Objective: To investigate the changes in distribution of Oncomelania hupensis snails in forestlands in Songjiang District, Shanghai Municipality from 2009 to 2023, so as to provide insights into formulation of O. hupensis snail surveillance programs.
Methods: The reports on O. hupensis snail surveillance in Songjiang District, Shanghai Municipality from 2009 to 2023 were collected, and the snail surveillance data in forestlands were extracted. The trends in the proportion of areas with snails in forestlands in total areas with snails, occurrence of frames with living snails and density of living snails were evaluated using a Joinpoint regression model in Songjiang District from 2009 to 2023, and the annual percent change (APC) and average annual percent change (AAPC).
Results: A total of 40 sites with snails were found in forestlands in 14 administrative villages of 4 townships, Songjiang District, Shanghai Municipality from 2009 to 2023. A total of 39 065 frames were surveyed for snails in settings covering an area of 609 600 m2, and there were 6 084 frames with snails, covering 151 250 m2 snail habitats. A total of 22 210 snails were captured, with the highest density of 260.00 snails/0.1 m2, and 6 262 snails were dissected, with no Schistosoma japonicum infection identified in snails. The proportion of areas with snails in forestlands in total areas with snails appeared a tendency towards a rise in forestlands in Songjiang District, Shanghai Municipality from 2009 to 2023 (APC = AAPC = 24.9%, P > 0.05); however, there were no turning points in the trend curve, with the highest proportion seen in 2009 (53.81%), the lowest in 2011 and 2023 (both 0) and a mean proportion of 24.81%. The occurrence of frames with living snails appeared a tendency towards a rise from 2009 to 2023 (APC = AAPC = 41.5%, P > 0.05); however, there were no turning points in the trend curve, with the highest occurrence in 2009 (53.81%), the lowest in 2011 and 2013 (both 0), and the mean occurrence of 15.57%. In addition, the density of living snails appeared a tendency towards a rise from 2009 to 2023 (APC = AAPC = 55.0%, P > 0.05); however, there were no turning points in the trend curve, with the highest density in 2023 (0.96 snails/0.1 m2), the lowest in 2011 and 2013 (both 0), and a mean density of 0.57 snails/0.1 m2.
Conclusions: The difficulty in O. hupensis snail control and risk of imported snails appeared a tendency towards a rise in forestlands in Songjiang District, Shanghai Municipality over years from 2009 to 2023. Supervision and assessment prior to seedling transplantation and intensified surveillance post-transplantation are recommended to reduce the risk of O. hupensis snail importation and spread.
Objective: To analyze the trends in Oncomelania hupensis distribution in Wuhan City, Hubei Province from 2003 to 2022, so as to provide insights into precision schistosomiasis control.
Methods: Data pertaining to O. hupensis snail survey in Wuhan City from 2003 to 2022 were collected. The trends in the proportion of areas with snail habitats, actual area with snail habitats, mean density of living snails and prevalence of Schistosoma japonicum infection in snails were evaluated in schistosomiasis-endemic areas of Wuhan City from 2003 to 2022 with the slope of trend curve (β), annual percent change (APC) and average annual percent change (AAPC) using a Joinpoint regression model.
Results: During the period from 2003 through 2022, there were two turning points for the proportion of areas with snail habitats in Wuhan City in 2005 and 2015, with a rise during the period from 2003 to 2005 (β1 = 5.93, t = 1.280, P > 0.05), a decline from 2005 to 2015 (β2 = -0.88, t = -2.074, P > 0.05) and a rise from 2015 to 2022 (β3 = 1.46, t = -2.356, P < 0.05). During the period from 2003 through 2022, there were two turning points for the proportion of areas with snail habitats in islet endemic areas of Wuhan City in 2006 and 2015, with no significant differences in the trends from 2003 to 2006 (β1 = 4.64, t = 1.888, P > 0.05) or from 2006 to 2015 (β2 = -1.45, t = -2.143, P > 0.05), and with a tendency towards a rise from 2015 to 2022 (β3 = 2.04, t = -3.100, P < 0.05). During the period from 2003 through 2022, there were two turning points for the proportion of areas with snail habitats in inner embankment endemic areas of Wuhan City in 2012 and 2020, with a tendency towards a decline from 2003 to 2012 (β1 = -0.39, t = -4.608, P < 0.05) and with no significant differences in the trends from 2012 to 2020 (β2 = 0.03, t = 0.245, P > 0.05) and from 2020 to 2022 (β3 = 1.38, t = 1.479, P > 0.05). During the period from 2003 to 2022, the actual area with snail habitats all appeared a tendency towards a decline in Wuhan City, and in islet and inner embankment endemic areas of Wuhan City from 2003 to 2022 (AAPC = -2.39%, -5.75% and -2.35%, all P values < 0.05). The mean density of living snails reduced from 0.087 snails/0.1 m2 in 2003 to 0.027 snails/0.1 m2 in 2022 in Wuhan City, with a significant difference in the tendency towards the decline (APC = AAPC = -11.47%, P < 0.05). The annual mean decline rate of the mean density of living snails was 17.36% in outside embankment endemic areas of Wuhan City from 2003 to 2022 (APC = AAPC = -17.36%, P < 0.05), and there was no significant difference in the trends in the mean density
There are still multiple challenges in China during the malaria post-elimination phase, including a large number of imported malaria cases with widespread distribution, low awareness of timely healthcare seeking, insufficient malaria diagnosis and treatment capacity of medical institutions and insufficient malaria surveillance and response capability of disease control and prevention institutions. As the core technical institutions for preventing the re-establishment of malaria transmission, both medical institutions and disease control and prevention institutions are required to enhance the collaboration between clinical and public health services, improve the malaria diagnosis and quality management system, intensify case identification and epidemiological investigations, and improve the management mechanism of antimalarial drug reserves. In addition, doctors are encouraged to become the main force in the health education and promotion of malaria prevention to improve the public health literacy. These approaches are recommended to improve the overall capability of timely identification, standardized treatment and effective response of imported malaria cases, so as to continuously consolidate the malaria elimination achievements in China.
Objective: To investigate the effect of LAG-3 deficiency (LAG3-/-) on natural killer (NK) cell function and hepatic fibrosis in mice infected with Echinococcus multilocularis.
Methods: C57BL/6 mice, each weighing (20 ± 2) g, were divided into the LAG3-/- and wild type (WT) groups, and each mouse in both groups was inoculated with 3 000 E. multilocularis protoscoleces via the hepatic portal vein. Mouse liver and spleen specimens were collected 12 weeks post-infection, sectioned and stained with sirius red, and the hepatic lesions and fibrosis were observed. Mouse hepatic and splenic lymphocytes were isolated, and flow cytometry was performed to detect the proportions of hepatic and splenic NK cells, the expression of CD44, CD25 and CD69 molecules on NK cell surface, and the secretion of interferon γ (IFN-γ), tumor necrosis factor α (TNF-α), interleukin (IL)-4, IL-10 and IL-17A.
Results: Sirius red staining showed widening of inflammatory cell bands and hyperplasia of fibrotic connective tissues around mouse hepatic lesions, as well as increased deposition of collagen fibers in the LAG3-/-group relative to the WT group. Flow cytometry revealed lower proportions of mouse hepatic (6.29% ± 1.06% vs. 11.91% ± 1.85%, P < 0.000 1) and splenic NK cells (4.44% ± 1.22% vs. 5.85% ± 1.10%, P > 0.05) in the LAG3-/- group than in the WT group, and the mean fluorescence intensity of CD44 was higher on the surface of mouse hepatic NK cells in the LAG3-/- group than in the WT group (t = -3.234, P < 0.01), while no significant differences were found in the mean fluorescence intensity of CD25 or CD69 on the surface of mouse hepaticNK cells between the LAG3-/- and WT groups (both P values > 0.05). There were significant differences between the LAG3-/- and WT groups in terms of the percentages of IFN-γ (t = -0.723, P > 0.05), TNF-α (t = -0.659, P > 0.05), IL-4 (t = -0.263, P > 0.05), IL-10 (t = -0.455, P > 0.05) or IL-17A secreted by mouse hepatic NK cells (t = 0.091, P > 0.05), and the percentage of IFN-γ secreted by mouse splenic NK cells was higher in the LAG3-/- group than in the WT group (58.40% ± 1.64% vs. 50.40% ± 4.13%; t = -4.042, P < 0.01); however, there were no significant differences between the two groups in terms of the proportions of TNF-α (t = -1.902, P > 0.05), IL-4 (t = -1.333, P > 0.05), IL-10 (t = -1.356, P > 0.05) or IL-17A secreted by mouse splenic NK cells (t = 0.529, P > 0.05).
Conclusions: During the course of E. multilocularis infections, LAG3-/- promotes high-level secretion of IFN-γ by splenic NK cells, which may participate in the reversal the immune function of NK cells,
The goal of achieving elimination of schistosomiasis across all endemic counties in China by 2030 was proposed in the Outline of the Healthy China 2030 Plan. On June 16, 2023, the Action Plan to Accelerate the Elimination of Schistosomiasis in China (2023-2030) was jointly issued by National Disease Control and Prevention Administration and other 10 ministries, which deployed the targets and key tasks of the national schistosomiasis elimination programme in China. This article describes the progress of the national schistosomiasis control programme, analyzes the opportunities to eliminate schistosomiasis, and proposes targeted recommendations to tackle the challenges of schistosomiasis elimination, so as to accelerate the process towards schistosomiasis elimination and facilitate the building of a healthy China.
Objective: To investigate the microbiota composition and diversity between autogenous and anautogenous Culex pipiens pallens, so as to provide insights into unraveling the pathogenesis of autogeny in Cx. pipiens pallens.
Methods: Autogenous and anautogenous adult Cx. pipiens pallens samples were collected at 25 ℃, and the hypervariable regions of the microbial 16S ribosomal RNA (16S rRNA) gene was sequenced on the Illumina NovaSeq 6000 sequencing platform. The microbiota abundance and diversity were evaluated using the alpha diversity index, and the difference in the microbiota structure was examined using the beta diversity index. The microbiota with significant differences in the abundance between autogenous and anautogenous adult Cx. pipiens pallens samples was identified using the linear discriminant analysis effect size (LEfSe).
Results: The microbiota in autogenous and anautogenous Cx. pipiens pallens samples belonged to 18 phyla, 28 classes, 70 orders, 113 families, and 170 genera, and the dominant phyla included Proteobacteria, Bacteroidetes, and so on. At the genus level, Wolbachia was a common dominant genus, and the relative abundance was (77.6 ± 11.3)% in autogenous Cx. pipiens pallens samples and (47.5 ± 8.5)% in anautogenous mosquito samples, while Faecalibaculum (0.4% ± 0.1%), Dubosiella (0.5% ± 0.0%) and Massilia (0.5% ± 0.1%) were specific species in autogenous Cx. pipiens pallens samples. Alpha diversity analysis showed that higher Chao1 index and ACE index in autogenous Cx. pipiens pallens samples than in anautogenous samples (both P values > 0.05), and lower Shannon index (P > 0.05) and Simpson index (P < 0.05) in autogenous Cx. pipiens pallens samples than in anautogenous samples. LEfSe analysis showed a total of 48 significantly different taxa between autogenous and anautogenous Cx. pipiens pallens samples (all P values < 0.05).
Conclusions: There is a significant difference in the microbiota diversity between autogenous and anautogenous Cx. pipiens pallens.
Objective: To investigate the capillarization of liver sinusoidal endothelial cells (LSECs) and its association with hepatic fibrosis during the development of alveolar echinococcosis, so as to provide the basis for unraveling the mechanisms underlying the role of LSEC in the development and prognosis of hepatic injuries and hepatic fibrosis caused by alveolar echinococcosis.
Methods: Forty C57BL/6 mice at ages of 6 to 8 weeks were randomly divided into a control group and 1-, 2- and 4-week infection groups, of 10 mice in each group. Each mouse in the infection groups was intraperitoneally injected with 2 000 Echinococcus multilocularis protoscoleces, while each mouse in the control group was given an equal volume of phosphate-buffered saline using the same method. All mice were sacrificed 1, 2 and 4 weeks post-infection and mouse livers were collected. The pathological changes of livers were observed using hematoxylin-eosin (HE) staining, and hepatic fibrosis was evaluated through semi-quantitative analysis of Masson's trichrome staining-positive areas. The activation of hepatic stellate cells (HSCs) and extracellular matrix (ECM) deposition were examined using immunohistochemical staining of α-smooth muscle actin (α-SMA) and collagen type I alpha 1 (COL1A1), and the fenestrations on the surface of LSECs were observed using scanning electron microscopy. Primary LSECs were isolated from mouse livers, and the mRNA expression of LSEC marker genes Stabilin-1, Stabilin-2, Ehd3, CD209b, GATA4 and Maf was quantified using real-time fluorescence quantitative PCR (qPCR) assay.
Results: Destruction of local liver lobular structure was observed in mice 2 weeks post-infection with E. multilocularis protoscoleces, and hydatid cysts, which were surrounded by granulomatous tissues, were found in mouse livers 4 weeks post-infection. Semi-quantitative analysis of Masson's trichrome staining showed a significant difference in the proportion of collagen fiber contents in mouse livers among the four groups (F = 26.060, P < 0.001), and a higher proportion of collagen fiber contents was detected in mouse livers in the 4-week infection group [(11.29 ± 2.58)%] than in the control group (P < 0.001). Immunohistochemical staining revealed activation of a few HSCs and ECM deposition in mouse livers 1 and 2 weeks post-infection, and abundant brown-yellow stained α-SMA and COL1A1 were deposited in the lesion areas in mouse livers 4 weeks post-infection, which spread to surrounding tissues. Semi-quantitative analysis revealed significant differences in α-SMA (F = 7.667, P < 0.05) and COL1A1 expression (F = 6.530, P < 0.05) in mouse levers among the four groups, with higher α-SMA [(7.13 ± 3.68)%] and COL1A1 expression [(13.18 ± 7.20)%] quantified in mouse livers in the 4-week infection group than in the contr
Tropical diseases, notably neglected tropical diseases and infectious diseases of poverty, remain major health problems endangering the poorest and most-marginalized people in the world. The Special Programme for Research and Training in Tropical Diseases (TDR), which is co-sponsored by the World Health Organization, the United Nations Children's Fund (UNICEF), the United Nations Development Programme (UNDP) and the World Bank, is an important programme that helps facilitate, support, guide and coordinate global efforts to combat tropical diseases. On July 2023, TDR formally issued its 2024-2029 strategy, which proposed the direction and proprieties of global tropical disease prevention and control in the next six years. Based on its original focus on supporting researchers and research institutions from low and middle-income countries to conduct research on tropical diseases and building their research capabilities, this strategy proposed some new developments, which mainly included incorporating tropical disease prevention and control into the overall framework of addressing major global health challenges and achieving the health goals set by the United Nations Sustainable Development Goals (SDGs) to combat tropical diseases and contribute to achieving health goals of SDGs in a collaborative and integrated manner; supporting implementation research and encouraging practitioners and social innovators to participate in research to enable generation of solutions that may be used to solve local health problems; promoting and encouraging the One Health concept and interdisciplinary and cross-departmental collaboration; shifting gradually its focus from disease prevention and control to addressing the health needs of the poorest and most-marginalized populations. These new developments deserve the attention of personnel and institutions in China dedicated to the prevention and control of tropical diseases in order to help their future researches and activities.
Tuberculosis (TB) remains one of the biggest infectious killers worldwide. Vaccine is the most satisfactory tool for prevention of TB; however, Bacillus Calmette-Guérin (BCG), the widely used vaccine in clinical for the prevention of TB, has limitations in protective effects. Development of novel TB vaccines is therefore of urgent need. Currently, there are 15 novel TB vaccine candidates in clinical trials, including live-attenuated vaccines, inactivated vaccines, subunit vaccines and viral-vectored vaccines, which open the door for the ultimate target of the End TB Strategy. This review summarizes the latest advances in the development of TB vaccines in global clinical trials, so as to provide insights into TB control.