Tissue examination by hand remains an essential technique in clinical practice. The effective application depends on skills in sensorimotor coordination, mainly involving haptic, visual, and auditory feedback. The skills clinicians have to learn can be as subtle as regulating finger pressure with breathing, choosing palpation action, monitoring involuntary facial and vocal expressions in response to palpation, and using pain expressions both as a source of information and as a constraint on physical examination. Patient simulators can provide a safe learning platform to novice physicians before trying real patients. This paper reviews state-of-the-art medical simulators for the training for the first time with a consideration of providing multimodal feedback to learn as many manual examination techniques as possible. The study summarizes current advances in tissue examination training devices simulating different medical conditions and providing different types of feedback modalities. Opportunities with the development of pain expression, tissue modeling, actuation, and sensing are also analyzed to support the future design of effective tissue examination simulators.
{"title":"Robotic Simulators for Tissue Examination Training With Multimodal Sensory Feedback","authors":"Liang He;Perla Maiolino;Florence Leong;Thilina Dulantha Lalitharatne;Simon de Lusignan;Mazdak Ghajari;Fumiya Iida;Thrishantha Nanayakkara","doi":"10.1109/RBME.2022.3168422","DOIUrl":"10.1109/RBME.2022.3168422","url":null,"abstract":"Tissue examination by hand remains an essential technique in clinical practice. The effective application depends on skills in sensorimotor coordination, mainly involving haptic, visual, and auditory feedback. The skills clinicians have to learn can be as subtle as regulating finger pressure with breathing, choosing palpation action, monitoring involuntary facial and vocal expressions in response to palpation, and using pain expressions both as a source of information and as a constraint on physical examination. Patient simulators can provide a safe learning platform to novice physicians before trying real patients. This paper reviews state-of-the-art medical simulators for the training for the first time with a consideration of providing multimodal feedback to learn as many manual examination techniques as possible. The study summarizes current advances in tissue examination training devices simulating different medical conditions and providing different types of feedback modalities. Opportunities with the development of pain expression, tissue modeling, actuation, and sensing are also analyzed to support the future design of effective tissue examination simulators.","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"16 ","pages":"514-529"},"PeriodicalIF":17.6,"publicationDate":"2022-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9720072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-05DOI: 10.1109/RBME.2022.3164797
Emma Farago;Dawn MacIsaac;Michelle Suk;Adrian D. C. Chan
Electromyography (EMG) signals are instrumental in a variety of applications including prosthetic control, muscle health assessment, rehabilitation, and workplace monitoring. Signal contaminants including noise, interference, and artifacts can degrade the quality of the EMG signal, leading to misinterpretation; therefore it is important to ensure that collected EMG signals are of sufficient quality prior to further analysis. A literature search was conducted to identify current approaches for detecting, identifying, and quantifying contaminants within surface EMG signals. We identified two main strategies: 1) bottom-up approaches for identifying specific and well-characterized contaminants and 2) top-down approaches for detecting anomalous EMG signals or outlier channels in high-density EMG arrays. The best type(s) of approach are dependent on the circumstances of data collection including the environment, the susceptibility of the application to contaminants, and the resilience of the application to contaminants. Further research is needed for assessing EMG with multiple simultaneous contaminants, identifying ground-truths for clean EMG data, and developing user-friendly and autonomous methods for EMG signal quality analysis.
{"title":"A Review of Techniques for Surface Electromyography Signal Quality Analysis","authors":"Emma Farago;Dawn MacIsaac;Michelle Suk;Adrian D. C. Chan","doi":"10.1109/RBME.2022.3164797","DOIUrl":"10.1109/RBME.2022.3164797","url":null,"abstract":"Electromyography (EMG) signals are instrumental in a variety of applications including prosthetic control, muscle health assessment, rehabilitation, and workplace monitoring. Signal contaminants including noise, interference, and artifacts can degrade the quality of the EMG signal, leading to misinterpretation; therefore it is important to ensure that collected EMG signals are of sufficient quality prior to further analysis. A literature search was conducted to identify current approaches for detecting, identifying, and quantifying contaminants within surface EMG signals. We identified two main strategies: 1) bottom-up approaches for identifying specific and well-characterized contaminants and 2) top-down approaches for detecting anomalous EMG signals or outlier channels in high-density EMG arrays. The best type(s) of approach are dependent on the circumstances of data collection including the environment, the susceptibility of the application to contaminants, and the resilience of the application to contaminants. Further research is needed for assessing EMG with multiple simultaneous contaminants, identifying ground-truths for clean EMG data, and developing user-friendly and autonomous methods for EMG signal quality analysis.","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"16 ","pages":"472-486"},"PeriodicalIF":17.6,"publicationDate":"2022-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9365457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-05DOI: 10.1109/RBME.2022.3165062
Chi Sang Choy;Shaun L. Cloherty;Elena Pirogova;Qiang Fang
Stroke is a serious neurological disease that may lead to long-term disabilities and even death for stroke patients worldwide. The acute period, ( $le$