首页 > 最新文献

IEEE Reviews in Biomedical Engineering最新文献

英文 中文
IEEE Engineering in Medicine and Biology Society Information IEEE 医学与生物学工程学会信息
IF 17.6 1区 工程技术 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2024-01-12 DOI: 10.1109/RBME.2023.3333510
{"title":"IEEE Engineering in Medicine and Biology Society Information","authors":"","doi":"10.1109/RBME.2023.3333510","DOIUrl":"https://doi.org/10.1109/RBME.2023.3333510","url":null,"abstract":"","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"17 ","pages":"C2-C2"},"PeriodicalIF":17.6,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10398579","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139434807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Reviews in Biomedical Engineering (R-BME) Information IEEE 生物医学工程评论 (R-BME) 信息
IF 17.6 1区 工程技术 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2024-01-12 DOI: 10.1109/RBME.2023.3333516
{"title":"IEEE Reviews in Biomedical Engineering (R-BME) Information","authors":"","doi":"10.1109/RBME.2023.3333516","DOIUrl":"https://doi.org/10.1109/RBME.2023.3333516","url":null,"abstract":"","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"17 ","pages":"C3-C3"},"PeriodicalIF":17.6,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10398567","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139434712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Review of Current Control and Decoupling Methods for MRI Transmit Arrays 核磁共振成像发射阵列的电流控制和去耦方法综述。
IF 17.2 1区 工程技术 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2024-01-09 DOI: 10.1109/RBME.2024.3351713
Jiaming Cui;Neal A. Hollingsworth;Steven M. Wright
The shortened radio frequency wavelength in high field MRI makes it challenging to create a uniform excitation pattern over a large field of view, or to achieve satisfactory transmission efficiency at a local area. Transmit arrays are one tool that can be used to create a desired excitation pattern. To be effective, it is important to be able to control the current amplitude and phase at the array elements. The control of the current may get complicated by the coil coupling in many applications. Various methods have been proposed to achieve current control, either in the presence of coupling, or by effectively decouple the array elements. These methods are applied in different subsystems in the RF transmission chain: coil; coil-amplifier interface; amplifier, etc. In this review paper, we provide an overview of the various approaches and aspects of transmit current control and decoupling.
高场磁共振成像的射频波长较短,因此要在大视野范围内形成均匀的激励模式,或在局部区域达到令人满意的传输效率都具有挑战性。发射阵列是一种可用于创建所需激励模式的工具。要做到有效,必须能够控制阵列元件上的电流振幅和相位。在许多应用中,线圈耦合会使电流控制变得复杂。为了实现电流控制,人们提出了各种方法,或在存在耦合的情况下,或通过有效去耦阵列元件来实现。这些方法适用于射频传输链中的不同子系统:线圈、线圈-放大器接口、放大器等。在这篇综述论文中,我们将概述发射电流控制和去耦的各种方法和方面。
{"title":"A Review of Current Control and Decoupling Methods for MRI Transmit Arrays","authors":"Jiaming Cui;Neal A. Hollingsworth;Steven M. Wright","doi":"10.1109/RBME.2024.3351713","DOIUrl":"10.1109/RBME.2024.3351713","url":null,"abstract":"The shortened radio frequency wavelength in high field MRI makes it challenging to create a uniform excitation pattern over a large field of view, or to achieve satisfactory transmission efficiency at a local area. Transmit arrays are one tool that can be used to create a desired excitation pattern. To be effective, it is important to be able to control the current amplitude and phase at the array elements. The control of the current may get complicated by the coil coupling in many applications. Various methods have been proposed to achieve current control, either in the presence of coupling, or by effectively decouple the array elements. These methods are applied in different subsystems in the RF transmission chain: coil; coil-amplifier interface; amplifier, etc. In this review paper, we provide an overview of the various approaches and aspects of transmit current control and decoupling.","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"18 ","pages":"388-400"},"PeriodicalIF":17.2,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10384716","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139404646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial: On the Writing of a Scientific Review Article 社论:关于科学评论文章的写作。
IF 17.6 1区 工程技术 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2023-11-13 DOI: 10.1109/RBME.2023.3332164
Bin He
2023 has been a year of growth and transformation for IEEE Reviews in Biomedical Engineering (RBME). Thanks to our authors, reviewers, and editorial board members, RBME received strong metrics on Impact Factor and CiteScore reaching 17.6 and 27.8 respectively, which places RBME in the top 3 according to the Impact Factor, and the top 4 according to the CiteScore in all Biomedical Engineering Journals/Publications. We have also observed substantially increasing submissions in the past year. To better serve our authors, we have implemented a screening process to quickly communicate the outcome of assessment, and allow the authors to submit manuscripts which do not fit the scope or have a low chance of passing through the highly selective review process, to find a more suitable journal in a timely manner.
2023 年是《IEEE 生物医学工程评论》(RBME)成长和转型的一年。得益于我们的作者、审稿人和编委会成员,《生物医学工程评论》的影响因子(Impact Factor)和引用分数(CiteScore)分别达到了17.6和27.8,在所有生物医学工程期刊/出版物中,《生物医学工程评论》的影响因子排名前三,引用分数排名前四。我们还注意到,去年的投稿量大幅增加。为了更好地为作者服务,我们实施了筛选流程,以快速传达评审结果,并允许作者及时提交不符合范围或通过高选择性评审流程几率较低的稿件,以便找到更合适的期刊。
{"title":"Editorial: On the Writing of a Scientific Review Article","authors":"Bin He","doi":"10.1109/RBME.2023.3332164","DOIUrl":"10.1109/RBME.2023.3332164","url":null,"abstract":"2023 has been a year of growth and transformation for IEEE Reviews in Biomedical Engineering (RBME). Thanks to our authors, reviewers, and editorial board members, RBME received strong metrics on Impact Factor and CiteScore reaching 17.6 and 27.8 respectively, which places RBME in the top 3 according to the Impact Factor, and the top 4 according to the CiteScore in all Biomedical Engineering Journals/Publications. We have also observed substantially increasing submissions in the past year. To better serve our authors, we have implemented a screening process to quickly communicate the outcome of assessment, and allow the authors to submit manuscripts which do not fit the scope or have a low chance of passing through the highly selective review process, to find a more suitable journal in a timely manner.","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"17 ","pages":"3-3"},"PeriodicalIF":17.6,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10315188","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92156913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Artificial Intelligence and Machine Learning for Improving Glycemic Control in Diabetes: Best Practices, Pitfalls, and Opportunities 改善糖尿病血糖控制的人工智能和机器学习:最佳实践、陷阱和机遇。
IF 17.6 1区 工程技术 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2023-11-09 DOI: 10.1109/RBME.2023.3331297
Peter G. Jacobs;Pau Herrero;Andrea Facchinetti;Josep Vehi;Boris Kovatchev;Marc D. Breton;Ali Cinar;Konstantina S. Nikita;Francis J. Doyle;Jorge Bondia;Tadej Battelino;Jessica R. Castle;Konstantia Zarkogianni;Rahul Narayan;Clara Mosquera-Lopez
Objective: Artificial intelligence and machine learning are transforming many fields including medicine. In diabetes, robust biosensing technologies and automated insulin delivery therapies have created a substantial opportunity to improve health. While the number of manuscripts addressing the topic of applying machine learning to diabetes has grown in recent years, there has been a lack of consistency in the methods, metrics, and data used to train and evaluate these algorithms. This manuscript provides consensus guidelines for machine learning practitioners in the field of diabetes, including best practice recommended approaches and warnings about pitfalls to avoid. Methods: Algorithmic approaches are reviewed and benefits of different algorithms are discussed including importance of clinical accuracy, explainability, interpretability, and personalization. We review the most common features used in machine learning applications in diabetes glucose control and provide an open-source library of functions for calculating features, as well as a framework for specifying data sets using data sheets. A review of current data sets available for training algorithms is provided as well as an online repository of data sources. Significance: These consensus guidelines are designed to improve performance and translatability of new machine learning algorithms developed in the field of diabetes for engineers and data scientists.
目的:人工智能和机器学习正在改变包括医学在内的许多领域。在糖尿病方面,强大的生物传感技术和自动胰岛素输送疗法为改善健康创造了巨大的机会。尽管近年来涉及将机器学习应用于糖尿病主题的手稿数量有所增加,但用于训练和评估这些算法的方法、指标和数据缺乏一致性。这份手稿为糖尿病领域的机器学习从业者提供了一致的指导方针,包括最佳实践推荐方法和避免陷阱的警告。方法:回顾了算法方法,并讨论了不同算法的优点,包括临床准确性、可解释性、可解释和个性化的重要性。我们回顾了糖尿病血糖控制中机器学习应用中最常见的功能,并提供了一个用于计算功能的开源函数库,以及一个使用数据表指定数据集的框架。提供了对可用于训练算法的当前数据集的审查,以及数据源的在线存储库。意义:这些共识指南旨在提高工程师和数据科学家在糖尿病领域开发的新机器学习算法的性能和可翻译性。
{"title":"Artificial Intelligence and Machine Learning for Improving Glycemic Control in Diabetes: Best Practices, Pitfalls, and Opportunities","authors":"Peter G. Jacobs;Pau Herrero;Andrea Facchinetti;Josep Vehi;Boris Kovatchev;Marc D. Breton;Ali Cinar;Konstantina S. Nikita;Francis J. Doyle;Jorge Bondia;Tadej Battelino;Jessica R. Castle;Konstantia Zarkogianni;Rahul Narayan;Clara Mosquera-Lopez","doi":"10.1109/RBME.2023.3331297","DOIUrl":"10.1109/RBME.2023.3331297","url":null,"abstract":"<italic>Objective:</i>\u0000 Artificial intelligence and machine learning are transforming many fields including medicine. In diabetes, robust biosensing technologies and automated insulin delivery therapies have created a substantial opportunity to improve health. While the number of manuscripts addressing the topic of applying machine learning to diabetes has grown in recent years, there has been a lack of consistency in the methods, metrics, and data used to train and evaluate these algorithms. This manuscript provides consensus guidelines for machine learning practitioners in the field of diabetes, including best practice recommended approaches and warnings about pitfalls to avoid. \u0000<italic>Methods:</i>\u0000 Algorithmic approaches are reviewed and benefits of different algorithms are discussed including importance of clinical accuracy, explainability, interpretability, and personalization. We review the most common features used in machine learning applications in diabetes glucose control and provide an open-source library of functions for calculating features, as well as a framework for specifying data sets using data sheets. A review of current data sets available for training algorithms is provided as well as an online repository of data sources. \u0000<italic>Significance:</i>\u0000 These consensus guidelines are designed to improve performance and translatability of new machine learning algorithms developed in the field of diabetes for engineers and data scientists.","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"17 ","pages":"19-41"},"PeriodicalIF":17.6,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10313965","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72015670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrating Multi-Omics Data With EHR for Precision Medicine Using Advanced Artificial Intelligence 利用先进的人工智能将多组学数据与EHR集成用于精准医学。
IF 17.6 1区 工程技术 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2023-10-12 DOI: 10.1109/RBME.2023.3324264
Li Tong;Wenqi Shi;Monica Isgut;Yishan Zhong;Peter Lais;Logan Gloster;Jimin Sun;Aniketh Swain;Felipe Giuste;May D. Wang
With the recent advancement of novel biomedical technologies such as high-throughput sequencing and wearable devices, multi-modal biomedical data ranging from multi-omics molecular data to real-time continuous bio-signals are generated at an unprecedented speed and scale every day. For the first time, these multi-modal biomedical data are able to make precision medicine close to a reality. However, due to data volume and the complexity, making good use of these multi-modal biomedical data requires major effort. Researchers and clinicians are actively developing artificial intelligence (AI) approaches for data-driven knowledge discovery and causal inference using a variety of biomedical data modalities. These AI-based approaches have demonstrated promising results in various biomedical and healthcare applications. In this review paper, we summarize the state-of-the-art AI models for integrating multi-omics data and electronic health records (EHRs) for precision medicine. We discuss the challenges and opportunities in integrating multi-omics data with EHRs and future directions. We hope this review can inspire future research and developing in integrating multi-omics data with EHRs for precision medicine.
随着高通量测序和可穿戴设备等新型生物医学技术的最新进展,从多组学分子数据到实时连续生物信号的多模态生物医学数据每天都以前所未有的速度和规模生成。这些多模态生物医学数据首次能够使精确医学接近现实。然而,由于数据量和复杂性,要充分利用这些多模态生物医学数据需要付出巨大努力。研究人员和临床医生正在积极开发人工智能(AI)方法,用于使用各种生物医学数据模式进行数据驱动的知识发现和因果推断。这些基于人工智能的方法在各种生物医学和医疗保健应用中显示出了有希望的结果。在这篇综述文章中,我们总结了最先进的人工智能模型,用于集成多组学数据和电子健康记录(EHR),用于精准医疗。我们讨论了将多组学数据与EHR整合的挑战和机遇以及未来的方向。我们希望这篇综述能启发未来将多组学数据与EHR整合用于精准医学的研究和开发。
{"title":"Integrating Multi-Omics Data With EHR for Precision Medicine Using Advanced Artificial Intelligence","authors":"Li Tong;Wenqi Shi;Monica Isgut;Yishan Zhong;Peter Lais;Logan Gloster;Jimin Sun;Aniketh Swain;Felipe Giuste;May D. Wang","doi":"10.1109/RBME.2023.3324264","DOIUrl":"10.1109/RBME.2023.3324264","url":null,"abstract":"With the recent advancement of novel biomedical technologies such as high-throughput sequencing and wearable devices, multi-modal biomedical data ranging from multi-omics molecular data to real-time continuous bio-signals are generated at an unprecedented speed and scale every day. For the first time, these multi-modal biomedical data are able to make precision medicine close to a reality. However, due to data volume and the complexity, making good use of these multi-modal biomedical data requires major effort. Researchers and clinicians are actively developing artificial intelligence (AI) approaches for data-driven knowledge discovery and causal inference using a variety of biomedical data modalities. These AI-based approaches have demonstrated promising results in various biomedical and healthcare applications. In this review paper, we summarize the state-of-the-art AI models for integrating multi-omics data and electronic health records (EHRs) for precision medicine. We discuss the challenges and opportunities in integrating multi-omics data with EHRs and future directions. We hope this review can inspire future research and developing in integrating multi-omics data with EHRs for precision medicine.","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"17 ","pages":"80-97"},"PeriodicalIF":17.6,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10283869","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41215373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toward the Development of User-Centered Neurointegrated Lower Limb Prostheses 开发以用户为中心的神经集成下肢假肢。
IF 17.6 1区 工程技术 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2023-08-28 DOI: 10.1109/RBME.2023.3309328
F. Barberi;E. Anselmino;A. Mazzoni;M. Goldfarb;S. Micera
The last few years witnessed radical improvements in lower-limb prostheses. Researchers have presented innovative solutions to overcome the limits of the first generation of prostheses, refining specific aspects which could be implemented in future prostheses designs. Each aspect of lower-limb prostheses has been upgraded, but despite these advances, a number of deficiencies remain and the most capable limb prostheses fall far short of the capabilities of the healthy limb. This article describes the current state of prosthesis technology; identifies a number of deficiencies across the spectrum of lower limb prosthetic components with respect to users’ needs; and discusses research opportunities in design and control that would substantially improve functionality concerning each deficiency. In doing so, the authors present a roadmap of patients related issues that should be addressed in order to fulfill the vision of a next-generation, neurally-integrated, highly-functional lower limb prosthesis.
在过去几年中,下肢假肢有了长足的进步。研究人员提出了创新的解决方案,以克服第一代假肢的局限性,并改进了可用于未来假肢设计的具体方面。下肢假肢的每个方面都得到了提升,但尽管取得了这些进步,仍存在一些不足之处,最有能力的肢体假肢也远远达不到健康肢体的能力。本文介绍了假肢技术的现状;指出了下肢假肢组件在满足用户需求方面存在的一些不足;并讨论了设计和控制方面的研究机会,这些机会将大大提高每个不足之处的功能。在此过程中,作者提出了一个路线图,列出了为实现下一代神经集成高功能下肢假肢的愿景而需要解决的与患者相关的问题。
{"title":"Toward the Development of User-Centered Neurointegrated Lower Limb Prostheses","authors":"F. Barberi;E. Anselmino;A. Mazzoni;M. Goldfarb;S. Micera","doi":"10.1109/RBME.2023.3309328","DOIUrl":"10.1109/RBME.2023.3309328","url":null,"abstract":"The last few years witnessed radical improvements in lower-limb prostheses. Researchers have presented innovative solutions to overcome the limits of the first generation of prostheses, refining specific aspects which could be implemented in future prostheses designs. Each aspect of lower-limb prostheses has been upgraded, but despite these advances, a number of deficiencies remain and the most capable limb prostheses fall far short of the capabilities of the healthy limb. This article describes the current state of prosthesis technology; identifies a number of deficiencies across the spectrum of lower limb prosthetic components with respect to users’ needs; and discusses research opportunities in design and control that would substantially improve functionality concerning each deficiency. In doing so, the authors present a roadmap of patients related issues that should be addressed in order to fulfill the vision of a next-generation, neurally-integrated, highly-functional lower limb prosthesis.","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"17 ","pages":"212-228"},"PeriodicalIF":17.6,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10232905","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10483877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vision Transformers for Computational Histopathology 用于计算组织病理学的视觉转换器
IF 17.6 1区 工程技术 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2023-07-21 DOI: 10.1109/RBME.2023.3297604
Hongming Xu;Qi Xu;Fengyu Cong;Jeonghyun Kang;Chu Han;Zaiyi Liu;Anant Madabhushi;Cheng Lu
Computational histopathology is focused on the automatic analysis of rich phenotypic information contained in gigabyte whole slide images, aiming at providing cancer patients with more accurate diagnosis, prognosis, and treatment recommendations. Nowadays deep learning is the mainstream methodological choice in computational histopathology. Transformer, as the latest technological advance in deep learning, learns feature representations and global dependencies based on self-attention mechanisms, which is increasingly gaining prevalence in this field. This article presents a comprehensive review of state-of-the-art vision transformers that have been explored in histopathological image analysis for classification, segmentation, and survival risk regression applications. We first overview preliminary concepts and components built into vision transformers. Various recent applications including whole slide image classification, histological tissue component segmentation, and survival outcome prediction with tailored transformer architectures are then discussed. We finally discuss key challenges revolving around the use of vision transformers and envisioned future perspectives. We hope that this review could provide an elaborate guideline for readers to explore vision transformers in computational histopathology, such that more advanced techniques assisting in the precise diagnosis and treatment of cancer patients could be developed.
计算组织病理学侧重于自动分析千兆字节整张切片图像中包含的丰富表型信息,旨在为癌症患者提供更准确的诊断、预后和治疗建议。目前,深度学习是计算组织病理学的主流方法选择。Transformer作为深度学习的最新技术进展,基于自我注意机制学习特征表征和全局依赖关系,在该领域日益盛行。本文全面回顾了在组织病理学图像分析中用于分类、分割和生存风险回归应用的最先进的视觉变换器。我们首先概述了视觉转换器的初步概念和组件。然后讨论了近期的各种应用,包括整张切片图像分类、组织学组织成分分割,以及采用定制变换器架构的生存结果预测。最后,我们讨论了围绕视觉转换器的使用所面临的主要挑战以及对未来前景的展望。我们希望这篇综述能为读者探索视觉转换器在计算组织病理学中的应用提供详尽的指导,从而开发出更先进的技术来协助癌症患者的精确诊断和治疗。
{"title":"Vision Transformers for Computational Histopathology","authors":"Hongming Xu;Qi Xu;Fengyu Cong;Jeonghyun Kang;Chu Han;Zaiyi Liu;Anant Madabhushi;Cheng Lu","doi":"10.1109/RBME.2023.3297604","DOIUrl":"10.1109/RBME.2023.3297604","url":null,"abstract":"Computational histopathology is focused on the automatic analysis of rich phenotypic information contained in gigabyte whole slide images, aiming at providing cancer patients with more accurate diagnosis, prognosis, and treatment recommendations. Nowadays deep learning is the mainstream methodological choice in computational histopathology. Transformer, as the latest technological advance in deep learning, learns feature representations and global dependencies based on self-attention mechanisms, which is increasingly gaining prevalence in this field. This article presents a comprehensive review of state-of-the-art vision transformers that have been explored in histopathological image analysis for classification, segmentation, and survival risk regression applications. We first overview preliminary concepts and components built into vision transformers. Various recent applications including whole slide image classification, histological tissue component segmentation, and survival outcome prediction with tailored transformer architectures are then discussed. We finally discuss key challenges revolving around the use of vision transformers and envisioned future perspectives. We hope that this review could provide an elaborate guideline for readers to explore vision transformers in computational histopathology, such that more advanced techniques assisting in the precise diagnosis and treatment of cancer patients could be developed.","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"17 ","pages":"63-79"},"PeriodicalIF":17.6,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10227147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Beyond Supervised Learning for Pervasive Healthcare 超越监督学习,实现无处不在的医疗保健。
IF 17.6 1区 工程技术 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2023-07-20 DOI: 10.1109/RBME.2023.3296938
Xiao Gu;Fani Deligianni;Jinpei Han;Xiangyu Liu;Wei Chen;Guang-Zhong Yang;Benny Lo
The integration of machine/deep learning and sensing technologies is transforming healthcare and medical practice. However, inherent limitations in healthcare data, namely scarcity, quality, and heterogeneity, hinder the effectiveness of supervised learning techniques which are mainly based on pure statistical fitting between data and labels. In this article, we first identify the challenges present in machine learning for pervasive healthcare and we then review the current trends beyond fully supervised learning that are developed to address these three issues. Rooted in the inherent drawbacks of empirical risk minimization that underpins pure fully supervised learning, this survey summarizes seven key lines of learning strategies, to promote the generalization performance for real-world deployment. In addition, we point out several directions that are emerging and promising in this area, to develop data-efficient, scalable, and trustworthy computational models, and to leverage multi-modality and multi-source sensing informatics, for pervasive healthcare.
机器/深度学习与传感技术的融合正在改变医疗保健和医疗实践。然而,医疗保健数据固有的局限性,即稀缺性、质量和异质性,阻碍了主要基于数据和标签之间纯统计拟合的监督学习技术的有效性。在本文中,我们首先明确了机器学习在无处不在的医疗保健领域所面临的挑战,然后回顾了为解决这三个问题而开发的完全监督学习以外的当前趋势。基于纯粹的完全监督学习所固有的经验风险最小化缺点,本调查总结了七种关键的学习策略,以提高实际部署的泛化性能。此外,我们还指出了这一领域新兴且前景广阔的几个方向,以开发数据效率高、可扩展且值得信赖的计算模型,并利用多模态和多源传感信息学来实现普适性医疗保健。
{"title":"Beyond Supervised Learning for Pervasive Healthcare","authors":"Xiao Gu;Fani Deligianni;Jinpei Han;Xiangyu Liu;Wei Chen;Guang-Zhong Yang;Benny Lo","doi":"10.1109/RBME.2023.3296938","DOIUrl":"10.1109/RBME.2023.3296938","url":null,"abstract":"The integration of machine/deep learning and sensing technologies is transforming healthcare and medical practice. However, inherent limitations in healthcare data, namely \u0000<italic>scarcity</i>\u0000, \u0000<italic>quality</i>\u0000, and \u0000<italic>heterogeneity</i>\u0000, hinder the effectiveness of supervised learning techniques which are mainly based on pure statistical fitting between data and labels. In this article, we first identify the challenges present in machine learning for pervasive healthcare and we then review the current trends beyond fully supervised learning that are developed to address these three issues. Rooted in the inherent drawbacks of empirical risk minimization that underpins pure fully supervised learning, this survey summarizes seven key lines of learning strategies, to promote the generalization performance for real-world deployment. In addition, we point out several directions that are emerging and promising in this area, to develop data-efficient, scalable, and trustworthy computational models, and to leverage multi-modality and multi-source sensing informatics, for pervasive healthcare.","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"17 ","pages":"42-62"},"PeriodicalIF":17.6,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9962013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Review of Image-Based Food Recognition and Volume Estimation Artificial Intelligence Systems 基于图像的食物识别和体积估算人工智能系统综述。
IF 17.6 1区 工程技术 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2023-06-05 DOI: 10.1109/RBME.2023.3283149
Fotios S. Konstantakopoulos;Eleni I. Georga;Dimitrios I. Fotiadis
The daily healthy diet and balanced intake of essential nutrients play an important role in modern lifestyle. The estimation of a meal's nutrient content is an integral component of significant diseases, such as diabetes, obesity and cardiovascular disease. Lately, there has been an increasing interest towards the development and utilization of smartphone applications with the aim of promoting healthy behaviours. The semi – automatic or automatic, precise and in real-time estimation of the nutrients of daily consumed meals is approached in relevant literature as a computer vision problem using food images which are taken via a user's smartphone. Herein, we present the state-of-the-art on automatic food recognition and food volume estimation methods starting from their basis, i.e., the food image databases. First, by methodically organizing the extracted information from the reviewed studies, this review study enables the comprehensive fair assessment of the methods and techniques applied for segmenting food images, classifying their food content and computing the food volume, associating their results with the characteristics of the used datasets. Second, by unbiasedly reporting the strengths and limitations of these methods and proposing pragmatic solutions to the latter, this review can inspire future directions in the field of dietary assessment systems.
日常健康饮食和必需营养素的均衡摄入在现代生活方式中发挥着重要作用。对膳食营养成分的估计是糖尿病、肥胖症和心血管疾病等重大疾病不可或缺的组成部分。最近,人们对开发和使用智能手机应用程序以促进健康行为越来越感兴趣。在相关文献中,半自动或自动、精确和实时地估算每日膳食的营养成分是一个计算机视觉问题,使用的是通过用户智能手机拍摄的食物图像。在此,我们将从食物图像数据库这一基础出发,介绍自动食物识别和食物体积估算方法的最新进展。首先,本综述研究有条不紊地整理了从综述研究中提取的信息,对用于分割食物图像、分类食物内容和计算食物体积的方法和技术进行了全面公正的评估,并将其结果与所用数据集的特点联系起来。其次,通过公正地报告这些方法的优势和局限性,并针对后者提出实用的解决方案,本综述可为膳食评估系统领域的未来发展指明方向。
{"title":"A Review of Image-Based Food Recognition and Volume Estimation Artificial Intelligence Systems","authors":"Fotios S. Konstantakopoulos;Eleni I. Georga;Dimitrios I. Fotiadis","doi":"10.1109/RBME.2023.3283149","DOIUrl":"10.1109/RBME.2023.3283149","url":null,"abstract":"The daily healthy diet and balanced intake of essential nutrients play an important role in modern lifestyle. The estimation of a meal's nutrient content is an integral component of significant diseases, such as diabetes, obesity and cardiovascular disease. Lately, there has been an increasing interest towards the development and utilization of smartphone applications with the aim of promoting healthy behaviours. The semi – automatic or automatic, precise and in real-time estimation of the nutrients of daily consumed meals is approached in relevant literature as a computer vision problem using food images which are taken via a user's smartphone. Herein, we present the state-of-the-art on automatic food recognition and food volume estimation methods starting from their basis, i.e., the food image databases. First, by methodically organizing the extracted information from the reviewed studies, this review study enables the comprehensive fair assessment of the methods and techniques applied for segmenting food images, classifying their food content and computing the food volume, associating their results with the characteristics of the used datasets. Second, by unbiasedly reporting the strengths and limitations of these methods and proposing pragmatic solutions to the latter, this review can inspire future directions in the field of dietary assessment systems.","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"17 ","pages":"136-152"},"PeriodicalIF":17.6,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10144465","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9934987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
IEEE Reviews in Biomedical Engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1