Liyou Xu, Yiting Wang, Yanying Li, Jinghui Zhao, Mengnan Liu
Energy management strategies are crucial for improving fuel economy and reducing the exhaust emissions of hybrid tractors. The authors study a series diesel-electric hybrid tractor (SDEHT) and propose a multi-operating point Fuzzy PID control strategy (MOPFPCS) aimed to achieve better fuel economy and improved control. To further improve the vehicle economy, the adaptive particle swarm optimization method is used to optimize the key parameters of the Fuzzy PID controller. A co-simulation model in AVL-Cruise and Matlab/Simulink environment is developed for plowing mode and transportation mode. The simulation results show that under the two operation modes, the equivalent fuel consumption of the adaptive particle swarm optimization multi-operating points Fuzzy PID control strategy (APSO-MOPFPCS) is reduced by 18.3% and 15.0%, respectively, compared to the engine single-operating point control strategy (ESOPCS). Also, it was found to be reduced by 9.5% and 4.6%, respectively, compared to the MOPFPCS.
{"title":"Research on Control Strategy of APSO-Optimized Fuzzy PID for Series Hybrid Tractors","authors":"Liyou Xu, Yiting Wang, Yanying Li, Jinghui Zhao, Mengnan Liu","doi":"10.3390/wevj14090258","DOIUrl":"https://doi.org/10.3390/wevj14090258","url":null,"abstract":"Energy management strategies are crucial for improving fuel economy and reducing the exhaust emissions of hybrid tractors. The authors study a series diesel-electric hybrid tractor (SDEHT) and propose a multi-operating point Fuzzy PID control strategy (MOPFPCS) aimed to achieve better fuel economy and improved control. To further improve the vehicle economy, the adaptive particle swarm optimization method is used to optimize the key parameters of the Fuzzy PID controller. A co-simulation model in AVL-Cruise and Matlab/Simulink environment is developed for plowing mode and transportation mode. The simulation results show that under the two operation modes, the equivalent fuel consumption of the adaptive particle swarm optimization multi-operating points Fuzzy PID control strategy (APSO-MOPFPCS) is reduced by 18.3% and 15.0%, respectively, compared to the engine single-operating point control strategy (ESOPCS). Also, it was found to be reduced by 9.5% and 4.6%, respectively, compared to the MOPFPCS.","PeriodicalId":38979,"journal":{"name":"World Electric Vehicle Journal","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135979758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The multi-power source coupled transmission system is a high-performance and energy-saving potential power transmission system, and most of the commonly used pure electric vehicles in the market that use multi-power source coupled drive adopt the motor dual-axis distributed independent drive scheme. The configuration design method for multi-power source fusion hybrid systems mainly focuses on the search and selection of power split hybrid systems based on planetary gear mechanisms. But it has not yet covered the configuration design of transmission systems, resulting in a lack of universal expression and generation methods for the configuration of multi-power source fusion hybrid systems in pure electric vehicles. Therefore, to solve the configuration optimization design problem of a dual-motor single-planetary-array power system, an improved general matrix topology design method is proposed to generate all feasible topology structures. And energy consumption, economy, and the dynamic performance of alternative configurations are optimized and simulated through the control strategy based on a dynamic programming algorithm. Under comprehensive testing conditions, 25 alternative options that met the screening criteria were selected, and, ultimately, five optimized configuration options were obtained. Configuration 1 has the best economy, reducing energy consumption by about 6.3%and increasing driving range by about 6.7%. Its 0–100 km/h acceleration time is about 31.4% faster than the reference configuration. In addition, the energy consumption economy during actual driving is almost the same as the theoretical optimal energy consumption economy, with a difference of only 0.3%. The success of this study not only provides an innovative method for optimizing the configuration of dual-motor single-row star train power systems, but also has a positive impact on improving energy utilization efficiency, reducing energy consumption, and improving the overall performance of electric vehicles.
{"title":"Optimization Effect of the Improved Power System Integrating Composite Motors on the Energy Consumption of Electric Vehicles","authors":"Lijun Jia","doi":"10.3390/wevj14090257","DOIUrl":"https://doi.org/10.3390/wevj14090257","url":null,"abstract":"The multi-power source coupled transmission system is a high-performance and energy-saving potential power transmission system, and most of the commonly used pure electric vehicles in the market that use multi-power source coupled drive adopt the motor dual-axis distributed independent drive scheme. The configuration design method for multi-power source fusion hybrid systems mainly focuses on the search and selection of power split hybrid systems based on planetary gear mechanisms. But it has not yet covered the configuration design of transmission systems, resulting in a lack of universal expression and generation methods for the configuration of multi-power source fusion hybrid systems in pure electric vehicles. Therefore, to solve the configuration optimization design problem of a dual-motor single-planetary-array power system, an improved general matrix topology design method is proposed to generate all feasible topology structures. And energy consumption, economy, and the dynamic performance of alternative configurations are optimized and simulated through the control strategy based on a dynamic programming algorithm. Under comprehensive testing conditions, 25 alternative options that met the screening criteria were selected, and, ultimately, five optimized configuration options were obtained. Configuration 1 has the best economy, reducing energy consumption by about 6.3%and increasing driving range by about 6.7%. Its 0–100 km/h acceleration time is about 31.4% faster than the reference configuration. In addition, the energy consumption economy during actual driving is almost the same as the theoretical optimal energy consumption economy, with a difference of only 0.3%. The success of this study not only provides an innovative method for optimizing the configuration of dual-motor single-row star train power systems, but also has a positive impact on improving energy utilization efficiency, reducing energy consumption, and improving the overall performance of electric vehicles.","PeriodicalId":38979,"journal":{"name":"World Electric Vehicle Journal","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135981756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper presents a new control strategy for vehicle stability based on brake-by-wire. However, there are few studies in the literature that compare the stability of a vehicle by systematic experimentation with or without controllers. In this paper, the complete experimental procedure is designed, and the experimental results are analyzed in detail. Firstly, the hydraulic model of the brake-by-wire is established based on its structure and working principles, and the yaw moment control method is proposed for the vehicle’s stability. The deviation between the desired values and actual values of the yaw rate and sideslip angle is taken as the input, and the fuzzy controller calculates the additional yaw moment for the vehicle stability. Next, the simulation under different conditions which contain the steering wheel step input, double lane change and turning is conducted, and the yaw rates and sideslip angles with and without stability control are compared, and the effectiveness of the control method is verified. Finally, the turning test is conducted based on brake-by-wire chassis to verify the proposed method. The experimental results show that the yaw rate decreased by 14% and the sideslip angle decreased by 25% when the brake control was applied. Furthermore, the proposed method performed well in improving the stability of the brake-by-wire chassis.
{"title":"Yaw Moment Control Based on Brake-by-Wire for Vehicle Stbility","authors":"Hongfang Li, Kai Wang, Huimin Hao, Zhifei Wu","doi":"10.3390/wevj14090256","DOIUrl":"https://doi.org/10.3390/wevj14090256","url":null,"abstract":"This paper presents a new control strategy for vehicle stability based on brake-by-wire. However, there are few studies in the literature that compare the stability of a vehicle by systematic experimentation with or without controllers. In this paper, the complete experimental procedure is designed, and the experimental results are analyzed in detail. Firstly, the hydraulic model of the brake-by-wire is established based on its structure and working principles, and the yaw moment control method is proposed for the vehicle’s stability. The deviation between the desired values and actual values of the yaw rate and sideslip angle is taken as the input, and the fuzzy controller calculates the additional yaw moment for the vehicle stability. Next, the simulation under different conditions which contain the steering wheel step input, double lane change and turning is conducted, and the yaw rates and sideslip angles with and without stability control are compared, and the effectiveness of the control method is verified. Finally, the turning test is conducted based on brake-by-wire chassis to verify the proposed method. The experimental results show that the yaw rate decreased by 14% and the sideslip angle decreased by 25% when the brake control was applied. Furthermore, the proposed method performed well in improving the stability of the brake-by-wire chassis.","PeriodicalId":38979,"journal":{"name":"World Electric Vehicle Journal","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136072341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gerard deMas-Giménez, Pablo García-Gómez, Josep R. Casas, Santiago Royo
Fog, haze, or smoke are standard atmospheric phenomena that dramatically compromise the overall visibility of any scene, critically affecting features such as the illumination, contrast, and contour detection of objects. The decrease in visibility compromises the performance of computer vision algorithms such as pattern recognition and segmentation, some of which are very relevant to decision-making in the field of autonomous vehicles. Several dehazing methods have been proposed that either need to estimate fog parameters through physical models or are statistically based. But physical parameters greatly depend on the scene conditions, and statistically based methods require large datasets of natural foggy images together with the original images without fog, i.e., the ground truth, for evaluation. Obtaining proper fog-less ground truth images for pixel-to-pixel evaluation is costly and time-consuming, and this fact hinders progress in the field. This paper aims to tackle this issue by proposing gradient-based metrics for image defogging evaluation that do not require a ground truth image without fog or a physical model. A comparison of the proposed metrics with metrics already used in the NTIRE 2018 defogging challenge as well as several state-of-the-art defogging evaluation metrics is performed to prove its effectiveness in a general situation, showing comparable results to conventional metrics and an improvement in the no-reference scene. A Matlab implementation of the proposed metrics has been developed and it is open-sourced in a public GitHub repository.
{"title":"Gradient-Based Metrics for the Evaluation of Image Defogging","authors":"Gerard deMas-Giménez, Pablo García-Gómez, Josep R. Casas, Santiago Royo","doi":"10.3390/wevj14090254","DOIUrl":"https://doi.org/10.3390/wevj14090254","url":null,"abstract":"Fog, haze, or smoke are standard atmospheric phenomena that dramatically compromise the overall visibility of any scene, critically affecting features such as the illumination, contrast, and contour detection of objects. The decrease in visibility compromises the performance of computer vision algorithms such as pattern recognition and segmentation, some of which are very relevant to decision-making in the field of autonomous vehicles. Several dehazing methods have been proposed that either need to estimate fog parameters through physical models or are statistically based. But physical parameters greatly depend on the scene conditions, and statistically based methods require large datasets of natural foggy images together with the original images without fog, i.e., the ground truth, for evaluation. Obtaining proper fog-less ground truth images for pixel-to-pixel evaluation is costly and time-consuming, and this fact hinders progress in the field. This paper aims to tackle this issue by proposing gradient-based metrics for image defogging evaluation that do not require a ground truth image without fog or a physical model. A comparison of the proposed metrics with metrics already used in the NTIRE 2018 defogging challenge as well as several state-of-the-art defogging evaluation metrics is performed to prove its effectiveness in a general situation, showing comparable results to conventional metrics and an improvement in the no-reference scene. A Matlab implementation of the proposed metrics has been developed and it is open-sourced in a public GitHub repository.","PeriodicalId":38979,"journal":{"name":"World Electric Vehicle Journal","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136192318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Samuel Fink, Delil Demir, Markus Börner, Vinzenz Göken, Christian Vedder
In modern electrode manufacturing for lithium-ion batteries, the drying of the electrode pastes consumes a considerable amount of space and energy. To increase the efficiency of the drying process and reduce the footprint of the drying equipment, a laser-based drying process is investigated. Evaporation rates of up to 318 g m−2 s−1 can be measured, which is orders of magnitude higher than the evaporation rates in conventional furnace drying processes. Optical measurements of the slurry components in the visible and near-infrared spectrum are conducted. Thermal analyses the of laser-dried samples reveal that the commonly used binders carboxymethyl-cellulose (CMC) and styrene–butadiene rubber (SBR) are not affected by the laser drying process within the investigated process window. The results indicated that with the combination of a fast laser drying step and a subsequent convection drying step, high evaporation rates can be achieved while maintaining the integrity and adhesion of the anode.
在现代锂离子电池电极制造中,电极浆料的干燥需要消耗大量的空间和能源。为了提高干燥过程的效率,减少干燥设备的占地面积,研究了一种基于激光的干燥工艺。蒸发速率可达318 g m−2 s−1,这是数量级高于传统炉干燥过程中的蒸发速率。对浆料成分进行了可见光和近红外光谱的光学测量。对激光干燥样品的热分析表明,在所研究的工艺窗口内,常用的粘结剂羧甲基纤维素(CMC)和丁苯橡胶(SBR)不受激光干燥过程的影响。结果表明,采用快速激光干燥和后续对流干燥相结合的方法,可以在保持阳极完整性和附着性的前提下获得较高的蒸发速率。
{"title":"High-Speed Laser Drying of Lithium-Ion Battery Anodes: Challenges and Opportunities","authors":"Samuel Fink, Delil Demir, Markus Börner, Vinzenz Göken, Christian Vedder","doi":"10.3390/wevj14090255","DOIUrl":"https://doi.org/10.3390/wevj14090255","url":null,"abstract":"In modern electrode manufacturing for lithium-ion batteries, the drying of the electrode pastes consumes a considerable amount of space and energy. To increase the efficiency of the drying process and reduce the footprint of the drying equipment, a laser-based drying process is investigated. Evaporation rates of up to 318 g m−2 s−1 can be measured, which is orders of magnitude higher than the evaporation rates in conventional furnace drying processes. Optical measurements of the slurry components in the visible and near-infrared spectrum are conducted. Thermal analyses the of laser-dried samples reveal that the commonly used binders carboxymethyl-cellulose (CMC) and styrene–butadiene rubber (SBR) are not affected by the laser drying process within the investigated process window. The results indicated that with the combination of a fast laser drying step and a subsequent convection drying step, high evaporation rates can be achieved while maintaining the integrity and adhesion of the anode.","PeriodicalId":38979,"journal":{"name":"World Electric Vehicle Journal","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136108562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Pihlatie, Mikaela Ranta, P. Rahkola, Rafael Åman
Zero-emission trucks for regional and long-haul missions are an option for fossil-free freight. The viability of such powertrains and system solutions was studied conceptually in project ESCALATE for trucks with GVW of 40 tonnes and beyond through various battery electric and fuel cell prime mover combinations. The study covers battery and fuel cell power sources with different degrees of battery electric as well as H2 and fuel cell operation. As a design basis, two different missions with a single-charge/H2 refill were analysed. The first mission was the VECTO long-haul profile repeated up to 750 km, whereas the second was a real 520 km on-road mission in Finland. Based on the simulated energy consumption on the driving cycle, on-board energy demand was estimated, and the initial single-charge and H2 refill operational scenarios were produced with five different power source topologies and on-board storage capacities. The traction motors of the tractor were dimensioned so that a secondary mission of GVW up to 76 tonnes on a shorter route or a longer route with more frequent battery recharge and/or H2 refill can be operated. Based on the powertrain and vehicle model, various infrastructure options for charging and H2 refuelling strategies as well as various operative scenarios with indicative total cost of ownership (TCO) were analysed.
{"title":"Zero-Emission Truck Powertrains for Regional and Long-Haul Missions","authors":"M. Pihlatie, Mikaela Ranta, P. Rahkola, Rafael Åman","doi":"10.3390/wevj14090253","DOIUrl":"https://doi.org/10.3390/wevj14090253","url":null,"abstract":"Zero-emission trucks for regional and long-haul missions are an option for fossil-free freight. The viability of such powertrains and system solutions was studied conceptually in project ESCALATE for trucks with GVW of 40 tonnes and beyond through various battery electric and fuel cell prime mover combinations. The study covers battery and fuel cell power sources with different degrees of battery electric as well as H2 and fuel cell operation. As a design basis, two different missions with a single-charge/H2 refill were analysed. The first mission was the VECTO long-haul profile repeated up to 750 km, whereas the second was a real 520 km on-road mission in Finland. Based on the simulated energy consumption on the driving cycle, on-board energy demand was estimated, and the initial single-charge and H2 refill operational scenarios were produced with five different power source topologies and on-board storage capacities. The traction motors of the tractor were dimensioned so that a secondary mission of GVW up to 76 tonnes on a shorter route or a longer route with more frequent battery recharge and/or H2 refill can be operated. Based on the powertrain and vehicle model, various infrastructure options for charging and H2 refuelling strategies as well as various operative scenarios with indicative total cost of ownership (TCO) were analysed.","PeriodicalId":38979,"journal":{"name":"World Electric Vehicle Journal","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42482322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The present study reports a critical review of NIO′s business model considering the evolving landscape of the electric vehicle market and servicing. The objective of this study is to develop a comprehensive framework that facilitates the identification of key elements characterizing a company’s business model and highlights ongoing transformations crucial for adaptation and survival in a rapidly changing environmental context. Focusing on the case study of NIO, a relatively young Chinese original equipment manufacturer (OEM) specializing in high-tech electric cars, the research delves into the challenging scenario of the Chinese electric vehicle market, which recently faced a bubble in 2023. The market proliferation, supply chain disruptions, and price wars triggered by Tesla have resulted in a survival struggle for numerous automotive startups, leaving larger companies with increasing market shares. Despite facing adversities, NIO managed to secure a promising segment catering to premium-range battery electric vehicles (BEVs), establishing a competitive advantage through differentiation. By pursuing ambitious investments, the company aims to create economies of scope and achieve cost leadership, venturing into new market sectors and vertically integrating the production chain. Given NIO’s agility in adapting to market conditions, aggressive entry into new segments, and a strategic vision for the future, it serves as an excellent candidate for testing and validating the proposed framework. The research sheds light on NIO’s trajectory and offers insights into its potential for sustained growth in the dynamic electric vehicle market.
{"title":"A Critical Review of NIO’s Business Model","authors":"Alessandro Pisano, M. Saba, J. A. Baldovino","doi":"10.3390/wevj14090251","DOIUrl":"https://doi.org/10.3390/wevj14090251","url":null,"abstract":"The present study reports a critical review of NIO′s business model considering the evolving landscape of the electric vehicle market and servicing. The objective of this study is to develop a comprehensive framework that facilitates the identification of key elements characterizing a company’s business model and highlights ongoing transformations crucial for adaptation and survival in a rapidly changing environmental context. Focusing on the case study of NIO, a relatively young Chinese original equipment manufacturer (OEM) specializing in high-tech electric cars, the research delves into the challenging scenario of the Chinese electric vehicle market, which recently faced a bubble in 2023. The market proliferation, supply chain disruptions, and price wars triggered by Tesla have resulted in a survival struggle for numerous automotive startups, leaving larger companies with increasing market shares. Despite facing adversities, NIO managed to secure a promising segment catering to premium-range battery electric vehicles (BEVs), establishing a competitive advantage through differentiation. By pursuing ambitious investments, the company aims to create economies of scope and achieve cost leadership, venturing into new market sectors and vertically integrating the production chain. Given NIO’s agility in adapting to market conditions, aggressive entry into new segments, and a strategic vision for the future, it serves as an excellent candidate for testing and validating the proposed framework. The research sheds light on NIO’s trajectory and offers insights into its potential for sustained growth in the dynamic electric vehicle market.","PeriodicalId":38979,"journal":{"name":"World Electric Vehicle Journal","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42903574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chengzhi Deng, Yubin Qian, Honglei Dong, Jiejie Xu, Wanqiu Wang
To enhance the safety and stability of lane change maneuvers for autonomous vehicles in adverse weather conditions, this paper proposes a quadratic programming−based trajectory planning algorithm for lane changing in rainy weather. Initially, in order to mitigate the risk of potential collisions on wet and slippery road surfaces, we incorporate the concept of road adhesion coefficients and delayed reaction time to refine the establishment of the minimum safety distance. This augmentation establishes constraints on lane change safety distances and delineates the boundaries of viable lane change domains within inclement weather contexts. Subsequently, adopting a hierarchical trajectory planning framework, we incorporate visibility cost functions and safety distance constraints during dynamic programming sampling to ensure the safety of vehicle operation. Furthermore, the vehicle lane change sideslip phenomenon is considered, and the optimal lane change trajectory is obtained based on the quadratic programming algorithm by introducing the maneuverability objective function. In conclusion, to verify the effectiveness of the algorithm, lateral linear quadratic regulator (LQR) and longitudinal double proportional−integral−derivative (DPID) controllers are designed for trajectory tracking. The results demonstrate the algorithm’s capability to produce continuous, stable, and collision−free trajectories. Moreover, the lateral acceleration varies within the range of ±1.5 m/s2, the center of mass lateral deflection angle varies within the range of ±0.15°, and the yaw rate remains within the ±0.1°/s range.
{"title":"Lane Change Trajectory Planning Based on Quadratic Programming in Rainy Weather","authors":"Chengzhi Deng, Yubin Qian, Honglei Dong, Jiejie Xu, Wanqiu Wang","doi":"10.3390/wevj14090252","DOIUrl":"https://doi.org/10.3390/wevj14090252","url":null,"abstract":"To enhance the safety and stability of lane change maneuvers for autonomous vehicles in adverse weather conditions, this paper proposes a quadratic programming−based trajectory planning algorithm for lane changing in rainy weather. Initially, in order to mitigate the risk of potential collisions on wet and slippery road surfaces, we incorporate the concept of road adhesion coefficients and delayed reaction time to refine the establishment of the minimum safety distance. This augmentation establishes constraints on lane change safety distances and delineates the boundaries of viable lane change domains within inclement weather contexts. Subsequently, adopting a hierarchical trajectory planning framework, we incorporate visibility cost functions and safety distance constraints during dynamic programming sampling to ensure the safety of vehicle operation. Furthermore, the vehicle lane change sideslip phenomenon is considered, and the optimal lane change trajectory is obtained based on the quadratic programming algorithm by introducing the maneuverability objective function. In conclusion, to verify the effectiveness of the algorithm, lateral linear quadratic regulator (LQR) and longitudinal double proportional−integral−derivative (DPID) controllers are designed for trajectory tracking. The results demonstrate the algorithm’s capability to produce continuous, stable, and collision−free trajectories. Moreover, the lateral acceleration varies within the range of ±1.5 m/s2, the center of mass lateral deflection angle varies within the range of ±0.15°, and the yaw rate remains within the ±0.1°/s range.","PeriodicalId":38979,"journal":{"name":"World Electric Vehicle Journal","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47222623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this study, a multibody system (MBS) computational framework is developed to determine the exact location of the contact point and wear prediction resulting from the pantograph–catenary interaction. The railroad vehicle models in the MBS computational framework comprise rigid-body railroad vehicles, rigid-body pantograph systems, and flexible catenary systems. To avoid incremental rotation, the nonlinear finite element absolute nodal coordinate formulation is used to model a flexible catenary system in the MBS computational framework. To avoid co-simulation processes, the rigid-body railroad vehicle and the pantograph and flexible catenary systems were integrated into the MBS algorithms. The pantograph–catenary interaction is modeled using an elastic contact formulation developed to include the effect of pantograph–catenary separation and sliding contact. The proposed MBS approach evaluates the location of the contact point, contact force, and normal wear rate (NWR) from the mechanical and electrical contributions. This investigation considers the vibration caused by a crosswind scenario and determines the numerical result in the case of a steady crosswind scenario. The steady crosswind scenario contains the advantage of pantograph–catenary aerodynamic design, and the vibration of the catenary system remains significant after the excitation of a steady crosswind. In the case of a steady crosswind, the higher value of the steady crosswind effect significantly increases the mean contact force and the NWR from the mechanical contribution. After crosswind load disturbances, the mean contact force decreases, but the standard deviation of the contact force increases. Therefore, the NWR from the electrical contribution increases significantly. However, the total NWR increases with the crosswind velocity.
{"title":"Effects of Crosswind on Pantograph–Catenary Wear Using Nonlinear Multibody System Dynamic Algorithms","authors":"Siripong Daocharoenporn, M. Mongkolwongrojn","doi":"10.3390/wevj14090250","DOIUrl":"https://doi.org/10.3390/wevj14090250","url":null,"abstract":"In this study, a multibody system (MBS) computational framework is developed to determine the exact location of the contact point and wear prediction resulting from the pantograph–catenary interaction. The railroad vehicle models in the MBS computational framework comprise rigid-body railroad vehicles, rigid-body pantograph systems, and flexible catenary systems. To avoid incremental rotation, the nonlinear finite element absolute nodal coordinate formulation is used to model a flexible catenary system in the MBS computational framework. To avoid co-simulation processes, the rigid-body railroad vehicle and the pantograph and flexible catenary systems were integrated into the MBS algorithms. The pantograph–catenary interaction is modeled using an elastic contact formulation developed to include the effect of pantograph–catenary separation and sliding contact. The proposed MBS approach evaluates the location of the contact point, contact force, and normal wear rate (NWR) from the mechanical and electrical contributions. This investigation considers the vibration caused by a crosswind scenario and determines the numerical result in the case of a steady crosswind scenario. The steady crosswind scenario contains the advantage of pantograph–catenary aerodynamic design, and the vibration of the catenary system remains significant after the excitation of a steady crosswind. In the case of a steady crosswind, the higher value of the steady crosswind effect significantly increases the mean contact force and the NWR from the mechanical contribution. After crosswind load disturbances, the mean contact force decreases, but the standard deviation of the contact force increases. Therefore, the NWR from the electrical contribution increases significantly. However, the total NWR increases with the crosswind velocity.","PeriodicalId":38979,"journal":{"name":"World Electric Vehicle Journal","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49487817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The driving smoothness of vehicles is heavily influenced by their suspension system, and implementing active suspension control can effectively minimize the vibration movement of the vehicle and ensure a comfortable driving experience. An 8-DoF active suspension model of the full vehicle is established, and a fuzzy-PID controller is designed to autonomously regulate the parameters of the PID controller. Using the MATLAB/Simulink environment, a simulation model for suspension is created, and the vibration characteristics of passive, PID control, and fuzzy-PID control suspensions are compared with the help of the continuous crossing road hump model and C-level road model as road inputs. The results show that the utilization of fuzzy-PID control considerably diminishes the vertical, pitch, and roll oscillations of the suspension body and modifies the suspension dynamic deflection and tire dynamic load in contrast to the other two scenarios, thus enhancing ride comfort. Fuzzy-PID control led to a decrease of approximately 40% in acceleration, 25% in suspension workspace, and 30% in tire deflection compared to passive suspension. In addition, the reduction in acceleration is about 20%, the reduction in suspension workspace is approximately 10%, and the reduction in tire deflection is about 15% compared to the PID control suspension system.
{"title":"Dynamic Responses of 8-DoF Vehicle with Active Suspension: Fuzzy-PID Control","authors":"Zongjun Yin, Rong Su, Xuegang Ma","doi":"10.3390/wevj14090249","DOIUrl":"https://doi.org/10.3390/wevj14090249","url":null,"abstract":"The driving smoothness of vehicles is heavily influenced by their suspension system, and implementing active suspension control can effectively minimize the vibration movement of the vehicle and ensure a comfortable driving experience. An 8-DoF active suspension model of the full vehicle is established, and a fuzzy-PID controller is designed to autonomously regulate the parameters of the PID controller. Using the MATLAB/Simulink environment, a simulation model for suspension is created, and the vibration characteristics of passive, PID control, and fuzzy-PID control suspensions are compared with the help of the continuous crossing road hump model and C-level road model as road inputs. The results show that the utilization of fuzzy-PID control considerably diminishes the vertical, pitch, and roll oscillations of the suspension body and modifies the suspension dynamic deflection and tire dynamic load in contrast to the other two scenarios, thus enhancing ride comfort. Fuzzy-PID control led to a decrease of approximately 40% in acceleration, 25% in suspension workspace, and 30% in tire deflection compared to passive suspension. In addition, the reduction in acceleration is about 20%, the reduction in suspension workspace is approximately 10%, and the reduction in tire deflection is about 15% compared to the PID control suspension system.","PeriodicalId":38979,"journal":{"name":"World Electric Vehicle Journal","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49458123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}