C. Wilcox, F. Santiago, M. E. Jungwirth, T. Martinez, S. Restaino, B. Bagwell, R. Romeo
For the passed several years, the Naval Research Laboratory (NRL) has been investigating the use of Carbon Fiber Reinforced Polymer (CFRP) material in the construction of a telescope assembly including the optical components. The NRL, Sandia National Laboratories (SNL), and Composite Mirror Applications, Inc. (CMA) have jointly assembled a prototype telescope and achieved “first light” images with a CFRP 0.4 m aperture telescope. CFRP offers several advantages over traditional materials such as creating structures that are lightweight and low coefficient of thermal expansion and conductivity. The telescope’s primary and secondary mirrors are not made from glass, but CFRP, as well. The entire telescope weighs approximately 10 kg while a typical telescope of this size would weigh quite a bit more. We present the achievement of “first light” with this telescope demonstrating the imaging capabilities of this prototype and the optical surface quality of the mirrors with images taken during a day’s quiescent periods.
{"title":"First light with a carbon fiber reinforced polymer 0.4 meter telescope","authors":"C. Wilcox, F. Santiago, M. E. Jungwirth, T. Martinez, S. Restaino, B. Bagwell, R. Romeo","doi":"10.1117/12.2042105","DOIUrl":"https://doi.org/10.1117/12.2042105","url":null,"abstract":"For the passed several years, the Naval Research Laboratory (NRL) has been investigating the use of Carbon Fiber Reinforced Polymer (CFRP) material in the construction of a telescope assembly including the optical components. The NRL, Sandia National Laboratories (SNL), and Composite Mirror Applications, Inc. (CMA) have jointly assembled a prototype telescope and achieved “first light” images with a CFRP 0.4 m aperture telescope. CFRP offers several advantages over traditional materials such as creating structures that are lightweight and low coefficient of thermal expansion and conductivity. The telescope’s primary and secondary mirrors are not made from glass, but CFRP, as well. The entire telescope weighs approximately 10 kg while a typical telescope of this size would weigh quite a bit more. We present the achievement of “first light” with this telescope demonstrating the imaging capabilities of this prototype and the optical surface quality of the mirrors with images taken during a day’s quiescent periods.","PeriodicalId":395835,"journal":{"name":"Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126139026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Ebermann, N. Neumann, K. Hiller, M. Seifert, M. Meinig, S. Kurth
Micromachined tunable Fabry-Pérot filters (μFPF) are key elements in a new class of miniature spectrometers and analyzers. Different groups all over the world are working on μFPF for spectral ranges from the visible up to the long wave infrared. In order to achieve a large tuning range, the filters are normally operated in the first interference order. At the same time the spectral resolution is limited due to a limited effective finesse. A variety of applications demand for higher resolutions. This is particularly true for the multicomponent analysis of hydrocarbon gases, because the individual absorption bands are very similar and widely overlapping. In this paper μFPF in 3rd and 4th order configuration with a spectral resolution of about (20. . . 30) nm and a tuning range of (3.1. . . 3.7) μm are presented. For the measurement of additional gases in adjacent ranges (e.g. CO2 around 4.3 μm) a dualband configuration with simultaneous use of different orders is proposed. A largely reduced damping of the μFPF and the combination with a lead selenide photoresistor instead of a thermal detector allows for a fast acquisition of spectra.
{"title":"Resolution and speed improvements of mid-infrared Fabry-Perot microspectrometers for the analysis of hydrocarbon gases","authors":"M. Ebermann, N. Neumann, K. Hiller, M. Seifert, M. Meinig, S. Kurth","doi":"10.1117/12.2038235","DOIUrl":"https://doi.org/10.1117/12.2038235","url":null,"abstract":"Micromachined tunable Fabry-Pérot filters (μFPF) are key elements in a new class of miniature spectrometers and analyzers. Different groups all over the world are working on μFPF for spectral ranges from the visible up to the long wave infrared. In order to achieve a large tuning range, the filters are normally operated in the first interference order. At the same time the spectral resolution is limited due to a limited effective finesse. A variety of applications demand for higher resolutions. This is particularly true for the multicomponent analysis of hydrocarbon gases, because the individual absorption bands are very similar and widely overlapping. In this paper μFPF in 3rd and 4th order configuration with a spectral resolution of about (20. . . 30) nm and a tuning range of (3.1. . . 3.7) μm are presented. For the measurement of additional gases in adjacent ranges (e.g. CO2 around 4.3 μm) a dualband configuration with simultaneous use of different orders is proposed. A largely reduced damping of the μFPF and the combination with a lead selenide photoresistor instead of a thermal detector allows for a fast acquisition of spectra.","PeriodicalId":395835,"journal":{"name":"Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components","volume":"63 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130078707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Graphene is a two-dimensional sheet of carbon atoms with exceptional electronic and mechanical properties, giving it tremendous potential in nanoelectromechanical system devices. Here, we present a method to easily and reproducibly fabricate suspended graphene nanoribbons across nanogap electrodes of various separation lengths, demonstrating a technique with aggressive gap scalability and device geometry control. Fabrication is based on using a focused gallium ion beam to create a slit between joined electrodes prepatterened on a 100 nm thick silicon nitride membrane. The transparency of the nitride membrane provides reduced ion backscattering and adds milling resolution. Large-area monolayer graphene grown by atmospheric pressure chemical vapor deposition was transferred onto the silicon nitride chip and patterned into a free-standing ribbon geometry via electron beam lithography on organic ebeam resist followed by an O2 plasma etch. We find that commonly used inorganic negative tone resist that requires a buffered oxide etch for resist removal will attack the adhesion layer (Cr2O3) between the electrode and nitride membrane, which is exposed immediately after milling, so an organic resist was selected to avoid this. Using this technique, we fabricate freestanding graphene devices contacted by electrodes of sub-100 nm separation length and preform a comparative study on the effects of current annealing on device resistance. The gap resolution of this technique is limited by the gallium ion beam, which allows for sub-100 nm gaps. Sub-10 nm gaps are feasible with He ion beams, proving direct applications in probing the high field transport properties of graphene nanoribbons at post-CMOS length scales.
{"title":"Facile fabrication of nanogap electrodes for suspended graphene characterization using direct ion beam patterning","authors":"Z. Qi, A. T. Johnson","doi":"10.1117/12.2037853","DOIUrl":"https://doi.org/10.1117/12.2037853","url":null,"abstract":"Graphene is a two-dimensional sheet of carbon atoms with exceptional electronic and mechanical properties, giving it tremendous potential in nanoelectromechanical system devices. Here, we present a method to easily and reproducibly fabricate suspended graphene nanoribbons across nanogap electrodes of various separation lengths, demonstrating a technique with aggressive gap scalability and device geometry control. Fabrication is based on using a focused gallium ion beam to create a slit between joined electrodes prepatterened on a 100 nm thick silicon nitride membrane. The transparency of the nitride membrane provides reduced ion backscattering and adds milling resolution. Large-area monolayer graphene grown by atmospheric pressure chemical vapor deposition was transferred onto the silicon nitride chip and patterned into a free-standing ribbon geometry via electron beam lithography on organic ebeam resist followed by an O2 plasma etch. We find that commonly used inorganic negative tone resist that requires a buffered oxide etch for resist removal will attack the adhesion layer (Cr2O3) between the electrode and nitride membrane, which is exposed immediately after milling, so an organic resist was selected to avoid this. Using this technique, we fabricate freestanding graphene devices contacted by electrodes of sub-100 nm separation length and preform a comparative study on the effects of current annealing on device resistance. The gap resolution of this technique is limited by the gallium ion beam, which allows for sub-100 nm gaps. Sub-10 nm gaps are feasible with He ion beams, proving direct applications in probing the high field transport properties of graphene nanoribbons at post-CMOS length scales.","PeriodicalId":395835,"journal":{"name":"Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121464480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H. Habibkhani, B. Gunturk, M. Feldman, Aziz Umit Batur
Recently we proposed frequency division multiplexed imaging (FDMI), which allows capturing multiple images in a single shot through spatial modulation and frequency domain filtering. This is achieved by spatially modulating the images so that different images or sub-exposures are placed at different locations in the Fourier domain. As long as there is no overlap of the individual bands, we can recover different components by band-pass filtering the multiplexed image. In this paper, we present a Texas Instruments DMD based implementation of FDMI. An image is formed on the DMD chip; pixels are modulated by the micro-mirrors; and the modulated image is captured by a camera. By applying modulation during a sub-exposure period, the corresponding sub-exposure image is at the end recovered from the fullexposure image. Such a system could be used in a variety of applications, such as motion analysis and image deblurring. We will provide experimental results with the setup, and discuss possible applications as well as limitations.
{"title":"Frequency division multiplexed imaging: a Texas Instruments DMD implementation","authors":"H. Habibkhani, B. Gunturk, M. Feldman, Aziz Umit Batur","doi":"10.1117/12.2040259","DOIUrl":"https://doi.org/10.1117/12.2040259","url":null,"abstract":"Recently we proposed frequency division multiplexed imaging (FDMI), which allows capturing multiple images in a single shot through spatial modulation and frequency domain filtering. This is achieved by spatially modulating the images so that different images or sub-exposures are placed at different locations in the Fourier domain. As long as there is no overlap of the individual bands, we can recover different components by band-pass filtering the multiplexed image. In this paper, we present a Texas Instruments DMD based implementation of FDMI. An image is formed on the DMD chip; pixels are modulated by the micro-mirrors; and the modulated image is captured by a camera. By applying modulation during a sub-exposure period, the corresponding sub-exposure image is at the end recovered from the fullexposure image. Such a system could be used in a variety of applications, such as motion analysis and image deblurring. We will provide experimental results with the setup, and discuss possible applications as well as limitations.","PeriodicalId":395835,"journal":{"name":"Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121153132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We demonstrate light collimation of single-mode optical fibers using deeply-etched three-dimensional curved micromirror on silicon chip. The three-dimensional curvature of the mirror is controlled by a process combining deep reactive ion etching and isotropic etching of silicon. The produced surface is astigmatic with out-of-plane radius of curvature that is about one half the in-plane radius of curvature. Having a 300-μm in-plane radius and incident beam inplane inclined with an angle of 45 degrees with respect to the principal axis, the reflected beam is maintained stigmatic with about 4.25 times reduction in the beam expansion angle in free space and about 12-dB reduction in propagation losses, when received by a limited-aperture detector.
{"title":"Three-dimensional collimation of in-plane-propagating light using silicon micromachined mirror","authors":"Y. Sabry, D. Khalil, B. Saadany, T. Bourouina","doi":"10.1117/12.2038671","DOIUrl":"https://doi.org/10.1117/12.2038671","url":null,"abstract":"We demonstrate light collimation of single-mode optical fibers using deeply-etched three-dimensional curved micromirror on silicon chip. The three-dimensional curvature of the mirror is controlled by a process combining deep reactive ion etching and isotropic etching of silicon. The produced surface is astigmatic with out-of-plane radius of curvature that is about one half the in-plane radius of curvature. Having a 300-μm in-plane radius and incident beam inplane inclined with an angle of 45 degrees with respect to the principal axis, the reflected beam is maintained stigmatic with about 4.25 times reduction in the beam expansion angle in free space and about 12-dB reduction in propagation losses, when received by a limited-aperture detector.","PeriodicalId":395835,"journal":{"name":"Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125670875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nano- and hetero-structures of modified carbon nanotube (CNT) and Graphene nano Platelet (GnP) can control significantly piezoresistive and optoelectronic properties in Microelectromechanical Systems (MEMS) as acoustic actuators. Interfacial durability and electrical properties of modified CNT and GnP embedded in poly (vinylidene fluoride) (PVDF) nanocomposites were investigated for use in acoustic actuator applications. Modified GnP coated PVDF nanocomposite exhibited better electrical conductivity than neat and modified CNT due to the unique electrical nature of GnP. Modified GnP coating also exhibited good acoustical properties. Contact angle, surface energy, work of adhesion, and spreading coefficient measurements were contributed to explore the interfacial adhesion durability between neat CNT or plasma treated CNT and plasma treated PVDF. Acoustic actuation performance of modified GnP coated PVDF nanocomposites were investigated for different radii of curvature and different coating conditions, using a sound level meter. Modified GnP can be a more appropriate acoustic actuator than CNT cases because of improved electrical properties. Optimum radius of curvature and coating thickness was also obtained for the most appropriate sound pressure level (SPL) performance. This study can provide manufacturing parameters of transparent sound actuators with good quality practically.
{"title":"Acoustic and optoelectronic nature and interfacial durability of modified CNT and GnP-PVDF composites with nanostructural control","authors":"Joung-Man Park, D. Kwon, Zuo-Jia Wang, L. DeVries","doi":"10.1117/12.2035661","DOIUrl":"https://doi.org/10.1117/12.2035661","url":null,"abstract":"Nano- and hetero-structures of modified carbon nanotube (CNT) and Graphene nano Platelet (GnP) can control significantly piezoresistive and optoelectronic properties in Microelectromechanical Systems (MEMS) as acoustic actuators. Interfacial durability and electrical properties of modified CNT and GnP embedded in poly (vinylidene fluoride) (PVDF) nanocomposites were investigated for use in acoustic actuator applications. Modified GnP coated PVDF nanocomposite exhibited better electrical conductivity than neat and modified CNT due to the unique electrical nature of GnP. Modified GnP coating also exhibited good acoustical properties. Contact angle, surface energy, work of adhesion, and spreading coefficient measurements were contributed to explore the interfacial adhesion durability between neat CNT or plasma treated CNT and plasma treated PVDF. Acoustic actuation performance of modified GnP coated PVDF nanocomposites were investigated for different radii of curvature and different coating conditions, using a sound level meter. Modified GnP can be a more appropriate acoustic actuator than CNT cases because of improved electrical properties. Optimum radius of curvature and coating thickness was also obtained for the most appropriate sound pressure level (SPL) performance. This study can provide manufacturing parameters of transparent sound actuators with good quality practically.","PeriodicalId":395835,"journal":{"name":"Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components","volume":"157 4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124627421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Microfabricating high resolution micro-optics structures requires shape control to <1/8th wavelength (~60nm) in both vertical and horizontal surface precision. Grayscale bimetallic photomasks are bi-layer thermal resists consisting of two thin layers of Bi-on-Indium or Tin-on-Indium. A focused laser spot creates a thermal metal oxide with a controllably transparency set by the beam power of optical density from ~3OD (unexposed) to <0.22OD (fully exposed). A directwrite raster-scan photomask laser system with a CW Argon-ion laser at 514nm for the bimetallic writing and 457nm line for measuring the OD change used a feedback-controlled Gaussian beam to achieve 256-level grayscale masks. Setting the graylevels required to achieve uniform vertical steps in the photoresist requires adjustment in transparency based on the exact response curves of a given resist/development process. An initial model is developed using the classic resist threshold dose exposure D0 and dose to clear Dc creating a power law relation between the required exposure dose for each thickness step and the mask transparency. However real resists behave differently than the simple model near the threshold requiring careful calibrating of mask graylevel transparencies with the photoresist response curve for a given resist/development process. Test structures ranging from steps to ramps and complex patterns were examined via both SEM and profilometry from the resulting bimetallic grayscale masks. Secondary corrections modify the needed bimetallic OD due to the exposure source spectrum differences from the 457nm measurement. This enhances the patterning of micro-optic and 3D MEMS structures.
{"title":"Calibrating bimetallic grayscale photomasks to photoresist response for precise micro-optics fabrication","authors":"G. Chapman, Reza Qarehbaghi, S. Roche","doi":"10.1117/12.2041429","DOIUrl":"https://doi.org/10.1117/12.2041429","url":null,"abstract":"Microfabricating high resolution micro-optics structures requires shape control to <1/8th wavelength (~60nm) in both vertical and horizontal surface precision. Grayscale bimetallic photomasks are bi-layer thermal resists consisting of two thin layers of Bi-on-Indium or Tin-on-Indium. A focused laser spot creates a thermal metal oxide with a controllably transparency set by the beam power of optical density from ~3OD (unexposed) to <0.22OD (fully exposed). A directwrite raster-scan photomask laser system with a CW Argon-ion laser at 514nm for the bimetallic writing and 457nm line for measuring the OD change used a feedback-controlled Gaussian beam to achieve 256-level grayscale masks. Setting the graylevels required to achieve uniform vertical steps in the photoresist requires adjustment in transparency based on the exact response curves of a given resist/development process. An initial model is developed using the classic resist threshold dose exposure D0 and dose to clear Dc creating a power law relation between the required exposure dose for each thickness step and the mask transparency. However real resists behave differently than the simple model near the threshold requiring careful calibrating of mask graylevel transparencies with the photoresist response curve for a given resist/development process. Test structures ranging from steps to ramps and complex patterns were examined via both SEM and profilometry from the resulting bimetallic grayscale masks. Secondary corrections modify the needed bimetallic OD due to the exposure source spectrum differences from the 457nm measurement. This enhances the patterning of micro-optic and 3D MEMS structures.","PeriodicalId":395835,"journal":{"name":"Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115913929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hongtao Lin, Lan Li, Yi Zou, F. Deng, C. Ni, S. Danto, J. D. Musgraves, K. Richardson, Stephen T. Kozacik, Maciej Murakowski, D. Prather, Juejun Hu
Chalcogenide glasses, namely the amorphous compounds containing sulfur, selenium, and/or tellurium, have emerged as a promising material candidate for mid-infrared integrated photonics given their wide optical transparency window, high linear and nonlinear indices, as well as their capacity for monolithic integration on a wide array of substrates. Exploiting these unique features of the material, we demonstrated high-index-contrast, waveguide-coupled As2Se3 chalcogenide glass resonators monolithically integrated on silicon with a high intrinsic quality factor of 2 × 105 at 5.2 micron wavelength, and what we believe to be the first waveguide photonic crystal cavity operating in the mid-infrared.
{"title":"Planar chalcogenide glass mid-infrared photonics","authors":"Hongtao Lin, Lan Li, Yi Zou, F. Deng, C. Ni, S. Danto, J. D. Musgraves, K. Richardson, Stephen T. Kozacik, Maciej Murakowski, D. Prather, Juejun Hu","doi":"10.1117/12.2035688","DOIUrl":"https://doi.org/10.1117/12.2035688","url":null,"abstract":"Chalcogenide glasses, namely the amorphous compounds containing sulfur, selenium, and/or tellurium, have emerged as a promising material candidate for mid-infrared integrated photonics given their wide optical transparency window, high linear and nonlinear indices, as well as their capacity for monolithic integration on a wide array of substrates. Exploiting these unique features of the material, we demonstrated high-index-contrast, waveguide-coupled As2Se3 chalcogenide glass resonators monolithically integrated on silicon with a high intrinsic quality factor of 2 × 105 at 5.2 micron wavelength, and what we believe to be the first waveguide photonic crystal cavity operating in the mid-infrared.","PeriodicalId":395835,"journal":{"name":"Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components","volume":"59 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122400621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A hyperspectral imaging system (HsI), described previously, was utilized to evaluate and monitor wounds and their healing surgery and post-operatively. Briefly, the system consists of a DLP® based spectral light modulator providing active spectral illumination that is synchronized with a digital focal plan array for collecting spectroscopic images that are processed for mapping the percentage of oxyhemoglobin at each detector pixel non-invasively and at near video rates ~8 chemically encode images per second.
{"title":"The use of hyperspectral imaging (HSI) in wound healing","authors":"J. La Fontaine, L. Lavery, K. Zuzak","doi":"10.1117/12.2041841","DOIUrl":"https://doi.org/10.1117/12.2041841","url":null,"abstract":"A hyperspectral imaging system (HsI), described previously, was utilized to evaluate and monitor wounds and their healing surgery and post-operatively. Briefly, the system consists of a DLP® based spectral light modulator providing active spectral illumination that is synchronized with a digital focal plan array for collecting spectroscopic images that are processed for mapping the percentage of oxyhemoglobin at each detector pixel non-invasively and at near video rates ~8 chemically encode images per second.","PeriodicalId":395835,"journal":{"name":"Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123126986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, we describe a novel super resolution method with variable pinholes arrays. The imaging system is based on super resolved time multiplexing method using variable and moving pinholes arrays. The improved resolution and signal to noise ratio are achieved with improved light intensity in the same exposure time, compared to imaging done with a single pinhole system. This new configuration preserves the advantages of pinhole optics while solving the resolution limitation problem and the low energetic efficiency of such system. The changeable and moving pinholes array can be realized using a DLP matrix. The system can also be used as an addition to several of existing optical systems which use visible, invisible light or even x-ray radiation.
{"title":"High resolution and energetically efficient lensless imaging system based upon time varied pinholes array","authors":"A. Schwarz, A. Shemer, Z. Zalevsky","doi":"10.1117/12.2037186","DOIUrl":"https://doi.org/10.1117/12.2037186","url":null,"abstract":"In this paper, we describe a novel super resolution method with variable pinholes arrays. The imaging system is based on super resolved time multiplexing method using variable and moving pinholes arrays. The improved resolution and signal to noise ratio are achieved with improved light intensity in the same exposure time, compared to imaging done with a single pinhole system. This new configuration preserves the advantages of pinhole optics while solving the resolution limitation problem and the low energetic efficiency of such system. The changeable and moving pinholes array can be realized using a DLP matrix. The system can also be used as an addition to several of existing optical systems which use visible, invisible light or even x-ray radiation.","PeriodicalId":395835,"journal":{"name":"Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129573430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}