Pub Date : 2022-03-07DOI: 10.1109/RBME.2022.3156810
Yao Ge;Ahmad Taha;Syed Aziz Shah;Kia Dashtipour;Shuyuan Zhu;Jonathan Cooper;Qammer H. Abbasi;Muhammad Ali Imran
WiFi sensing has received recent and significant interest from academia, industry, healthcare professionals, and other caregivers (including family members) as a potential mechanism to monitor our aging population at a distance without deploying devices on users’ bodies. In particular, these methods have the potential to detect critical events such as falls, sleep disturbances, wandering behavior, respiratory disorders, and abnormal cardiac activity experienced by vulnerable people. The interest in such WiFi-based sensing systems arises from practical advantages including its ease of operation indoors as well as ready compliance from monitored individuals. Unlike other sensing methods, such as wearables, camera-based imaging, and acoustic-based solutions, WiFi technology is easy to implement and unobtrusive. This paper reviews the current state-of-the-art research on collecting and analyzing channel state information extracted using ubiquitous WiFi signals, describing a range of healthcare applications and identifying a series of open research challenges, including untapped areas of research and related trends. This work aims to provide an overarching view in understanding the technology and discusses its use-cases from a perspective that considers hardware, advanced signal processing, and data acquisition.
{"title":"Contactless WiFi Sensing and Monitoring for Future Healthcare - Emerging Trends, Challenges, and Opportunities","authors":"Yao Ge;Ahmad Taha;Syed Aziz Shah;Kia Dashtipour;Shuyuan Zhu;Jonathan Cooper;Qammer H. Abbasi;Muhammad Ali Imran","doi":"10.1109/RBME.2022.3156810","DOIUrl":"10.1109/RBME.2022.3156810","url":null,"abstract":"WiFi sensing has received recent and significant interest from academia, industry, healthcare professionals, and other caregivers (including family members) as a potential mechanism to monitor our aging population at a distance without deploying devices on users’ bodies. In particular, these methods have the potential to detect critical events such as falls, sleep disturbances, wandering behavior, respiratory disorders, and abnormal cardiac activity experienced by vulnerable people. The interest in such WiFi-based sensing systems arises from practical advantages including its ease of operation indoors as well as ready compliance from monitored individuals. Unlike other sensing methods, such as wearables, camera-based imaging, and acoustic-based solutions, WiFi technology is easy to implement and unobtrusive. This paper reviews the current state-of-the-art research on collecting and analyzing channel state information extracted using ubiquitous WiFi signals, describing a range of healthcare applications and identifying a series of open research challenges, including untapped areas of research and related trends. This work aims to provide an overarching view in understanding the technology and discusses its use-cases from a perspective that considers hardware, advanced signal processing, and data acquisition.","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"16 ","pages":"171-191"},"PeriodicalIF":17.6,"publicationDate":"2022-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/4664312/10007429/09729463.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9713747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Electrocardiography is the gold standard technique for detecting abnormal heart conditions. Automatic detection of electrocardiogram (ECG) abnormalities helps clinicians analyze the large amount of data produced daily by cardiac monitors. As thenumber of abnormal ECG samples with cardiologist-supplied labels required to train supervised machine learning models is limited, there is a growing need for unsupervised learning methods for ECG analysis. Unsupervised learning aims to partition ECG samples into distinct abnormality classes without cardiologist-supplied labels–a process referred to as ECG clustering. In addition to abnormality detection, ECG clustering has recently discovered inter and intra-individual patterns that reveal valuable information about the whole body and mind, such as emotions, mental disorders, and metabolic levels. ECG clustering can also resolve specific challenges facing supervised learning systems, such as the imbalanced data problem, and can enhance biometric systems. While several reviews exist on supervised ECG systems, a comprehensive review of unsupervised ECG analysis techniques is still lacking. This study reviews ECG clustering techniques developed mainly in the last decade. The focus will be on recent machine learning and deep learning algorithms and their practical applications. We critically review and compare these techniques, discuss their applications and limitations, and provide future research directions. This review provides further insights into ECG clustering and presents the necessary information required to adopt the appropriate algorithm for a specific application.
{"title":"Unsupervised ECG Analysis: A Review","authors":"Kasra Nezamabadi;Neda Sardaripour;Benyamin Haghi;Mohamad Forouzanfar","doi":"10.1109/RBME.2022.3154893","DOIUrl":"10.1109/RBME.2022.3154893","url":null,"abstract":"Electrocardiography is the gold standard technique for detecting abnormal heart conditions. Automatic detection of electrocardiogram (ECG) abnormalities helps clinicians analyze the large amount of data produced daily by cardiac monitors. As thenumber of abnormal ECG samples with cardiologist-supplied labels required to train supervised machine learning models is limited, there is a growing need for unsupervised learning methods for ECG analysis. Unsupervised learning aims to partition ECG samples into distinct abnormality classes without cardiologist-supplied labels–a process referred to as ECG clustering. In addition to abnormality detection, ECG clustering has recently discovered inter and intra-individual patterns that reveal valuable information about the whole body and mind, such as emotions, mental disorders, and metabolic levels. ECG clustering can also resolve specific challenges facing supervised learning systems, such as the imbalanced data problem, and can enhance biometric systems. While several reviews exist on supervised ECG systems, a comprehensive review of unsupervised ECG analysis techniques is still lacking. This study reviews ECG clustering techniques developed mainly in the last decade. The focus will be on recent machine learning and deep learning algorithms and their practical applications. We critically review and compare these techniques, discuss their applications and limitations, and provide future research directions. This review provides further insights into ECG clustering and presents the necessary information required to adopt the appropriate algorithm for a specific application.","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"16 ","pages":"208-224"},"PeriodicalIF":17.6,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9728418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-02-14DOI: 10.1109/RBME.2022.3151340
MohammadAli Shaeri;Amir M. Sodagar
Neuroscientists seek efficient solutions for deciphering the sophisticated unknowns of the brain. Effective development of complicated brain-related tools is the focal point of research in neuroscience and neurotechnology. Thanks to today’s technological advancements, the physical development of high-density and high-resolution neural interfaces has been made possible. This is where the critical bottleneck in receiving the expected functionality from such devices shifts to transferring, processing, and subsequently analyzing the massive neurophysiological extra-cellular data recorded. To respond to this inevitable concern, a spectrum of neuronal signal processing techniques have been proposed to extract task-related informative content of the signals conveying neuronal activities, and eliminate the irrelevant contents. Such techniques provide powerful tools for a wide range of neuroscience research, from low-level perception to high-level cognition. Data transformations are among the most efficient processing techniques that serve this purpose by properly changing the data representation. Mapping the data from its original domain (i.e., the time-space domain) to a new representational domain, data transformations change the viewing angle of observing the informative content of the data. This paper reviews the employment of data transformations in order to process neuronal signals and their three key applications, including spike detection, spike sorting, and data compression.
{"title":"Data Transformation in the Processing of Neuronal Signals: A Powerful Tool to Illuminate Informative Contents","authors":"MohammadAli Shaeri;Amir M. Sodagar","doi":"10.1109/RBME.2022.3151340","DOIUrl":"10.1109/RBME.2022.3151340","url":null,"abstract":"Neuroscientists seek efficient solutions for deciphering the sophisticated unknowns of the brain. Effective development of complicated brain-related tools is the focal point of research in neuroscience and neurotechnology. Thanks to today’s technological advancements, the physical development of high-density and high-resolution neural interfaces has been made possible. This is where the critical bottleneck in receiving the expected functionality from such devices shifts to transferring, processing, and subsequently analyzing the massive neurophysiological extra-cellular data recorded. To respond to this inevitable concern, a spectrum of neuronal signal processing techniques have been proposed to extract task-related informative content of the signals conveying neuronal activities, and eliminate the irrelevant contents. Such techniques provide powerful tools for a wide range of neuroscience research, from low-level perception to high-level cognition. Data transformations are among the most efficient processing techniques that serve this purpose by properly changing the data representation. Mapping the data from its original domain (i.e., the time-space domain) to a new representational domain, data transformations change the viewing angle of observing the informative content of the data. This paper reviews the employment of data transformations in order to process neuronal signals and their three key applications, including spike detection, spike sorting, and data compression.","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"16 ","pages":"611-626"},"PeriodicalIF":17.6,"publicationDate":"2022-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9358694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-27DOI: 10.1109/RBME.2022.3146293
Jose Caceres-Alban;Midori Sanchez;Fanny L. Casado
Novel additive manufacturing techniques are revolutionizing fields of industry providing more dimensions to control and the versatility of fabricating multi-material products. Medical applications hold great promise to manufacture constructs of mixed biologically compatible materials together with functional cells and tissues. We reviewed technologies and promising developments nurturing innovation of physiologically relevant models to study safety of chemicals that are hard to reproduce in current models, or diseases for which there are no models available. Extrusion-, inkjet- and laser-assisted bioprinting are the most used techniques. Hydrogels as constituents of bioinks and biomaterial inks are the most versatile materials to recreate physiological and pathophysiological microenvironments. The highlighted bioprinted models were chosen because they guarantee post-printing cellular viability while maintaining desirable mechanical properties of their constitutive bioinks or biomaterial inks to ensure their printability. Bioprinting is being readily adopted to overcome ethical concerns of in vivo models and improve the automation, reproducibility, geometry stability of traditional in vitro