also confirm the same characteristics as those confirmed from the MD simulation. Hence, the combination of MD and ML reinforces the confidence in the findings of mechanical characteristics of HEA. Consequently, this combination fills the gaps between MD and ML, which can significantly save time, human power, and cost to conduct real experiments for testing HEA deformation in practice.</p></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"160 ","pages":"Article 100833"},"PeriodicalIF":31.6,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142012021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The origin and mitigation of defects induced by metal evaporation in 2D materials 二维材料中金属蒸发诱发缺陷的起源与缓解
IF 31.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-26 DOI: 10.1016/j.mser.2024.100831
Wenwen Zheng, Bin Yuan, Marco A. Villena, Kaichen Zhu, Sebastian Pazos, Yaqing Shen, Yue Yuan, Yue Ping, Chen Liu, Xiaowen Zhang, Xixiang Zhang, Mario Lanza

Evaporating metallic films on two-dimensional (2D) materials is a necessary process to build electronic devices, but it produces bond breaking and metal penetration in the 2D material, which degrades its properties and the figures-of-merit of the devices. Evaporating the metal in ultra-high vacuum (10−9 Torr) is a recognized method to reduce the damage, but the higher complexity and cost of the setup and its lower throughput makes developing other solutions highly desirable. All studies on ultra-high vacuum evaporation of metals on 2D materials evaluated the figures-of-merit of transistors fabricated following different protocols, with very scarce or without sub-nanometre information. Moreover, such studies employed 2D materials produced by chemical vapour deposition (CVD), which contain relatively large amounts of native defects, and hence, post-evaporation analyses do not allow identifying which defects are native and which ones are generated during metal evaporation. In this article we analyse the structure of defect-free mechanically exfoliated 2D materials via cross-sectional transmission electron microscopy (TEM) before and after Au evaporation (on top), and calculate the density of defects introduced. We find that evaporating the metal in a moderate vacuum atmosphere of 5 × 10−6 Torr is sufficient to avoid damage, leading to a nearly perfect van der Waals interface. By using density functional theory simulations we find that the presence of water molecules on the surface of the 2D material slightly distorts the position of the atoms in the crystalline hexagonal network, weakening the covalent bonds and reducing the energy for defect formation. We fabricate Au/h-BN/Au devices and observe that evaporating the Au at 5 × 10−6 Torr produces much less out-of-plane leakage current than evaporating at 3 × 10−5 Torr. The approaches here presented are easy to use and facilitate the introduction of 2D materials in electronic devices and circuits.

在二维(2D)材料上蒸发金属膜是制造电子设备的必要过程,但这一过程会导致二维材料中的键断裂和金属渗透,从而降低其性能和设备的性能指标。在超高真空(10-9 托)中蒸发金属是一种公认的减少损坏的方法,但这种方法的复杂性较高,成本较高,产量较低,因此非常需要开发其他解决方案。所有关于在二维材料上进行金属超高真空蒸发的研究都评估了按照不同方案制造的晶体管的性能指标,但很少或没有亚纳米级的信息。此外,这些研究采用的二维材料是通过化学气相沉积(CVD)工艺制作的,其中含有相对大量的原生缺陷,因此蒸发后分析无法确定哪些缺陷是原生缺陷,哪些缺陷是在金属蒸发过程中产生的。在这篇文章中,我们通过横截面透射电子显微镜(TEM)分析了金蒸发前后无缺陷机械剥离二维材料的结构,并计算了引入的缺陷密度。我们发现,在 5 × 10-6 托的中等真空环境中蒸发金属足以避免损坏,从而形成近乎完美的范德华界面。通过使用密度泛函理论模拟,我们发现二维材料表面水分子的存在会轻微扭曲晶体六边形网络中原子的位置,从而削弱共价键并降低缺陷形成的能量。我们制造了金/h-BN/金器件,并观察到在 5 × 10-6 托的条件下蒸发金所产生的面外漏电流比在 3 × 10-5 托的条件下蒸发金所产生的面外漏电流要小得多。本文介绍的方法易于使用,有利于在电子器件和电路中引入二维材料。
{"title":"The origin and mitigation of defects induced by metal evaporation in 2D materials","authors":"Wenwen Zheng,&nbsp;Bin Yuan,&nbsp;Marco A. Villena,&nbsp;Kaichen Zhu,&nbsp;Sebastian Pazos,&nbsp;Yaqing Shen,&nbsp;Yue Yuan,&nbsp;Yue Ping,&nbsp;Chen Liu,&nbsp;Xiaowen Zhang,&nbsp;Xixiang Zhang,&nbsp;Mario Lanza","doi":"10.1016/j.mser.2024.100831","DOIUrl":"10.1016/j.mser.2024.100831","url":null,"abstract":"<div><p>Evaporating metallic films on two-dimensional (2D) materials is a necessary process to build electronic devices, but it produces bond breaking and metal penetration in the 2D material, which degrades its properties and the figures-of-merit of the devices. Evaporating the metal in ultra-high vacuum (10<sup>−9</sup> Torr) is a recognized method to reduce the damage, but the higher complexity and cost of the setup and its lower throughput makes developing other solutions highly desirable. All studies on ultra-high vacuum evaporation of metals on 2D materials evaluated the figures-of-merit of transistors fabricated following different protocols, with very scarce or without sub-nanometre information. Moreover, such studies employed 2D materials produced by chemical vapour deposition (CVD), which contain relatively large amounts of native defects, and hence, post-evaporation analyses do not allow identifying which defects are native and which ones are generated during metal evaporation. In this article we analyse the structure of defect-free mechanically exfoliated 2D materials via cross-sectional transmission electron microscopy (TEM) before and after Au evaporation (on top), and calculate the density of defects introduced. We find that evaporating the metal in a moderate vacuum atmosphere of 5 × 10<sup>−6</sup> Torr is sufficient to avoid damage, leading to a nearly perfect van der Waals interface. By using density functional theory simulations we find that the presence of water molecules on the surface of the 2D material slightly distorts the position of the atoms in the crystalline hexagonal network, weakening the covalent bonds and reducing the energy for defect formation. We fabricate Au/h-BN/Au devices and observe that evaporating the Au at 5 × 10<sup>−6</sup> Torr produces much less out-of-plane leakage current than evaporating at 3 × 10<sup>−5</sup> Torr. The approaches here presented are easy to use and facilitate the introduction of 2D materials in electronic devices and circuits.</p></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"160 ","pages":"Article 100831"},"PeriodicalIF":31.6,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141953997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coupled electrocatalytic hydrogen production 耦合电催化制氢
IF 31.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-26 DOI: 10.1016/j.mser.2024.100829
Donglian Li , Xuerong Xu , Junzheng Jiang , Hao Dong , Hao Li , Xiang Peng , Paul K. Chu

Hydrogen has emerged as a clean and renewable energy source with the potential to mitigate global energy and environmental crises. Electrolytic water splitting, a highly efficient and sustainable technology, has garnered significant attention for hydrogen production. However, the slow kinetics of the oxygen evolution reaction on the anode and the high energy consumption limit the practicality of industrial-scale electrocatalytic water splitting. To address the challenge, the development of advanced electrolytic systems and the exploration of alternative oxidation reactions are crucial. This review highlights the recent advancements in coupled electrocatalytic hydrogen production strategies, including urea and hydrazine oxidation, value-adding electrosynthesis using small molecules, and waste upcycling and degradation. Various catalysts, the pertinent catalytic mechanisms for anodic oxidation reactions, and methods to decrease the energy barriers are discussed. Furthermore, the potential challenges and prospects for energy-saving electrolysis and promotion of hydrogen production are examined. A comprehensive understanding of these strategies and their implications is important to the development of efficient and sustainable hydrogen production.

氢已成为一种清洁的可再生能源,具有缓解全球能源和环境危机的潜力。电解水分裂是一种高效、可持续的制氢技术,备受关注。然而,阳极氧进化反应的缓慢动力学和高能耗限制了工业规模电催化水分离的实用性。为了应对这一挑战,开发先进的电解系统和探索替代氧化反应至关重要。本综述重点介绍了耦合电催化制氢策略的最新进展,包括尿素和肼氧化、利用小分子进行增值电合成以及废物升级再循环和降解。会议讨论了各种催化剂、阳极氧化反应的相关催化机理以及降低能量障碍的方法。此外,还探讨了节能电解和促进制氢的潜在挑战和前景。全面了解这些策略及其影响对于发展高效和可持续的氢气生产非常重要。
{"title":"Coupled electrocatalytic hydrogen production","authors":"Donglian Li ,&nbsp;Xuerong Xu ,&nbsp;Junzheng Jiang ,&nbsp;Hao Dong ,&nbsp;Hao Li ,&nbsp;Xiang Peng ,&nbsp;Paul K. Chu","doi":"10.1016/j.mser.2024.100829","DOIUrl":"10.1016/j.mser.2024.100829","url":null,"abstract":"<div><p>Hydrogen has emerged as a clean and renewable energy source with the potential to mitigate global energy and environmental crises. Electrolytic water splitting, a highly efficient and sustainable technology, has garnered significant attention for hydrogen production. However, the slow kinetics of the oxygen evolution reaction on the anode and the high energy consumption limit the practicality of industrial-scale electrocatalytic water splitting. To address the challenge, the development of advanced electrolytic systems and the exploration of alternative oxidation reactions are crucial. This review highlights the recent advancements in coupled electrocatalytic hydrogen production strategies, including urea and hydrazine oxidation, value-adding electrosynthesis using small molecules, and waste upcycling and degradation. Various catalysts, the pertinent catalytic mechanisms for anodic oxidation reactions, and methods to decrease the energy barriers are discussed. Furthermore, the potential challenges and prospects for energy-saving electrolysis and promotion of hydrogen production are examined. A comprehensive understanding of these strategies and their implications is important to the development of efficient and sustainable hydrogen production.</p></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"160 ","pages":"Article 100829"},"PeriodicalIF":31.6,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141882200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Highly efficient and stable organic solar cells achieved by improving exciton diffusion and splitting through a volatile additive-assisted ternary strategy 通过挥发性添加剂辅助三元策略改善激子扩散和分裂,实现高效稳定的有机太阳能电池
IF 31.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-21 DOI: 10.1016/j.mser.2024.100828
Chaoyue Zhao , Yufei Wang , Kangbo Sun , Chuanlin Gao , Chunliang Li , Zezhou Liang , Liangxiang Zhu , Xiaokang Sun , Dan Wu , Tao Yang , Zeguo Tang , Peng You , Chen Xie , Qing Bai , Chao Li , Jicheng Yi , Hanlin Hu , Shunpu Li , He Yan , Guangye Zhang

The ternary and additive strategy, introducing a third component into a binary blend and add suitable additives, opens a simple and promising avenue to improve the power conversion efficiency (PCE) of organic solar cells (OSCs). This study investigates the optimization of OSCs by introducing volatile additives and a third component, L8-BO-X, which tunes the active layer morphology and improves the performance of the devices. Utilizing various characterization techniques, such as the grazing-incidence wide-angle X-ray scattering (GIWAXS), film-depth-dependent light absorption spectroscopy (FLAS), and the femtosecond-resolved transient absorption (fsTA) spectroscopy, the effects of these adjustment on crystallinity, phase separation, exciton generation, and charge transport in photovoltaic device are explored. The incorporation of the third component and volatile additives results in less anisotropy in molecular orientation and thus faster exciton splitting at the D-A interface, enhanced π-π stacking coherence length and longer exciton lifetime, and eventually an enhanced power conversion efficiency (PCE) of 19.6 % (certified as 19.07 % in the National Institute of Metrology in China) and exceptional photostability, with the devices retaining 82 % efficiency after 1200 hours of continuous light exposure.

三元和添加剂策略,即在二元共混物中引入第三种成分并添加合适的添加剂,为提高有机太阳能电池(OSC)的功率转换效率(PCE)开辟了一条简单而有前途的途径。本研究通过引入挥发性添加剂和第三种成分 L8-BO-X 来研究如何优化 OSC,从而调整活性层形态并提高器件性能。利用掠入射广角 X 射线散射(GIWAXS)、薄膜深度依赖性光吸收光谱(FLAS)和飞秒分辨瞬态吸收(fsTA)光谱等各种表征技术,探讨了这些调整对光伏器件中结晶度、相分离、激子生成和电荷传输的影响。第三种成分和挥发性添加剂的加入降低了分子取向的各向异性,从而加快了激子在 D-A 界面的分裂速度,增强了 π-π 堆叠相干长度,延长了激子寿命,最终提高了功率转换效率(PCE),达到 19.6%(中国国家计量院认证为 19.07%),并具有优异的光稳定性,器件在连续光照 1200 小时后仍能保持 82% 的效率。
{"title":"Highly efficient and stable organic solar cells achieved by improving exciton diffusion and splitting through a volatile additive-assisted ternary strategy","authors":"Chaoyue Zhao ,&nbsp;Yufei Wang ,&nbsp;Kangbo Sun ,&nbsp;Chuanlin Gao ,&nbsp;Chunliang Li ,&nbsp;Zezhou Liang ,&nbsp;Liangxiang Zhu ,&nbsp;Xiaokang Sun ,&nbsp;Dan Wu ,&nbsp;Tao Yang ,&nbsp;Zeguo Tang ,&nbsp;Peng You ,&nbsp;Chen Xie ,&nbsp;Qing Bai ,&nbsp;Chao Li ,&nbsp;Jicheng Yi ,&nbsp;Hanlin Hu ,&nbsp;Shunpu Li ,&nbsp;He Yan ,&nbsp;Guangye Zhang","doi":"10.1016/j.mser.2024.100828","DOIUrl":"10.1016/j.mser.2024.100828","url":null,"abstract":"<div><p>The ternary and additive strategy, introducing a third component into a binary blend and add suitable additives, opens a simple and promising avenue to improve the power conversion efficiency (PCE) of organic solar cells (OSCs). This study investigates the optimization of OSCs by introducing volatile additives and a third component, L8-BO-X, which tunes the active layer morphology and improves the performance of the devices. Utilizing various characterization techniques, such as the grazing-incidence wide-angle X-ray scattering (GIWAXS), film-depth-dependent light absorption spectroscopy (FLAS), and the femtosecond-resolved transient absorption (fsTA) spectroscopy, the effects of these adjustment on crystallinity, phase separation, exciton generation, and charge transport in photovoltaic device are explored. The incorporation of the third component and volatile additives results in less anisotropy in molecular orientation and thus faster exciton splitting at the D-A interface, enhanced π-π stacking coherence length and longer exciton lifetime, and eventually an enhanced power conversion efficiency (PCE) of 19.6 % (certified as 19.07 % in the National Institute of Metrology in China) and exceptional photostability, with the devices retaining 82 % efficiency after 1200 hours of continuous light exposure.</p></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"160 ","pages":"Article 100828"},"PeriodicalIF":31.6,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141736506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Density functional theory and molecular dynamics simulations for resistive switching research 用于电阻开关研究的密度泛函理论和分子动力学模拟
IF 31.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-19 DOI: 10.1016/j.mser.2024.100825
Marco A. Villena , Onurcan Kaya , Udo Schwingenschlögl , Stephan Roche , Mario Lanza

Resistive switching (RS) devices, often referred to as memristors, have exhibited interesting electronic performance that could be useful to enhance the capabilities of multiple types of integrated circuits that we use in our daily lives. However, RS devices still do not fulfil the reliability requirements of most commercial applications, mainly because the switching and failure mechanisms are still not fully understood. Density functional theory (DFT) and/or molecular dynamics (MD) are simulations used to describe complex interactions between groups of atoms, and they can be employed to clarify which physical, chemical, thermal and/or electronic phenomena take place during the normal operation of RS devices, which should help to enhance their performance and reliability. In this article, we review which studies have employed DFT and/or MD in the field of RS research, focusing on which methods have been employed and which material properties have been calculated. The goal of this article is not to delve into deep mathematical and computational issues – although some fundamental knowledge is presented – but to describe which type of simulations have been carried out and why they are useful in the field of RS research. This article helps to bridge the gap between the vast group of experimentalists working in the field of RS and computational scientists developing DFT and/or MD simulations.

电阻开关(RS)器件,通常被称为忆阻器,具有有趣的电子性能,可用于增强我们日常生活中使用的多种类型集成电路的功能。然而,RS 器件仍然无法满足大多数商业应用对可靠性的要求,这主要是因为人们对其开关和失效机制还没有完全了解。密度泛函理论(DFT)和/或分子动力学(MD)是用于描述原子团之间复杂相互作用的模拟方法,可用于阐明 RS 器件正常工作时发生的物理、化学、热和/或电子现象,从而有助于提高其性能和可靠性。在本文中,我们回顾了在 RS 研究领域采用 DFT 和/或 MD 的研究,重点是采用了哪些方法以及计算了哪些材料特性。本文的目的不是深入探讨深奥的数学和计算问题--虽然也介绍了一些基础知识--而是介绍已经进行了哪些类型的模拟,以及为什么这些模拟在 RS 研究领域非常有用。这篇文章有助于缩小在 RS 领域工作的广大实验人员与进行 DFT 和/或 MD 模拟的计算科学家之间的差距。
{"title":"Density functional theory and molecular dynamics simulations for resistive switching research","authors":"Marco A. Villena ,&nbsp;Onurcan Kaya ,&nbsp;Udo Schwingenschlögl ,&nbsp;Stephan Roche ,&nbsp;Mario Lanza","doi":"10.1016/j.mser.2024.100825","DOIUrl":"10.1016/j.mser.2024.100825","url":null,"abstract":"<div><p>Resistive switching (RS) devices, often referred to as memristors, have exhibited interesting electronic performance that could be useful to enhance the capabilities of multiple types of integrated circuits that we use in our daily lives. However, RS devices still do not fulfil the reliability requirements of most commercial applications, mainly because the switching and failure mechanisms are still not fully understood. Density functional theory (DFT) and/or molecular dynamics (MD) are simulations used to describe complex interactions between groups of atoms, and they can be employed to clarify which physical, chemical, thermal and/or electronic phenomena take place during the normal operation of RS devices, which should help to enhance their performance and reliability. In this article, we review which studies have employed DFT and/or MD in the field of RS research, focusing on which methods have been employed and which material properties have been calculated. The goal of this article is not to delve into deep mathematical and computational issues – although some fundamental knowledge is presented – but to describe which type of simulations have been carried out and why they are useful in the field of RS research. This article helps to bridge the gap between the vast group of experimentalists working in the field of RS and computational scientists developing DFT and/or MD simulations.</p></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"160 ","pages":"Article 100825"},"PeriodicalIF":31.6,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141728601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Triterpenoid saponin-based supramolecular host-guest injectable hydrogels inhibit the growth of melanoma via ROS-mediated apoptosis 基于三萜皂甙的超分子主客注射水凝胶通过 ROS 介导的细胞凋亡抑制黑色素瘤的生长
IF 31.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-17 DOI: 10.1016/j.mser.2024.100824
Ramya Mathiyalagan , Mohanapriya Murugesan , Zelika Mega Ramadhania , Jinnatun Nahar , Panchanathan Manivasagan , Vinothini Boopathi , Eue-Soon Jang , Deok Chun Yang , João Conde , Thavasyappan Thambi

Triterpenoids are natural bioactive compounds that demonstrate cytotoxic and chemopreventive activities by inhibiting various intracellular signals and transcription factors. Despite their efficacy, triterpenoid chemotherapeutics face significant challenges in cancer therapy because of their poor aqueous solubility, which restricts the utilization of potent drug variants. Consequently, there is a pressing need to develop a solubilized form of triterpenoid encapsulated within mechanically robust biomaterials, to facilitate injectable and minimally invasive delivery. In this study, we focused on ginsenoside compound K (CK), a natural pentacyclic triterpenoid. It was conjugated to hyaluronic acid (HA-CK) and employed as a novel guest molecule for binding to β-cyclodextrin-grafted hyaluronic acid (HA-βCD), which is the host polymer. This interaction resulted in the creation of an injectable supramolecular hydrogel (HG-Gel) through a straightforward mixing process involving host–guest interactions between βCD and CK. The physical properties of the hydrogels were easily manipulated by altering the molecular weight of HA and the grafting degree of βCD and CK in HA. Notably, the supramolecular hydrogel precursors exhibited excellent cell viability for normal cells, sparing over 80 % of NIH 3T3 and HaCaT cells. Intriguingly, these hydrogels facilitated effective delivery to CD44-overexpressing cancer cells, suppressing cell proliferation. Enhanced trafficking of CK to cancer cells heightened caspase-dependent apoptosis in B16F10 cells, with the extent of cell death contingent on the expression levels of CD44 in cancer cells. This effect of CK seems to be mediated through the induction of intracellular reactive oxygen species (ROS) and mitochondrial membrane potential loss. In melanoma tumor-bearing mouse models, HG-Gels effectively inhibited tumor growth. Importantly, no side effects were observed on normal tissues, underscoring the safety of naturally derived biomaterials. This study underscores the superiority of HG-Gels as a platform for utilizing triterpenoid saponins in melanoma therapy, suggesting their potential for enhancing the safety and efficacy of triterpenoids in cancer treatment.

三萜类化合物是一种天然生物活性化合物,通过抑制各种细胞内信号和转录因子而显示出细胞毒性和化学预防活性。尽管三萜类化疗药物疗效显著,但由于其水溶性差,限制了对强效药物变体的利用,因此在癌症治疗中面临着巨大挑战。因此,迫切需要开发一种可溶解的三萜类化合物,将其封装在机械坚固的生物材料中,以方便注射和微创给药。在这项研究中,我们重点研究了人参皂苷化合物 K(CK),这是一种天然的五环三萜类化合物。它与透明质酸(HA-CK)共轭,并作为一种新型客体分子与β-环糊精接枝透明质酸(HA-βCD)(即主聚合物)结合。通过这种相互作用,βCD 和 CK 之间的主客体相互作用通过直接混合过程产生了一种可注射的超分子水凝胶(HG-Gel)。通过改变 HA 的分子量以及 βCD 和 CK 在 HA 中的接枝程度,水凝胶的物理性质很容易控制。值得注意的是,超分子水凝胶前体对正常细胞具有极佳的细胞存活率,对 NIH 3T3 和 HaCaT 细胞的存活率超过 80%。耐人寻味的是,这些水凝胶能有效地输送到 CD44 表达过高的癌细胞,抑制细胞增殖。CK向癌细胞的输送增强了B16F10细胞中依赖于树突酶的细胞凋亡,细胞死亡的程度取决于癌细胞中CD44的表达水平。CK 的这种作用似乎是通过诱导细胞内活性氧(ROS)和线粒体膜电位丧失来实现的。在黑色素瘤小鼠模型中,HG-凝胶能有效抑制肿瘤生长。重要的是,在正常组织中未观察到任何副作用,这凸显了天然生物材料的安全性。这项研究强调了 HG-Gels 作为利用三萜类皂苷治疗黑色素瘤的平台的优越性,表明它具有提高三萜类化合物在癌症治疗中的安全性和有效性的潜力。
{"title":"Triterpenoid saponin-based supramolecular host-guest injectable hydrogels inhibit the growth of melanoma via ROS-mediated apoptosis","authors":"Ramya Mathiyalagan ,&nbsp;Mohanapriya Murugesan ,&nbsp;Zelika Mega Ramadhania ,&nbsp;Jinnatun Nahar ,&nbsp;Panchanathan Manivasagan ,&nbsp;Vinothini Boopathi ,&nbsp;Eue-Soon Jang ,&nbsp;Deok Chun Yang ,&nbsp;João Conde ,&nbsp;Thavasyappan Thambi","doi":"10.1016/j.mser.2024.100824","DOIUrl":"10.1016/j.mser.2024.100824","url":null,"abstract":"<div><p>Triterpenoids are natural bioactive compounds that demonstrate cytotoxic and chemopreventive activities by inhibiting various intracellular signals and transcription factors. Despite their efficacy, triterpenoid chemotherapeutics face significant challenges in cancer therapy because of their poor aqueous solubility, which restricts the utilization of potent drug variants. Consequently, there is a pressing need to develop a solubilized form of triterpenoid encapsulated within mechanically robust biomaterials, to facilitate injectable and minimally invasive delivery. In this study, we focused on ginsenoside compound K (CK), a natural pentacyclic triterpenoid. It was conjugated to hyaluronic acid (HA-CK) and employed as a novel guest molecule for binding to β-cyclodextrin-grafted hyaluronic acid (HA-βCD), which is the host polymer. This interaction resulted in the creation of an injectable supramolecular hydrogel (HG-Gel) through a straightforward mixing process involving host–guest interactions between βCD and CK. The physical properties of the hydrogels were easily manipulated by altering the molecular weight of HA and the grafting degree of βCD and CK in HA. Notably, the supramolecular hydrogel precursors exhibited excellent cell viability for normal cells, sparing over 80 % of NIH 3T3 and HaCaT cells. Intriguingly, these hydrogels facilitated effective delivery to CD44-overexpressing cancer cells, suppressing cell proliferation. Enhanced trafficking of CK to cancer cells heightened caspase-dependent apoptosis in B16F10 cells, with the extent of cell death contingent on the expression levels of CD44 in cancer cells. This effect of CK seems to be mediated through the induction of intracellular reactive oxygen species (ROS) and mitochondrial membrane potential loss. In melanoma tumor-bearing mouse models, HG-Gels effectively inhibited tumor growth. Importantly, no side effects were observed on normal tissues, underscoring the safety of naturally derived biomaterials. This study underscores the superiority of HG-Gels as a platform for utilizing triterpenoid saponins in melanoma therapy, suggesting their potential for enhancing the safety and efficacy of triterpenoids in cancer treatment.</p></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"160 ","pages":"Article 100824"},"PeriodicalIF":31.6,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0927796X24000548/pdfft?md5=698faa6a020309359c8471ccb23223ae&pid=1-s2.0-S0927796X24000548-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141636926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heterostructured core-shell metal oxide-based nanobrushes for ultrafast UV photodetectors 用于超快紫外光检测器的基于核壳金属氧化物的异质结构纳米刷子
IF 31.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-17 DOI: 10.1016/j.mser.2024.100826
Naini Jain , Deepak Kumar , Kirti Bhardwaj , Rupendra K. Sharma , Jakub Holovsky , Meena Mishra , Yogendra Kumar Mishra , Sanjeev Kumar Sharma

Ultrafast UV photodetectors (UV PDs) are crucial components in modern optoelectronics because conventional detectors have reached a bottleneck with low integration, functionalities, and efficiency. Core-shell metal oxide nanobrushes (MOx NBs)-based UV PDs have enhanced the absorption, tunable performance, and good compatibility for diversified applications, including imaging, self-powered systems, remote communications, security, and wearable electronics. Core-shell PDs are developed with complex hierarchical or heterostructured configurations that encapsulate 1D MOx nanowires on 1D nanostructures (NSs) to transport high charge carrier mobility or efficiency by reducing scattering and recombination rates. This review presents a thorough development of MOx core-shell microstructure for the enhancement of detection response and stability with controlled parameters for multifunctional applications. Significant roles of MOx NBs-based UV PDs exploring various growth techniques and complex photodetection mechanisms with their challenges, limitations, and prospects, providing valuable insights for propelling the progression of photodetector technology in this comprehensive review are discussed meticulously. The novelty of MOx NBs-based UV PDs lies in their distinctive brush-like morphology aspect, tunable properties, and improved performance compared to other NSs, for rapid and sensitive response ( ̴µs-ms) under UV light illumination. The diverse photoresponse parameters and multifunctional applications of UV PDs incorporating MOx NBs are carefully summarized, which will set the roadmap for future photodetector technology.

超快紫外光检测器(UV PDs)是现代光电子学中的关键元件,因为传统的检测器在集成度、功能和效率方面已经达到了一个瓶颈。基于核壳金属氧化物纳米碎屑(MOx NBs)的紫外光光电探测器具有更强的吸收能力、可调性能和良好的兼容性,可用于成像、自供电系统、远程通信、安全和可穿戴电子设备等多种应用。核壳型紫外光分光器件采用复杂的分层或异质结构配置,将一维 MOx 纳米线封装在一维纳米结构(NSs)上,通过降低散射和重组率来传输高电荷载流子迁移率或效率。本综述全面介绍了 MOx 核壳微结构的发展情况,通过控制多功能应用的参数来提高检测响应和稳定性。本综述详细讨论了基于 MOx NBs 的紫外线光致发光器件的重要作用,探索了各种生长技术和复杂的光检测机制及其挑战、局限性和前景,为推动光电探测器技术的发展提供了宝贵的见解。基于 MOx NBs 的紫外光光致发光器件的新颖之处在于其独特的刷状形貌、可调特性以及与其他 NS 相比更高的性能,可在紫外光照射下做出快速灵敏的响应(̴µs-ms)。本文仔细总结了含有 MOx NB 的紫外线光致发光器件的各种光响应参数和多功能应用,为未来的光电探测器技术绘制了路线图。
{"title":"Heterostructured core-shell metal oxide-based nanobrushes for ultrafast UV photodetectors","authors":"Naini Jain ,&nbsp;Deepak Kumar ,&nbsp;Kirti Bhardwaj ,&nbsp;Rupendra K. Sharma ,&nbsp;Jakub Holovsky ,&nbsp;Meena Mishra ,&nbsp;Yogendra Kumar Mishra ,&nbsp;Sanjeev Kumar Sharma","doi":"10.1016/j.mser.2024.100826","DOIUrl":"10.1016/j.mser.2024.100826","url":null,"abstract":"<div><p>Ultrafast UV photodetectors (UV PDs) are crucial components in modern optoelectronics because conventional detectors have reached a bottleneck with low integration, functionalities, and efficiency. Core-shell metal oxide nanobrushes (MOx NBs)-based UV PDs have enhanced the absorption, tunable performance, and good compatibility for diversified applications, including imaging, self-powered systems, remote communications, security, and wearable electronics. Core-shell PDs are developed with complex hierarchical or heterostructured configurations that encapsulate 1D MOx nanowires on 1D nanostructures (NSs) to transport high charge carrier mobility or efficiency by reducing scattering and recombination rates. This review presents a thorough development of MOx core-shell microstructure for the enhancement of detection response and stability with controlled parameters for multifunctional applications. Significant roles of MOx NBs-based UV PDs exploring various growth techniques and complex photodetection mechanisms with their challenges, limitations, and prospects, providing valuable insights for propelling the progression of photodetector technology in this comprehensive review are discussed meticulously. The novelty of MOx NBs-based UV PDs lies in their distinctive brush-like morphology aspect, tunable properties, and improved performance compared to other NSs, for rapid and sensitive response ( ̴µs-ms) under UV light illumination. The diverse photoresponse parameters and multifunctional applications of UV PDs incorporating MOx NBs are carefully summarized, which will set the roadmap for future photodetector technology.</p></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"160 ","pages":"Article 100826"},"PeriodicalIF":31.6,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0927796X24000561/pdfft?md5=35c0d170afaa825c33cda1b4d2969041&pid=1-s2.0-S0927796X24000561-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141636998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Innovative self-repairing binders tackling degradation and de-lithiation challenges: Structure, mechanism, high energy and durability 创新型自修复粘合剂可应对降解和去石灰化挑战:结构、机理、高能量和耐久性
IF 31.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-16 DOI: 10.1016/j.mser.2024.100830
Farshad Boorboor Ajdari , Fereshteh Abbasi , Ali Molaei Aghdam , Fatemeh Ghorbani Chehel Khaneh , Atefeh Ghaedi Arjenaki , Vahid Farzaneh , Aliakbar Abbasi , Seeram Ramakrishna

Maintaining battery stability is the greatest concern for the next generation of electronic devices, such as automotive and foldable electronics. Advanced lithium batteries experience mechanical fracturing during cycling due to structural changes, reducing their lifespan. Self-healing properties can effectively mitigate this issue, thereby increasing the device's durability. Utilizing intrinsic self-healing polymers (SHPs) is a prevalent strategy, addressing mechanical defects and enhancing electrochemical properties independently. This review begins with a discussion of the SHPs and their various mechanisms of self-healing capability, followed by a presentation of approaches and their strategies for competing with Silicon-based, Li-Metal, and Li-Sulfur batteries. SHPs or binders have a high potential to deal with the critical problems of cracks and volume change problems. Also, it discussed promising methods for employing self-healing materials to combat integrity and stability obstacles. It provided an overview of boosting Li-adsorbing systems, de-lithiation behavior, extending cycle life, and high retention capacity based on the coverage and interlayer binding role, increasing diffusion, and enhancing cycle life. This work would encourage researchers to concentrate substantially on developing self-healing properties for designing high-energy and durable lithium batteries.

保持电池的稳定性是下一代电子设备(如汽车和可折叠电子设备)最关心的问题。先进的锂电池在循环过程中会因结构变化而发生机械断裂,从而缩短其使用寿命。自愈特性可有效缓解这一问题,从而提高设备的耐用性。利用本征自愈合聚合物(SHPs)是一种普遍的策略,既能解决机械缺陷,又能独立增强电化学性能。本综述首先讨论了 SHPs 及其各种自修复能力机制,然后介绍了与硅基电池、锂金属电池和锂硫电池竞争的方法和策略。SHP 或粘合剂在解决裂缝和体积变化等关键问题方面具有很大的潜力。此外,报告还讨论了采用自修复材料应对完整性和稳定性障碍的可行方法。它概述了基于覆盖和层间结合作用、增加扩散和提高循环寿命的促进锂吸附系统、去硫化行为、延长循环寿命和高保持能力。这项工作将鼓励研究人员集中精力开发自修复特性,以设计出高能量和耐用的锂电池。
{"title":"Innovative self-repairing binders tackling degradation and de-lithiation challenges: Structure, mechanism, high energy and durability","authors":"Farshad Boorboor Ajdari ,&nbsp;Fereshteh Abbasi ,&nbsp;Ali Molaei Aghdam ,&nbsp;Fatemeh Ghorbani Chehel Khaneh ,&nbsp;Atefeh Ghaedi Arjenaki ,&nbsp;Vahid Farzaneh ,&nbsp;Aliakbar Abbasi ,&nbsp;Seeram Ramakrishna","doi":"10.1016/j.mser.2024.100830","DOIUrl":"10.1016/j.mser.2024.100830","url":null,"abstract":"<div><p>Maintaining battery stability is the greatest concern for the next generation of electronic devices, such as automotive and foldable electronics. Advanced lithium batteries experience mechanical fracturing during cycling due to structural changes, reducing their lifespan. Self-healing properties can effectively mitigate this issue, thereby increasing the device's durability. Utilizing intrinsic self-healing polymers (SHPs) is a prevalent strategy, addressing mechanical defects and enhancing electrochemical properties independently. This review begins with a discussion of the SHPs and their various mechanisms of self-healing capability, followed by a presentation of approaches and their strategies for competing with Silicon-based, Li-Metal, and Li-Sulfur batteries. SHPs or binders have a high potential to deal with the critical problems of cracks and volume change problems. Also, it discussed promising methods for employing self-healing materials to combat integrity and stability obstacles. It provided an overview of boosting Li-adsorbing systems, de-lithiation behavior, extending cycle life, and high retention capacity based on the coverage and interlayer binding role, increasing diffusion, and enhancing cycle life. This work would encourage researchers to concentrate substantially on developing self-healing properties for designing high-energy and durable lithium batteries.</p></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"160 ","pages":"Article 100830"},"PeriodicalIF":31.6,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141622309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Alginate fiber anchored conductive coordination frameworks for ultrastable light-gas dual sensors with synergistic effect 用于具有协同效应的超稳定光气双传感器的藻酸盐纤维锚定导电配位框架
IF 31.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-16 DOI: 10.1016/j.mser.2024.100827
Kai Liu , Weiliang Tian , Bin Hui , Kewei Zhang , Yanzhi Xia

Electrically conductive coordination frameworks (ECCF) firmly anchored on renewable and sustainable alginate substrates are fundamentally important yet still challenging for flexible electronics. Herein, we report an interfacial self-assembly strategy to prepare alginate-anchored ECCF for constructing flexible and ultrastable light-gas dual sensors. By combining free Cu ions with trispectral linker, well-defined ECCF with a metal catechol structure (Cu-CAT) is directly grown on alginate fabrics (AF), which perfectly solves swelling problem of the hydrated alginate and improves flexibility and toughness of the electronic platform. By precisely tuning the thickness of as-prepared Cu-CAT nanowire film, the resultant AF/Cu-CAT sensor acts as not only a stable and self-powered light sensor in wide spectral range but also a selective NH3 sensor operating at room temperature. Remarkably, the flexible sensor demonstrates light-gas synergistic effect, facilitating the adsorption-desorption kinetic by 358 % and thus achieving ultrafast and ultrastable response. This work provides a feasible approach for manufacturing ECCF-functionalized flexible organo-substrates and pushes forward a significant step toward the electric-field modulation of flexible sensors.

牢牢锚定在可再生、可持续藻酸盐基底上的导电配位框架(ECCF)对于柔性电子器件来说非常重要,但仍具有挑战性。在此,我们报告了一种界面自组装策略,用于制备藻酸盐锚定的导电配位框架,以构建柔性和超稳定的光气双传感器。通过将游离铜离子与三谱系连接体相结合,具有金属邻苯二酚结构(Cu-CAT)的定义明确的 ECCF 直接生长在藻酸盐织物(AF)上,完美地解决了水合藻酸盐的溶胀问题,提高了电子平台的灵活性和韧性。通过精确调节制备的 Cu-CAT 纳米线薄膜的厚度,制备出的 AF/Cu-CAT 传感器不仅可以在宽光谱范围内用作稳定的自供电光传感器,还可以在室温下用作选择性 NH3 传感器。值得注意的是,这种柔性传感器具有光气协同效应,可将吸附-解吸动力学提高 358%,从而实现超快和超稳定响应。这项工作为制造 ECCF 功能化柔性有机基底提供了一种可行的方法,并向柔性传感器的电场调制迈出了重要一步。
{"title":"Alginate fiber anchored conductive coordination frameworks for ultrastable light-gas dual sensors with synergistic effect","authors":"Kai Liu ,&nbsp;Weiliang Tian ,&nbsp;Bin Hui ,&nbsp;Kewei Zhang ,&nbsp;Yanzhi Xia","doi":"10.1016/j.mser.2024.100827","DOIUrl":"10.1016/j.mser.2024.100827","url":null,"abstract":"<div><p>Electrically conductive coordination frameworks (ECCF) firmly anchored on renewable and sustainable alginate substrates are fundamentally important yet still challenging for flexible electronics. Herein, we report an interfacial self-assembly strategy to prepare alginate-anchored ECCF for constructing flexible and ultrastable light-gas dual sensors. By combining free Cu ions with trispectral linker, well-defined ECCF with a metal catechol structure (Cu-CAT) is directly grown on alginate fabrics (AF), which perfectly solves swelling problem of the hydrated alginate and improves flexibility and toughness of the electronic platform. By precisely tuning the thickness of as-prepared Cu-CAT nanowire film, the resultant AF/Cu-CAT sensor acts as not only a stable and self-powered light sensor in wide spectral range but also a selective NH<sub>3</sub> sensor operating at room temperature. Remarkably, the flexible sensor demonstrates light-gas synergistic effect, facilitating the adsorption-desorption kinetic by 358 % and thus achieving ultrafast and ultrastable response. This work provides a feasible approach for manufacturing ECCF-functionalized flexible organo-substrates and pushes forward a significant step toward the electric-field modulation of flexible sensors.</p></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"160 ","pages":"Article 100827"},"PeriodicalIF":31.6,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141622308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Materials Science and Engineering: R: Reports
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1